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Abstract— Efficient portfolio design is a principal challenge in modern computational finance. 
Optimization based on Markowitz two-objective mean-variance approach is computationally expensive 
for real financial world. Practical portfolio design introduces further complexity as it requires the 
optimization of multiple return and risk measures. Some of these measures are nonlinear and 
nonconvex.   The problem of portfolio design is a standard problem in financial world and has received 
a lot of attention. Three well known multi-objective evolutionary algorithms i.e. Pareto envelope-based 
selection algorithm  , Micro Genetic algorithm  and Multiobjective particle swarm optimization has 
been applied  for solving the bi-objective portfolio optimization problem which simultaneously 
maximize the return measures and minimize the risk measures. Performance comparison carried out  
by performing different numerical experiments. The approach has been tested on real-life portfolio 
with many assets. The results show that MOPSO outperforms the existing method for the considered 
test cases. 

Index Terms—Evolutionary algorithms,Multiobjective optimization, Pareto optimal solutions, 
Global optimization, Crowding distance, Portfolio optimization 

I. Introduction 
 
Portfolio design is very complicated as it depends on many factors such as assets inter- relationships, 
preferences of the decision makers, resource allocation and several other factors. As a result, the decision 
maker has to take several issues into consideration. Almost all practical optimization problems, especially 
economical design optimization problems have a multiobjective nature much more frequently than a single 
objective one. In this work we suggest the use of multiobjective optimization algorithms for optimal 
weighting of assets as a portfolio optimization problem. Choosing an optimal portfolio weighting of assets, 
when their future rate of return is uncertain is seen as a problem of minimizing the uncertainty for a given 
level of the portfolio expected return. This uncertainty is called as risk and measured by standard deviation 
of the probability distribution of future return. The risk of a particular investment is not as important as its 
contribution to total portfolio risk. Combining a riskful investment with one carrying less risk it is possible 
to reduce the total risk associated to that portfolio. Selecting an optimal portfolio weighting of available 
assets is main aim of portfolio design problem. These issues are conflicting which makes the problem as a 
multi-objective one. In this paper we used  different multiobjective algorithms like PESA, MicroGA and  
MOPSO  for modeling the Pareto front and for optimizing the portfolio performance. The results obtained 
with these three  algorithms are finally compared by performing different numerical experiments.         

   
Section 2 outlines the multi-objective optimization formulation of portfolio optimization. In Section 3 

some of the multi-objective evolutionary techniques used in this paper are dealt. Multi-objective 
optimization fundamental is presented in section 3. The Multiobjective particle swarm optimization 
(MOPSO) algorithm is explained in section 4. In Section 5, some well know multi-objective evolutionary 
techniques are briefly described. For comparing different multiobjective algorithms, different metric 
proposed by different authors in the literature are presented in section 6. 
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Simulation studies based on several numerical experiments are carried out in Section 7. The results in 
terms Pareto fronts between risk and return are shown in Section 8. Conclusions and further research work 
directions are discussed in the final section. 

2. Statement of the problem 
 
A portfolio p  be consists of N  number of assets. Selection of optimal weighting of assets (with specific 
volumes for each asset given by weights iw )is to be found. The unconstrained portfolio optimization 
problem is given as minimizing the variance of the portfolio and maximizing the return of the portfolio 
shown in equation 1 and 2 respectively. 
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 iμ  the expected return of asset i , ijσ  the covariance between asset i and j  and finally iw  are the 

decision variables giving the composition of the portfolio. pρ be the standard deviation of portfolio and 

pα  be the expected return of portfolio. 3 and 4 give the constraints for this portfolio optimization 
problem. This is a multiobjective optimization problem with two competing objectives 
(i) minimize the total variance, denoting the risk associated with the portfolio  (ii) maximize the return of 
the portfolio. 
 
3. Multi-objective optimization 
 
In a single-objective optimization problem, an optimal solution is the one which optimizes the objective 
with certain associated constraints. It is not possible to find a single solution for a multiobjective problem 
and due to the contradictory objectives a set of solutions is obtained.  The general multi-objective 
minimization problem involves minimization of  n   objective functions: 
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  Where        2≥n                                                                                                                           (5) 
     The solution to this problem is more complex than the single-objective case, and the idea of Pareto-

dominance is used to explain it. Consider first an objective function ⎟
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A point 
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2F  , and at 



least one component is smaller. Similarly, 
−

1x is said to be Pareto-equivalent to 
−

2x  if some components of 
−

1F are greater than 
−

2F  and some are smaller. Pareto-equivalent points represent a trade-off between the 
objective functions, and it is impossible to infer that one point is better than another Pareto equivalent 
point without introducing preferences or relative weighting of the objectives. 
       Therefore the solution to a multi-objective optimization problem is a set of vectors which are not 
dominated by any other vector, and which are Pareto- equivalent to each other. This paper describes a 
situation in which 31 assets are available and an optimal portfolio weighting of these assets are needed. 
We assume that interdependencies exist among these assets. Evolutionary algorithms are able to reserve a 
population of solutions and explore several parts of the Pareto front simultaneously.  
 
4. Multi-objective particle swarm optimization  
 
Observing bird flocks and fish schools, Kennedy and Eberhart [19] realized that an optimization problem 
can be formulated by mimicking this social behavior of a flock of birds flying across an area looking for 
food.   This observation and inspiration by the social behavior exhibited by flocks of birds and schools of 
fish, resulted the invention of a novel optimization technique called particle swarm optimization (PSO).  
In this algorithm a population of individual solutions is developed during the optimization process. The 
parameters of these population members are adjusted with respect to their previous experience. This 
experience is derived from the particle as an individual and as a member of the entire population. 
          Particle swarm optimization algorithms optimize an objective function by conducting a population-
based stochastic search. When utilizing stochastic search and optimization to handle multi-objective 
problems, two major issues should be considered in the algorithm design. First, the fitness evaluation 
strategy should be addressed so that the search can move towards the Pareto-optimal set. Second, the 
diversity of the population should be preserved to obtain a well-distributed Pareto-optimal front.  In 
particle swarm optimization the population comprises potential solutions, called particles, which are a 
metaphor of birds in flocks. These particles are randomly initialized and freely fly across the multi-
dimensional search space. During flight, each particle updates its velocity and position based on the best 
experience of its own and the entire population encountered thus far. The updating rule will steer the 
particle swarm to move toward the more promising region with higher objective value, and eventually all 
particles will accumulate around the optimum point. The main steps of particle swarm optimization can 
be summarized as. 
 
Step 1: Initialization: The velocity and position of all particles are randomly set to fall into the pre-
specified or allowed range. 
 
Step 2: Velocity updating:  At each iteration, the velocities of all particles are updated according to the 
following policy: 
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where ip  and  iv  are the position and velocity of particle i , respectively; bestip ,

→

 and  bestg
→

 are the 
positions with the best objective value found so far by particle  i  and the entire population, respectively; 
w  is the parameter controlling the dynamics of flying; 1r  and 2r are random variables in the range [0,1]; 

1c  and 2c  are weighting factors. 
 



Step 3: Position updating: Between successive iterations, the positions of all particles are updated  

according to the following rule: iii vpp
→→→

+←  
 
Step 4: Memory updating: Update pbest and gbest when the corresponding conditions are met: 
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Step 5: Termination criteria: The algorithm repeats step 2 to step 4 until certain stopping rules are 

satisfied. Once terminated, the algorithm outputs the bestg
→

 and ⎟
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bestgf  as its solution. 

               Different single and multi objective PSO algorithms have been proposed by many researcher.  
Two different techniques have been employed in the literature for gbest selection: (1) roulette wheel 
selection and (2) quantitative standards [4][5]. Hu and Eberhart[6] proposed a local lbest and a single 
pbest for each swarm member. Vector evaluated  particle swarm optimizer (VEPSO)  designates a swarm 
to each objective in the case of bi-objective problem and the velocities of each swarm are updated by the 
social leader of the other swarm[7]. Coello and Lechunga [8] applied a grid based selection scheme. 
Fieldsend and Singh  proposed a data structure i.e. a dominated tree for local gbest selection for each  
individual[9]. Mostaghim and Teich introduced  the sigma method to direct particles towards the front 
where sigma values were calculated for archive and the swarm in each iteration[10]. The gbest for every 
individual was chosen using  the minimal sigma distance to the particle. Rey and Leiw [12] integrated the 
Pareto ranking scheme and PSO to handle multi objective problems in a way that a leader with a higher 
crowding radius value is more likely to be selected as a gbest. The improved PSO algorithm proposed by 
Jiang, Hu, Huang, and Wu   used several sub-swarms to enhance both exploration and exploitation by 
sharing information gained by them. Liao, Tseng, and Luarn proposed a discrete version of PSO for flow 
shop scheduling problems[13].Niu, Zhu, He, and Wu  proposed a cooperative PSO where the population 
comprises of a master swarm and several slave swarms[14]. In their proposed algorithm each slave swarm 
applied a single PSO to maintain the diversity of particles while the master swarm improved through its 
own experience and the experience of the slave swarms. 
 
       PSO differs from that of other population-based algorithms as it does not apply the filtering 
operations such as crossover or/and mutation, and the information is only socially shared by a gbest or 
lbest. The key point in MOPSO is deciding on which gbest or pbest to option for in order to direct the 
flight of a swarm member.  The selection criteria for pbest is similar to that of PSO with the only 
difference being that the Pareto dominance determines the leader.  
 
 4.1 Multiobjective particle swarm optimization (MOPSO) algorithm 
 
As the analogy of the proposed algorithm with the classic multi-objective evolutionary algorithms 
(MOEAs), a secondary population, the so-called Archive set, is maintained, which contains a 
representation of the non-dominated front among all solutions considered so far. The Archive set is used 
as external storage and  updated at each generation. 
Step 1: =11, AP Initialization 
Step 2: FOR t = 1 to N   



A. ( )ttt APGenerateP ,1 =+  
       for   1=j   TO POPULATIONSIZE 
              tjg , =  findgbest ),( ,tjt PA  

             1, +tjP = Update Particle ( )tjtj gP ,, ,  

              Evaluate ( )1, +tjP  

            tjp , = UpdatepBest  ( )1, +tjP  
NEXT 
B.  1+tA = UpdateArchive  ( )tt AP ,1+   

C.   =+1tP  Mutation ( )1+tP  
NEXT 
Step 3: OutputArchive ( )1+tA  

where, t  denotes the generation index, tP  is the population, tA  is the Archive set at t -th generation, tjg ,   

is the gbest of j -th particle, tjp ,  is the pbest of j -th particle, and tjP ,  is the j -th particle of tP  at t -th 
generation. 
The jobs of different functions are as follow: 
Initialization: It  generates the initial population and copies all non-dominated solutions to the Archive 
set. The function Generate, generates the next generation population.  
FindgBest :It selects gBest from   tA  for  tjP ,  adopting the Pareto-optimal solution search algorithm. 

UpdateParticle: It  updates the speed and position of  tjP ,  using  tjg ,  and tjp ,  
 Evaluate: This function  evaluates the particles of population. 
UpdateArchive: It  inserts the non-dominated solutions of  1+tP   to  tA  and removes the superfluous 

particles from tA . 
OutputArchive : outputs the particles of the Archive set. The steps of the MOPSO algorithm are 
iteratively repeated until the maximum number of generations is reached. 
 
5. Multiobjective Evolutionary Algorithms 
 
Multi-objective evolutionary algorithms are a popular approach in dealing with problems which consider 
several objectives to optimize.  In this paper work we compare the performance of three recently 
developed multiobjective evolutionary algorithms such as:  Pareto Envelope-based Selection Algorithm, 
micro genetic algorithm and multiobjective particle swarm optimization for optimal weighting of assets in 
portfolio optimization problem.   
      In PESA mating selection procedure is based on a crowding measure.  The crowding distance 
measurement is done over the archive members. Crowding strategy works by forming hyper-grid and it 
divides phenotype space into hyper-boxes. Each individual in the archive is associated with a particular 
hyper-box. It has a squeeze factor  which is equal to the number of other individuals from archive which 
present in the same hyper box. Environmental selection criteria based on this crowding measure is used 
for each individuals from archive.  
     A micro genetic algorithm is a GA with a small population and a reinitialization process. First, a 
random population is generated and it feeds the population memory. The population memory is divided in 
two parts (i) a replaceable and (ii) a nonreplaceable portion. The nonreplaceable portion of the population 
memory never changes during the entire run and it provides the required diversity for the algorithm. But 
the replaceable portion of population memory experiences changes after each cycle of the microGA. The 



microGA uses three forms of elitism: (i) it retains nondominated solutions found within the internal cycle 
of the microGA (ii) it uses a replaceable memory whose contents is partially refreshed at certain intervals 
and (iii) it replaces the population by the nominal solutions produced i.e. the best solutions found after a 
full internal cycle of the microGA. This approach was proposed by Coello Coello[2]. 
      
5.1 PESA Algorithm 
 
PESA has two parameters concerning population size i.e IP  (the size of the internal population IP)  and 
PE ( the maximum size of the archive or external population). It has one parameter concerning the hyper-
grid crowding strategy. 
        The main steps in this algorithm are (i) Generate and evaluate each of an initial internal population 
(IP) of IP  chromosomes and initialize the external population (EP) to the empty set.(ii) Incorporate the 
non-dominated members of IP into EP.(iii) If a termination criterion has reached then stop, returning the 
set of chromosomes in EP as the result. Otherwise delete the current contents of IP and repeat the 
following until IP  new candidate solutions have been generated. With probability  cp  , select two 

parameters from EP.  Produce a single child via crossover and mutate the child. With probability ( )cp−1  
select one parent and mutate it to produce a child. (iv) Repetition of the same process. 
      PESA has two parameters concerning population size i.e. Ip ( the size of internal population, IP)  and  
PE (the maximum size of external population EP) . It has one parameter concerning the hyper-grid 
crowding strategy. 
1. Generate and evaluate each of an initial internal population (IP) of PI chromosomes. 
2. Initialize the external population (EP) as empty set. 
3.  For  1=t  to Number of Generations  
3.1. Incorporate the non-dominated members of IP into EP. 
3.2. Delete the current content of IP. 
3.3. Until obtain new solution of Ip . 
3.3.1. Select two parents from EP with probability cp  
3.3.2. Recombination this two parents for obtaining one offspring 
3.3.3. Mutate the offspring 
3.3.4. Select one parent from IP with probability ( )cp−1  
3.3.5. Mutate the parent to produce one offspring 
3.3.6. Add the two obtained offspring into IP 
4. Return to 3  
 
5.2 Micro-GA Algorithm 
 
1. Generate starting population P  of size N  
2. Store its contents in the population memory M  
3. Divide the population memory M  in two parts, a replaceable and  a nonreplaceable part. 
4.  For  1=t  to Number of Generations  
4.1. Get the initial population of micro-GA ( iP ) from M  
4.2. Apply the binary tournament selection based on nondominance. 
4.3. Apply tow point crossover and uniform mutation to the selected individual 
4.4. Apply elitism (retain only one nondominated vector) and generate next generation 
4.5. Until nominal convergence is reached copy two nondominated vector from iP  to the external 
memory E . 



4.6. When E  is full use adaptive grid. 
4.7. Copy two nondominated vectors from iP  to M   
5. Return to step 4 
  
6. Comparison of Results 
 
For performance comparison and quantitative assessment of a multiobjective optimization 
algorithm normally three issues are taken into consideration.  
(i) Minimize the distance of the Pareto front produced by our algorithm with respect to the global 
Pareto front, assuming the location of global Pareto front. To address the issue Van Veldhuizen 
and Lamont [17] proposed generation distance (GD).  
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Where n the number of vectors in the set of nondominated solutions is found so far and id is the 
Euclidean distance between each of these and the nearest member of the Pareto optimal set. If  

0=GD  indicates all the elements generated are in the Pareto optimal set.  Therefore, any other 
value will indicate how far the elements are from the global Pareto front.  
(ii) Maximize the spread of solutions found so that the distribution of vectors will be smooth and 
uniform.  Schott [16] introduced a metric i.e. Spacing (SP) metric for this propose which 
measures the range variance of neighboring vectors in the nondominated vectors.  This metric is 
defined as: 
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d mean of all id  and n  is the number of nondominated vectors found so far. A value of zero 
for this metric indicates all members of the Pareto front currently available are equidistantly 
spaced.  
(iii) Maximize the number of elements of the Pareto optimal set found.  Error ratio (ER) metric 
was proposed by Van Veldhuizen [18] which addresses this issue. It indicate the percentage of 
solutions from the nondominated vectors that are not members of the true Pareto optimal set 
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Where n  is the number of vectors in the current set of nondominated vectors available.  if vector 
i is a member of the Pareto optimal set then 0=ie and 1=ie  if vector i  not a member of Pareto 



optimal set. 0=ER indicates all the vectors generated by our algorithm belong to the Pareto 
optimal set of the problem.  
         For comparison of two non-dominated solution sets obtain by proposed multiobjective algorithm for 
efficient weighting of available assets, the following  measures are computed: 

1. S metric 

     The S metric proposed in [4] indicates the extent of objective space dominated by a given 

nondominated set A.  If the S metric of a non dominated front 1f   is less than another front 2f  

then 1f  is better than 2f . It has been proposed by Zitzler [4]. 

2. Δ  metric 

     This metric called as spacing metric (Δ ) measures how evenly the points in the 
approximation set are distributed in the objective space. This formulation introduced by K. Deb 
[1] is given by 
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Where id  be the Euclidean distance between consecutive solutions in the obtained 

nondominated set of solutions. 
−

d  is the average of these distances. fd  and ld  are the Euclidean 
distance between the extreme solutions and the boundary solutions of the obtained non 
dominated set and N  is the number of solutions from nondominated set.  The   low value for Δ  
indicate a better diversity and hence better is the algorithm. 

3. C metric 

     Two sets of non dominated solutions are compared using C metric. The definition of C metric 
given in [4] for convergence of two sets   A and B is given by: 
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7. Simulation Studies  
 

In this section we describe the test problem used to compare the performance of  PESA, MicroGA and 

MOPSO for optimal weighting of the available assets.  In all case the objective number is 2. We have 

taken parameters of these algorithms such a way that it will be comparable. We run experiments on data 

from OR library that maintained by Prof. Beasley as a public benchmark data set and is derived from 

Heng  Seng data set with 31 assets. The data can be found at 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. 



     The PESA has internal population size of 100, external population size of 100 and number of 
gene is equal to number of assets. The  number of generations is  taken as 100, crossover is 
uniform having rate as 0.8. It has mutation rate of L

1 , where L  refers to the length of the 

chromosomic string that encodes the decision variables. The grid size i.e. the number of division 
per dimension is 10.  
      
     The microGA used an external memory of 100 individuals, a number of iterations to achieve 
nominal convergence , a population memory of 50 individuals. Percentage of nonreplaceable 
memory equals  0.05, a population size of four individuals  and 25 subdivisions of the adaptive 
grid. It  used a crossover rate of 0.9 and mutation rate was set to L

1  ( L = length of the 

chromosomic string). MOPSO used a population of 100 particles and a repository size of 100 
particles. The mutation rate set to 0.5 and 30 divisions for the adaptive grid.  
 
Table 1   The S and Δ metric                                    
 
Algorithm     PESA     MicroGA    MOPSO 

Metric S 0.0003095745 0.0000067874 0.0000003461 

Metric Δ  0.8654128591 0.8227976192 0.561273589 

 
 
Table I shows the S and Δ  metrics obtained using all the three algorithms. It may be observed from the 
Table I that MOPSO performs better as its S and Δ  metric values are less than those obtained by other 
two algorithms. 
 
Table 2      The result obtained for C metric                                                    
 
        PESA   MicroGA    MOPSO 
       PESA           —        0.0000          0.0000      
   MicroGA        0.5579          —      0.0366          
      MOPSO        0.94627    .88534           — 

      
 
 Table II demonstrates the results of C metric. A magnitude of 0.94627 on the third line, first column 
means almost all solutions from final populations obtained by MOPSO dominate the solutions obtained 
by PESA. The values 0 on first row means that no solution from the nondominated population obtained 
by MicroGA and by MOPSO is dominated by solutions from final populations obtained by PESA.  
 
 
 
 
 



8. Convergence Characteristics 
 
The Pareto front (between risk and return) attained by three algorithms are depicts in Figs (a)-(c): 

                                       
                            (a)  PESA 

 
                            (b)  MicroGA 

                  
 
                              (c )  MOPSO  
 
Fig 1. Plots of Pareto fronts achieved by three methods 
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9. Conclusions and Further work 
 
The paper makes a comparative study of three multi-objective approaches PESA, MicroGA and MOPSO 
for solving portfolio optimization problem. Experimental results reveal that the MOPSO algorithm 
outperforms other two MOEA algorithms in the considered optimal weighting of assets as a portfolio 
design problem. Future work include introduction and incorporation of different operators for local search 
which allow better exploration and exploitation of the search space when applied to portfolio design  
problem. 
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