
 Multiobjective Evolutionary Algorithms for
 Financial Portfolio Design
 Sudhansu Kumar Mishra, Ganapati Panda, Sukadev Meher,Ritanjali Majhi
 1,3Dept of ECE, NIT, Rourkela,Odisha, INDIA
 2School of Electrical Science, IIT, Bhubaneswar, India

 4Centre for Management Studies, NIT, Warangal, India-506004
Sudhansu.nit@gmail.com,ganapati.panda@gmail.com,smeher@nitrkl.ac.in,ritanjalimajhi@gmail.com,

Abstract— Efficient portfolio design is a principal challenge in modern computational finance.
Optimization based on Markowitz two-objective mean-variance approach is computationally expensive
for real financial world. Practical portfolio design introduces further complexity as it requires the
optimization of multiple return and risk measures. Some of these measures are nonlinear and
nonconvex. The problem of portfolio design is a standard problem in financial world and has received
a lot of attention. Three well known multi-objective evolutionary algorithms i.e. Pareto envelope-based
selection algorithm , Micro Genetic algorithm and Multiobjective particle swarm optimization has
been applied for solving the bi-objective portfolio optimization problem which simultaneously
maximize the return measures and minimize the risk measures. Performance comparison carried out
by performing different numerical experiments. The approach has been tested on real-life portfolio
with many assets. The results show that MOPSO outperforms the existing method for the considered
test cases.

Index Terms—Evolutionary algorithms,Multiobjective optimization, Pareto optimal solutions,
Global optimization, Crowding distance, Portfolio optimization

I. Introduction

Portfolio design is very complicated as it depends on many factors such as assets inter- relationships,
preferences of the decision makers, resource allocation and several other factors. As a result, the decision
maker has to take several issues into consideration. Almost all practical optimization problems, especially
economical design optimization problems have a multiobjective nature much more frequently than a single
objective one. In this work we suggest the use of multiobjective optimization algorithms for optimal
weighting of assets as a portfolio optimization problem. Choosing an optimal portfolio weighting of assets,
when their future rate of return is uncertain is seen as a problem of minimizing the uncertainty for a given
level of the portfolio expected return. This uncertainty is called as risk and measured by standard deviation
of the probability distribution of future return. The risk of a particular investment is not as important as its
contribution to total portfolio risk. Combining a riskful investment with one carrying less risk it is possible
to reduce the total risk associated to that portfolio. Selecting an optimal portfolio weighting of available
assets is main aim of portfolio design problem. These issues are conflicting which makes the problem as a
multi-objective one. In this paper we used different multiobjective algorithms like PESA, MicroGA and
MOPSO for modeling the Pareto front and for optimizing the portfolio performance. The results obtained
with these three algorithms are finally compared by performing different numerical experiments.

Section 2 outlines the multi-objective optimization formulation of portfolio optimization. In Section 3

some of the multi-objective evolutionary techniques used in this paper are dealt. Multi-objective
optimization fundamental is presented in section 3. The Multiobjective particle swarm optimization
(MOPSO) algorithm is explained in section 4. In Section 5, some well know multi-objective evolutionary
techniques are briefly described. For comparing different multiobjective algorithms, different metric
proposed by different authors in the literature are presented in section 6.

USER
Text Box
International Joint Conference on Information and Communication Technology (IJcICT-2010), Bhubaneswar, 9th-10th January, 2010

Simulation studies based on several numerical experiments are carried out in Section 7. The results in
terms Pareto fronts between risk and return are shown in Section 8. Conclusions and further research work
directions are discussed in the final section.

2. Statement of the problem

A portfolio p be consists of N number of assets. Selection of optimal weighting of assets (with specific
volumes for each asset given by weights iw)is to be found. The unconstrained portfolio optimization
problem is given as minimizing the variance of the portfolio and maximizing the return of the portfolio
shown in equation 1 and 2 respectively.

∑∑
= =

=
N

i

N

j
ijjip ww

1 1

2 σρ (1)

∑=
N

i
iip w μα (2)

∑ =
N

i
iw 1 (3)

;10 ≤≤ iw and Ni ...,2,1= (4)

 iμ the expected return of asset i , ijσ the covariance between asset i and j and finally iw are the

decision variables giving the composition of the portfolio. pρ be the standard deviation of portfolio and

pα be the expected return of portfolio. 3 and 4 give the constraints for this portfolio optimization
problem. This is a multiobjective optimization problem with two competing objectives
(i) minimize the total variance, denoting the risk associated with the portfolio (ii) maximize the return of
the portfolio.

3. Multi-objective optimization

In a single-objective optimization problem, an optimal solution is the one which optimizes the objective
with certain associated constraints. It is not possible to find a single solution for a multiobjective problem
and due to the contradictory objectives a set of solutions is obtained. The general multi-objective
minimization problem involves minimization of n objective functions:

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −−−

xfxfxf n.........,, 21

 Where 2≥n (5)
 The solution to this problem is more complex than the single-objective case, and the idea of Pareto-

dominance is used to explain it. Consider first an objective function ⎟
⎠
⎞

⎜
⎝
⎛ −−

xF , where

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −−−−−

xfxfxfxF n.........,, 21

 (6)

A point
−

1x with an objective function vector
−

1F , is said to dominate point
−

2x , with an objective

function vector
−

2F , if no component of
−

1F is greater than its corresponding component in
−

2F , and at

least one component is smaller. Similarly,
−

1x is said to be Pareto-equivalent to
−

2x if some components of
−

1F are greater than
−

2F and some are smaller. Pareto-equivalent points represent a trade-off between the
objective functions, and it is impossible to infer that one point is better than another Pareto equivalent
point without introducing preferences or relative weighting of the objectives.
 Therefore the solution to a multi-objective optimization problem is a set of vectors which are not
dominated by any other vector, and which are Pareto- equivalent to each other. This paper describes a
situation in which 31 assets are available and an optimal portfolio weighting of these assets are needed.
We assume that interdependencies exist among these assets. Evolutionary algorithms are able to reserve a
population of solutions and explore several parts of the Pareto front simultaneously.

4. Multi-objective particle swarm optimization

Observing bird flocks and fish schools, Kennedy and Eberhart [19] realized that an optimization problem
can be formulated by mimicking this social behavior of a flock of birds flying across an area looking for
food. This observation and inspiration by the social behavior exhibited by flocks of birds and schools of
fish, resulted the invention of a novel optimization technique called particle swarm optimization (PSO).
In this algorithm a population of individual solutions is developed during the optimization process. The
parameters of these population members are adjusted with respect to their previous experience. This
experience is derived from the particle as an individual and as a member of the entire population.
 Particle swarm optimization algorithms optimize an objective function by conducting a population-
based stochastic search. When utilizing stochastic search and optimization to handle multi-objective
problems, two major issues should be considered in the algorithm design. First, the fitness evaluation
strategy should be addressed so that the search can move towards the Pareto-optimal set. Second, the
diversity of the population should be preserved to obtain a well-distributed Pareto-optimal front. In
particle swarm optimization the population comprises potential solutions, called particles, which are a
metaphor of birds in flocks. These particles are randomly initialized and freely fly across the multi-
dimensional search space. During flight, each particle updates its velocity and position based on the best
experience of its own and the entire population encountered thus far. The updating rule will steer the
particle swarm to move toward the more promising region with higher objective value, and eventually all
particles will accumulate around the optimum point. The main steps of particle swarm optimization can
be summarized as.

Step 1: Initialization: The velocity and position of all particles are randomly set to fall into the pre-
specified or allowed range.

Step 2: Velocity updating: At each iteration, the velocities of all particles are updated according to the
following policy:

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+=

→→→→
→

→

ibestibestiii pgrcpprcvwv 22,11

where ip and iv are the position and velocity of particle i , respectively; bestip ,

→

 and bestg
→

 are the
positions with the best objective value found so far by particle i and the entire population, respectively;
w is the parameter controlling the dynamics of flying; 1r and 2r are random variables in the range [0,1];

1c and 2c are weighting factors.

Step 3: Position updating: Between successive iterations, the positions of all particles are updated

according to the following rule: iii vpp
→→→

+←

Step 4: Memory updating: Update pbest and gbest when the corresponding conditions are met:

ibesti pp
→→

←, if ⎟
⎠
⎞

⎜
⎝
⎛ →

bestipf , < ⎟
⎠
⎞

⎜
⎝
⎛ →

ipf

Where ⎟
⎠
⎞

⎜
⎝
⎛→xf is the objective function to be minimized.

Step 5: Termination criteria: The algorithm repeats step 2 to step 4 until certain stopping rules are

satisfied. Once terminated, the algorithm outputs the bestg
→

 and ⎟
⎠
⎞

⎜
⎝
⎛→

bestgf as its solution.

 Different single and multi objective PSO algorithms have been proposed by many researcher.
Two different techniques have been employed in the literature for gbest selection: (1) roulette wheel
selection and (2) quantitative standards [4][5]. Hu and Eberhart[6] proposed a local lbest and a single
pbest for each swarm member. Vector evaluated particle swarm optimizer (VEPSO) designates a swarm
to each objective in the case of bi-objective problem and the velocities of each swarm are updated by the
social leader of the other swarm[7]. Coello and Lechunga [8] applied a grid based selection scheme.
Fieldsend and Singh proposed a data structure i.e. a dominated tree for local gbest selection for each
individual[9]. Mostaghim and Teich introduced the sigma method to direct particles towards the front
where sigma values were calculated for archive and the swarm in each iteration[10]. The gbest for every
individual was chosen using the minimal sigma distance to the particle. Rey and Leiw [12] integrated the
Pareto ranking scheme and PSO to handle multi objective problems in a way that a leader with a higher
crowding radius value is more likely to be selected as a gbest. The improved PSO algorithm proposed by
Jiang, Hu, Huang, and Wu used several sub-swarms to enhance both exploration and exploitation by
sharing information gained by them. Liao, Tseng, and Luarn proposed a discrete version of PSO for flow
shop scheduling problems[13].Niu, Zhu, He, and Wu proposed a cooperative PSO where the population
comprises of a master swarm and several slave swarms[14]. In their proposed algorithm each slave swarm
applied a single PSO to maintain the diversity of particles while the master swarm improved through its
own experience and the experience of the slave swarms.

 PSO differs from that of other population-based algorithms as it does not apply the filtering
operations such as crossover or/and mutation, and the information is only socially shared by a gbest or
lbest. The key point in MOPSO is deciding on which gbest or pbest to option for in order to direct the
flight of a swarm member. The selection criteria for pbest is similar to that of PSO with the only
difference being that the Pareto dominance determines the leader.

 4.1 Multiobjective particle swarm optimization (MOPSO) algorithm

As the analogy of the proposed algorithm with the classic multi-objective evolutionary algorithms
(MOEAs), a secondary population, the so-called Archive set, is maintained, which contains a
representation of the non-dominated front among all solutions considered so far. The Archive set is used
as external storage and updated at each generation.
Step 1: =11, AP Initialization
Step 2: FOR t = 1 to N

A. ()ttt APGenerateP ,1 =+
 for 1=j TO POPULATIONSIZE
 tjg , = findgbest),(,tjt PA

 1, +tjP = Update Particle ()tjtj gP ,, ,

 Evaluate ()1, +tjP

 tjp , = UpdatepBest ()1, +tjP
NEXT
B. 1+tA = UpdateArchive ()tt AP ,1+

C. =+1tP Mutation ()1+tP
NEXT
Step 3: OutputArchive ()1+tA

where, t denotes the generation index, tP is the population, tA is the Archive set at t -th generation, tjg ,

is the gbest of j -th particle, tjp , is the pbest of j -th particle, and tjP , is the j -th particle of tP at t -th
generation.
The jobs of different functions are as follow:
Initialization: It generates the initial population and copies all non-dominated solutions to the Archive
set. The function Generate, generates the next generation population.
FindgBest :It selects gBest from tA for tjP , adopting the Pareto-optimal solution search algorithm.

UpdateParticle: It updates the speed and position of tjP , using tjg , and tjp ,
 Evaluate: This function evaluates the particles of population.
UpdateArchive: It inserts the non-dominated solutions of 1+tP to tA and removes the superfluous

particles from tA .
OutputArchive : outputs the particles of the Archive set. The steps of the MOPSO algorithm are
iteratively repeated until the maximum number of generations is reached.

5. Multiobjective Evolutionary Algorithms

Multi-objective evolutionary algorithms are a popular approach in dealing with problems which consider
several objectives to optimize. In this paper work we compare the performance of three recently
developed multiobjective evolutionary algorithms such as: Pareto Envelope-based Selection Algorithm,
micro genetic algorithm and multiobjective particle swarm optimization for optimal weighting of assets in
portfolio optimization problem.
 In PESA mating selection procedure is based on a crowding measure. The crowding distance
measurement is done over the archive members. Crowding strategy works by forming hyper-grid and it
divides phenotype space into hyper-boxes. Each individual in the archive is associated with a particular
hyper-box. It has a squeeze factor which is equal to the number of other individuals from archive which
present in the same hyper box. Environmental selection criteria based on this crowding measure is used
for each individuals from archive.
 A micro genetic algorithm is a GA with a small population and a reinitialization process. First, a
random population is generated and it feeds the population memory. The population memory is divided in
two parts (i) a replaceable and (ii) a nonreplaceable portion. The nonreplaceable portion of the population
memory never changes during the entire run and it provides the required diversity for the algorithm. But
the replaceable portion of population memory experiences changes after each cycle of the microGA. The

microGA uses three forms of elitism: (i) it retains nondominated solutions found within the internal cycle
of the microGA (ii) it uses a replaceable memory whose contents is partially refreshed at certain intervals
and (iii) it replaces the population by the nominal solutions produced i.e. the best solutions found after a
full internal cycle of the microGA. This approach was proposed by Coello Coello[2].

5.1 PESA Algorithm

PESA has two parameters concerning population size i.e IP (the size of the internal population IP) and
PE (the maximum size of the archive or external population). It has one parameter concerning the hyper-
grid crowding strategy.
 The main steps in this algorithm are (i) Generate and evaluate each of an initial internal population
(IP) of IP chromosomes and initialize the external population (EP) to the empty set.(ii) Incorporate the
non-dominated members of IP into EP.(iii) If a termination criterion has reached then stop, returning the
set of chromosomes in EP as the result. Otherwise delete the current contents of IP and repeat the
following until IP new candidate solutions have been generated. With probability cp , select two

parameters from EP. Produce a single child via crossover and mutate the child. With probability ()cp−1
select one parent and mutate it to produce a child. (iv) Repetition of the same process.
 PESA has two parameters concerning population size i.e. Ip (the size of internal population, IP) and
PE (the maximum size of external population EP) . It has one parameter concerning the hyper-grid
crowding strategy.
1. Generate and evaluate each of an initial internal population (IP) of PI chromosomes.
2. Initialize the external population (EP) as empty set.
3. For 1=t to Number of Generations
3.1. Incorporate the non-dominated members of IP into EP.
3.2. Delete the current content of IP.
3.3. Until obtain new solution of Ip .
3.3.1. Select two parents from EP with probability cp
3.3.2. Recombination this two parents for obtaining one offspring
3.3.3. Mutate the offspring
3.3.4. Select one parent from IP with probability ()cp−1
3.3.5. Mutate the parent to produce one offspring
3.3.6. Add the two obtained offspring into IP
4. Return to 3

5.2 Micro-GA Algorithm

1. Generate starting population P of size N
2. Store its contents in the population memory M
3. Divide the population memory M in two parts, a replaceable and a nonreplaceable part.
4. For 1=t to Number of Generations
4.1. Get the initial population of micro-GA (iP) from M
4.2. Apply the binary tournament selection based on nondominance.
4.3. Apply tow point crossover and uniform mutation to the selected individual
4.4. Apply elitism (retain only one nondominated vector) and generate next generation
4.5. Until nominal convergence is reached copy two nondominated vector from iP to the external
memory E .

4.6. When E is full use adaptive grid.
4.7. Copy two nondominated vectors from iP to M
5. Return to step 4

6. Comparison of Results

For performance comparison and quantitative assessment of a multiobjective optimization
algorithm normally three issues are taken into consideration.
(i) Minimize the distance of the Pareto front produced by our algorithm with respect to the global
Pareto front, assuming the location of global Pareto front. To address the issue Van Veldhuizen
and Lamont [17] proposed generation distance (GD).

n

d
GD

n

i
i∑

== 1

2

 (6)

Where n the number of vectors in the set of nondominated solutions is found so far and id is the
Euclidean distance between each of these and the nearest member of the Pareto optimal set. If

0=GD indicates all the elements generated are in the Pareto optimal set. Therefore, any other
value will indicate how far the elements are from the global Pareto front.
(ii) Maximize the spread of solutions found so that the distribution of vectors will be smooth and
uniform. Schott [16] introduced a metric i.e. Spacing (SP) metric for this propose which
measures the range variance of neighboring vectors in the nondominated vectors. This metric is
defined as:

∑
=

−Δ

⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

n

i
idd

n
S

1

2

1
1

 (7)

Where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

→→→→

xfxfxfxfd jiji
ji 2211min (8)

nji ,...,2,1, =

=
−

d mean of all id and n is the number of nondominated vectors found so far. A value of zero
for this metric indicates all members of the Pareto front currently available are equidistantly
spaced.
(iii) Maximize the number of elements of the Pareto optimal set found. Error ratio (ER) metric
was proposed by Van Veldhuizen [18] which addresses this issue. It indicate the percentage of
solutions from the nondominated vectors that are not members of the true Pareto optimal set

n

e
ER

n

i
i∑

== 1

 (9)
Where n is the number of vectors in the current set of nondominated vectors available. if vector
i is a member of the Pareto optimal set then 0=ie and 1=ie if vector i not a member of Pareto

optimal set. 0=ER indicates all the vectors generated by our algorithm belong to the Pareto
optimal set of the problem.
 For comparison of two non-dominated solution sets obtain by proposed multiobjective algorithm for
efficient weighting of available assets, the following measures are computed:

1. S metric

 The S metric proposed in [4] indicates the extent of objective space dominated by a given

nondominated set A. If the S metric of a non dominated front 1f is less than another front 2f

then 1f is better than 2f . It has been proposed by Zitzler [4].

2. Δ metric

 This metric called as spacing metric (Δ) measures how evenly the points in the
approximation set are distributed in the objective space. This formulation introduced by K. Deb
[1] is given by

()
−

−

=

−

−++

−++
=Δ

∑

dNdd

dddd

lf

N

i
ilf

1

1

1

 (10)

Where id be the Euclidean distance between consecutive solutions in the obtained

nondominated set of solutions.
−

d is the average of these distances. fd and ld are the Euclidean
distance between the extreme solutions and the boundary solutions of the obtained non
dominated set and N is the number of solutions from nondominated set. The low value for Δ
indicate a better diversity and hence better is the algorithm.

3. C metric

 Two sets of non dominated solutions are compared using C metric. The definition of C metric
given in [4] for convergence of two sets A and B is given by:

() { }
B

baAaBb
BAC

f:|
,

∈∃∈
=

 (11)

7. Simulation Studies

In this section we describe the test problem used to compare the performance of PESA, MicroGA and

MOPSO for optimal weighting of the available assets. In all case the objective number is 2. We have

taken parameters of these algorithms such a way that it will be comparable. We run experiments on data

from OR library that maintained by Prof. Beasley as a public benchmark data set and is derived from

Heng Seng data set with 31 assets. The data can be found at

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html.

 The PESA has internal population size of 100, external population size of 100 and number of
gene is equal to number of assets. The number of generations is taken as 100, crossover is
uniform having rate as 0.8. It has mutation rate of L

1 , where L refers to the length of the

chromosomic string that encodes the decision variables. The grid size i.e. the number of division
per dimension is 10.

 The microGA used an external memory of 100 individuals, a number of iterations to achieve
nominal convergence , a population memory of 50 individuals. Percentage of nonreplaceable
memory equals 0.05, a population size of four individuals and 25 subdivisions of the adaptive
grid. It used a crossover rate of 0.9 and mutation rate was set to L

1 (L = length of the

chromosomic string). MOPSO used a population of 100 particles and a repository size of 100
particles. The mutation rate set to 0.5 and 30 divisions for the adaptive grid.

Table 1 The S and Δ metric

Algorithm PESA MicroGA MOPSO

Metric S 0.0003095745 0.0000067874 0.0000003461

Metric Δ 0.8654128591 0.8227976192 0.561273589

Table I shows the S and Δ metrics obtained using all the three algorithms. It may be observed from the
Table I that MOPSO performs better as its S and Δ metric values are less than those obtained by other
two algorithms.

Table 2 The result obtained for C metric

 PESA MicroGA MOPSO
 PESA — 0.0000 0.0000
 MicroGA 0.5579 — 0.0366
 MOPSO 0.94627 .88534 —

 Table II demonstrates the results of C metric. A magnitude of 0.94627 on the third line, first column
means almost all solutions from final populations obtained by MOPSO dominate the solutions obtained
by PESA. The values 0 on first row means that no solution from the nondominated population obtained
by MicroGA and by MOPSO is dominated by solutions from final populations obtained by PESA.

8. Convergence Characteristics

The Pareto front (between risk and return) attained by three algorithms are depicts in Figs (a)-(c):

 (a) PESA

 (b) MicroGA

 (c) MOPSO

Fig 1. Plots of Pareto fronts achieved by three methods

0.395 0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.435 0.44 0.445
5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4
x 10-3 MOP using PESA

Risk

R
et

ur
n

0.38 0.385 0.39 0.395 0.4 0.405 0.41 0.415 0.42
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6
x 10-3 MOP using MicroGA

Risk

R
et

ur
n

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8
x 10

-3 MOP using MOPSO

F1

F2

9. Conclusions and Further work

The paper makes a comparative study of three multi-objective approaches PESA, MicroGA and MOPSO
for solving portfolio optimization problem. Experimental results reveal that the MOPSO algorithm
outperforms other two MOEA algorithms in the considered optimal weighting of assets as a portfolio
design problem. Future work include introduction and incorporation of different operators for local search
which allow better exploration and exploitation of the search space when applied to portfolio design
problem.

References

[1] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization: NSGAII. Proceedings of the Parallel Problem Solving from
Nature VI Conference, pages 849-858,Paris, France, 2000. Springer. Lecture Notes in Computer Science
No.1917.

 [2] Carlos C.H Coello Coello. A Comprehensive Survey of Evolutionary –based multiobjective
optimization Techniques. Knowledge and Information System. An International Jornal,1(3): 269-308,Aug
1999.

[3] H. M. Markowitz. Portfolio Selection: efficient diversification of investments. John Wiley & Sons,
1959.

[4]E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the
Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271, 1999.

[5] Hu, X., Shi, Y., & Eberhart, R. C. (2002). Solving constrained nonlinear optimization problems with
particle swarm optimization. In Proceedings of the sixth world multiconference on systemics, cybernetics
and informatics 2002, Orlando, USA.

[6] Hu, X., & Eberhart, R. C., (2002). Multiobjective optimization using dynamic neighborhood particle
swarm optimization. In Proceedings of the 2002 congress on evolutionary computation, part of the 2002
IEEE world congress on computational intelligence, Hawaii, May 12–17. IEEE Press.
[7]Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method in5 multiobjective
problems. In Proceedings of the 2002 ACM symposium on applied computing (pp. 603–607).

[8]Coello, C. A. C., & Lechunga, M. S. (2002). MOPSO: A proposal for multiple objective particle
swarm optimization. In Proceedings of the 2002 congress on evolutionary computation, part of the 2002
IEEE world congress on computational intelligence (pp. 1051–1056), Hawaii, May 12–17, 2002. IEEE
Press.

[9] Fieldsend, J. E., & Singh, S. (2002). A multi-objective algorithm based upon particle swarm
optimization, an efficient data structure and turbulence. In Proceedings of UK workshop on
computational intelligence (UKCI’02) (pp. 37–44), Birmingham, UK, September 2–4.

[10] Fieldsend, J. E. (2004). Multi-objective particle swarm optimization methods. 1st March, Technical
Report, Department of Computer Science, University of Exeter.

[11] Mostaghim, S., & Teich, J. (2003). Strategies for finding good local guides in multiobjective particle
swarm optimization (mopso). In IEEE 2003 swarm intelligence symposium.

[12] Rey, T., & Leiw, K. M. (2002). A swarm metaphor for multiobjective design optimization.
Engineering Optimization, 34(2), 141–153.

[13] Liao, C., Tseng, C., & Luarn, P. (2007). A discrete version of particle swarm optimization for flow
shop scheduling problems. Computers and Operations Research, 34, 3099–3111.

[14] Niu, B., Zhu, Y., He, X., & Wu, H. (2007). MCPSO: A multi-swarm cooperative particle swarm
optimizer. Applied Mathematics and Computation, 185, 1050–1062.

[15] Laura Diosan, A multi-objective evolutionary approach to the portfolio optimization problem, IEEE
conference,CIMCA-IAWTIC’05.

[16] J. R. Schott, “Fault tolerant design using single and multicriteria genetic algorithm optimization,”
M.S. thesis, Dept. Aeronautics and Astronautics,Massachusetts Inst. Technol., Cambridge, MA, May
1995.

[17] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithm research: A history
and analysis,” Dept. Elec. Comput. Eng.,Graduate School of Eng., Air Force Inst. Technol., Wright
PattersonAFB, OH, Tech. Rep. TR-98-03, 1998.

[18] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: Classifications,analyzes, and new
innovations,” Ph.D. dissertation, Dept.Elec. Comput. Eng., Graduate School of Eng., Air Force Inst.
Technol.Wright-Patterson AFB, OH, May 1999.

[19] Hu, X., Shi, Y., & Eberhart, R. C. (2004). Recent advances in particle swarm. In IEEE congress on
evolutionary computation 2004, Portland, Oregon, USA.

