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Abstract. The basal ganglia (BG) are a set of subcortical nuclei in-
volved in action selection processes. We explore here the automatic pa-
rameterization of two models of the basal ganglia (the GPR and the
CBG) using multi-objective evolutionary algorithms. We define two ob-
jective functions characterizing the supposed winner-takes-all function-
ality of the BG and obtain a set of solutions lying on the Pareto front
for each model. We show that the CBG architecture leads to solutions
dominating the GPR ones, this highlights the usefulness of the CBG
additional connections with regards to the GPR. We then identify the
most satisfying solutions on the fronts in terms of both functionality and
plausibility. We finally define critical and indifferent parameters by ana-
lyzing their variations and values on the fronts, helping us to understand
the dynamics governing the selection process in the BG models.

1 Introduction

In order to explore the characteristics and the critical parameter choices of mod-
els of the basal ganglia –a brain region involved in action selection– we use an
empirical analysis method based on multi-objective evolutionary algorithms [1].

The Basal Ganglia (BG) is commonly defined as a set of subcortical intercon-
nected nuclei, comprising the Striatum (Str), the Sub-Thalamic Nucleus (STN),
both the external and internal Globus Pallidus (GPe and GPi) and both the
Substantia Nigra par reticulata and pars compacta (SNr and SNc) [2]. The Str
comprises mostly medium spiny neurons (MSN) and, more marginally, different
types of interneurons, among which the fast-spiking interneurons (FSI) received
special attention [3]. MSN are commonly subdivided on the basis of the presence
of D1 or D2 dopamine receptors, distinguishing a striato-pallidal and a striato-
nigral pathway [4]. The BG form a loop with the ventro-lateral thalamus (VL),
the thalamic reticular nucleus (TRN) and parts of the frontal cortex (FC).

⋆ This research was funded by the ANR, project EvoNeuro ANR-09-EMER-005-01.



The presented work is based on the hypothesis stipulating that the func-
tional role of the BG is of generic action selection [2, 5]. The BG are organized
in multiple parallel segregated loops [6]. Within each of these loops, multiple
striato-nigral channels interact, leading to a selection through disinhibition of the
GPi/SNr, which is tonically active at rest [7]. This base level is strong enough to
inhibit any action. The functionality of the BG would be to operate a ”winner-
takes-all” (WTA) algorithm, where the channel with the maximum input has the
minimum output activity in the GPi/SNr (at least inferior to the base level),
while the other ones have a maximal activity in the GPi/SNr (superior or equal
to the base level). Based on a WTA hypothesis, many computational models have
been proposed (see [8] for a recent review). These models are commonly set with
hand-tuned parameters, with the goal of respecting biological constraints (for
example, the STN has to be active at rest) while achieving a selection function,
which is not necessarily expressed in precise quantitative terms.

Evolutionary Algorithms (EA) are designed to tackle optimization problems
in a stochastic way. Inspired by the nature’s evolutionary principle, the most
striking difference to classical search is that EA evolve a population of solu-
tions instead of a single one. Multi-Objective Evolutionary Algorithms (MOEA)
are a subclass of EA conceived to address optimisation problems with multiple
conflicting objectives [9]. Real world problems often involve a trade-off between
antagonist goals, meaning they don’t have a single best solution but admit a
range of a priori equally acceptable solutions. Analyzing such a set of optimal
solutions can help to better understand the dynamics governing the problem.
Furthermore, one can eventually decide to pick one particular solution, based on
expert knowledge.

There is no established method to parameterize a BG model. In a previous
attempt at bringing mathematical techniques to elaborate neurocomputational
models, Girard et al. [10] designed the BG with the help of the contraction
theory to control its dynamics, de facto constraining the setting of parameters.
Another recent attempt has been done by Wang et al. [11] by using a simple
genetic algorithm and evolving the “GPR” model described in [12]. The main
difference with our approach lies in their characterization of a WTA. They used a
binary measure to reflect whether the inputs were classified correctly (ie whether
the channel that should be selected is under an arbitrary threshold). We use
here multiple scores to describe the comparative levels of disinhibition of all the
channels; the goal here is to understand the parameterization compromises that
are made when simultaneously trying to inhibit the loosing channels as much as
possible, as well as disinhibiting the winning one.

2 Materials & Methods

Building upon the recent “CBG” model [10] and the classical “GPR” model [12],
we take their structures as a basis for two different evolutions. The connectivity
of these models include the knowledge on the macro biology of the BG [13], the
CBG including more of the known connectivity. Both of them incorporate the



modeling of the thalamic loop, and both of them contain 6 concurrent striato-
nigral channels. In the GPR, each nucleus contains 6 classical leaky integrator
neurons, whereas in the CBG each nucleus contains 6 locally Projected Dynam-
ical System neurons, a leaky integrator variant with dynamics described in [10].
The evolution of the CBG and for the GPR can modify both the connections
weights between nuclei (noted ”nucleus → nucleus”) and the tonic levels (noted
”Tnucleus”). This accounts for a total of 25 parameters for the CBG, and 20
parameters for the GPR; see Figure 1 for the details of the connectivity, and
Tables 2, 3 and 4 for the evolved parameters list.
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Fig. 1. The CBG (left) and GPR (right) architectures. Three channels in competition
are represented. The outgoing connections of the shaded channel are the only one
shown. White endings are excitatory, black are inhibitory. The inputs are the Saliences
(S) in the cortex, and the outputs are the activity of the GPi/SNr neurons. See text
for the meaning of other abbreviations.

We introduced some constraints on the parameters, in order to be sure that
some levels of biological plausibility are respected but also to reduce the ex-
ploration space to make the convergence of the evolution more likely. Neu-
rons from the GPe and GPi exhibit comparable baseline [14], hence they have
the same tonic levels : TGPe = TGPi. Neurons of the Striatum with D1 and
D2 receptors are thought to have comparable afferents from the Cortex [15],
so S → D1 = S → D2 and FC → D1 = FC → D2. Afferents to both



the GPe and GPi from the STN appear to be the same [16], consequently
STN → GPe = STN → GPi. To be acceptable, a solution had to have a
GPi output at rest larger than 0.09, as the GPi is known to be tonically active
[2] and as this output is 0.10 for the CBG and 0.17 for the GPR. Finally, we
chose to limit connection weights in the range [0.05; 1]. Indeed, a null connection
weight would mean no connection at all, changing the connectivity of the circuit.

2.1 Evolving the circuit

Our choice for simulating the evolution is the widely used NSGA-II algorithm
[17]. The mutation rate was fixed at µ = 0.1, a rather high value that serves
to widely explore the space of parameters. We set the distribution index for
mutation and cross-over operators in favor of mutation, with ηm = 15 and ηc =
10. We scheduled 10 runs comprising each 1500 generations, with a population
size of 200. The computational framework used was SFERES [18]. Designed to
work in a parallel fashion, it permits fast simulation on multi-cores machines; it
is also fairly easy to set up and use.

The selection functionality of the BG has to be formally defined so as to
allow the computation of some fitness criteria. To evaluate the quality of the
circuits, they were submitted to N = 500 different random inputs drawn from
an uniform distribution. They were simulated during one second with each of
these inputs, before the outputs are considered for fitness evaluation.

Two objectives have been defined for the evolution. First, the channel cor-
responding to the largest input (the selected channel) has to be disinhibited to
the maximum. This translates straightforwardly as :

First objective : minimise f1 =

∑

N

GPIselected channel

N
(1)

But this is not sufficient to obtain a WTA algorithm, as this could lead to
the disinhibition of all channels. Therefore, we define the second objective as the
mean of the five other channels :

Second objective : maximise f2 =

∑

N





∑

channel 6= selected channel

GPichannel
5





N
(2)

3 Results

Each run resulted after 1500 generations in a set of non-dominated solutions,
called a Pareto front [9]. We define the global Pareto-optimal front as the set of
non-dominated solutions from all the runs (Figure 2). Every front contributes
to it for both models (Table 1), hence we assume they all have converged to the
same optimal front for both experiments.
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Fig. 2. The fitnesses for the Pareto-fronts of the evolution of CBG and GPR.

Table 1. Percentages of contribution to the pareto-optimal front for each run

run 1 2 3 4 5 6 7 8 9 10

CBG 11% 9% 18% 8% 10% 16% 6% 4% 13% 4%
GPR 14% 8% 17% 5% 14% 8% 7% 3% 8% 17%

As the best solutions are within the global Pareto-optimal fronts, we will
confine further development to them. Each of these solutions represents the best
trade-off from a certain point of view; a priori there is no reason to chose one
particular solution at this level of analysis. The Pareto-optimal front comprises
510 solutions for the CBG and 551 solutions for the GPR. Interestingly, solutions
from the CBG front dominate those from the GPR front (Figure 2), the addi-
tional degrees of freedom of the CBG can thus be exploited to globally improve
the performance on our task.

Overview of the parameters. For the CBG, 8 parameters are maximised
or minimised for all the solutions (Table 2); for the GPR, only two parameters
are in this case (Table 3). The dispersion of a parameter for close solutions on
the front indicates how much this parameter contributes to the fitnesses (high
dispersion reflect minor importance). The standard deviation (SD) does not
suffice to express this, as it is a global indicator reflecting the dispersion of the
values across the whole front. Hence we use the standard deviation of the first
difference of the parameter values accross the front.

For both models, no parameter is at the boundaries in the thalamic loop,
and the SD is high as it ranges from 0.23 to 0.29 (Table 4). The first difference
SD is high too, ranging from 0.33 to 0.42. This shows high dispersion for close
solutions. Hence the contribution of each of these parameters to the fitness scores
appears as secondary, as the evolution process did not set them to precise values.

WTA functionality analysis. We designed the two objectives so that their
combination favors the WTA functionality. Of course, maximizing only one of



Table 2. Mean ± SD and first difference SD for the CBG parameters (except the
thalamic loop)

Minimised

FC → FS 0.05± 0.01 0.01
GPe → D2 0.06± 0.05 0.04
GPe → GPi 0.07± 0.03 0.01
−TD1/D2 0.06± 0.02 0.03

Maximised

S → D1/D2 1± 0.01 0.01
D1 → GPi 1± 0.01 0.02
D2 → GPe 0.99± 0.04 0.05
TGPe/GPi 0.98± 0.03 0.04

Between the limits

S → FS 0.74± 0.14 0.17
GPe → STN 0.15± 0.04 0.03
GPe → D1 0.47± 0.11 0.05
GPe → FS 0.34± 0.07 0.09
STN → GPe/GPi 0.45± 0.35 0.14
D1 → GPe 0.76± 0.22 0.12
FS → D1/D2 0.48± 0.22 0.09
FC → D1/D2 0.43± 0.25 0.11
FC → STN 0.24± 0.17 0.16
TSTN 0.91± 0.13 0.17

Table 3. Mean ± SD and first difference SD for the GPR parameters (except the
thalamic loop)

Minimised

GPe → GPi 0.07± 0.04 0.04

Maximised

D1 → GPi 1.00± 0.00 0.01

Between the limits

S → D1/D2 0.86± 0.14 0.11
FC → D1/D2 0.91± 0.11 0.10
STN → GPe/GPi 0.62± 0.42 0.15
GPe → STN 0.48± 0.37 0.13
D2 → GPe 0.22± 0.19 0.15
FC → STN 0.24± 0.17 0.21
S → STN 0.48± 0.34 0.25
−TD1/D2 0.91± 0.20 0.05
TSTN 0.29± 0.29 0.20
TGPe/GPi 0.76± 0.29 0.06

these objectives is useless for that: a circuit systematically disinhibiting all the
channels would have a score (f1 = 1, f2 = 0), while a circuit maximally inhibiting
all the channels would have a score (f1 = 0, f2 = 1). As shown in Figure 2, the
evolution found no solution that can maximise both of these objectives.

In order to more deeply characterize the solutions, we studied their relation-
ship with the base level, defined as the output of the GPi/SNr with null inputs.
Electrophysiological studies show that the GPi is tonically active in the absence
of inputs, meaning that the base level should be high [2]. Furthermore, when
there are inputs to the BG, most of the GPi neurons have an increasing activity
compared to the resting state, and a few have a decreasing activity [19]. Hence,
as mentioned in introduction, a biologically plausible selection should have a base
level higher than the selected channel’s output (expressed by objective 1) and
lower than the mean of unselected channels output (expressed by objective 2).
Figure 3 (top) represents the objectives functions altogether with the base level
for each solution of the fronts. The values of the base levels seem to be structured
with regard to fitness values, plateaus of specific values appear, especially a very
constrained one for the CBG individuals in the 250-450 interval. With regards



Table 4. Mean ± SD and first difference SD for the thalamic loop parameters

CBG parameters

BG → V L 0.32± 0.24 0.33
FC → V L 0.54± 0.28 0.38
FC → TRN 0.52± 0.29 0.4
V L → FC 0.47± 0.26 0.35
V L → TRN 0.62± 0.27 0.38
TRN → V L 0.63± 0.29 0.42
TV L 0.44± 0.24 0.34

GPR parameters

BG → V L 0.53± 0.27 0.37
BG → TRN 0.53± 0.24 0.34
FC → V L 0.57± 0.27 0.38
FC → TRN 0.44± 0.24 0.33
V L → FC 0.62± 0.26 0.34
V L → TRN 0.53± 0.25 0.34
TRN → V L 0.56± 0.27 0.39
TRN → V Lself 0.52± 0.23 0.33

to the aforementioned biological plausibility criterion, the best solutions for the
CBG are those ranging approximately from 1 to 100 and from 250 to 450. For
the GPR, they are the ones from 1 to 150 and those larger than 325.

We can further refine the set of acceptable solutions by imposing an exclu-
sive selection. Indeed, we did not explicitely forbid the designation of multiple
winners; some of the solutions obtained often disinhibit more than one chan-
nel, instead of the one with the most important input only. The percentage of
such multiple selections for each solution is represented in Figure 3 (bottom).
Interestingly, the best selection is found for the solutions operating a biologi-
cally plausible WTA (solutions 250 to 450 for the CBG and 325 to 450 for the
GPR), comforting us in the adequacy between the supposed function operated
by the BG, the modeling of the BG (as described by the CBG or GPR) and
electrophysiological data.

4 Discussion

In this work, we show that two existing models of BG [10, 12] can be optimized
through MOEA, with the goal of recreating a ”winner-takes-all” behavior. The
analysis of the variations of the parameters of the best solutions highlighted
some regularities and helped identify critical and indifferent parameters. The
study of the biological plausibility of the solutions helped identifying the most
interesting parts of the Pareto front. Generality of the reasoning is exemplified
by the application on two different models.

Parameterization exploration. On the basis of this case study, it seems
that the MOEA permit to gain insight into the properties of models of a given
neural structure. By generating multiple solutions fulfilling antagonist objectives,
MOEA can be used as a mean for exploration. In this paper, we divided the
modeling of a WTA into two separate sub-problems (expressed by equations 1
and 2) to explore a wide variety of different WTA implementations. It is then
possible to pick particular solutions on the basis of ”expert knowledge” not
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Fig. 3. Left graphics concern the CBG, right graphics concern the GPR. The horizontal
abscisse of each graphic corresponds to the solutions along the front. Top : blue and
green lines are the values for f1 and f2 respectively (equations 1 and 2); red dots
represent the base level. Bottom : points represent the percentage of cases where two
channels are equally disinhibited, leading to an abusive selection of both of them.

expressed in the constraints, as we did by delineating a biologically plausible
selection behavior.

Model comparison. Comparison between two architectures is also possible.
The CBG Pareto front dominates the GPR one (Figure 2). Furthermore, the
percentage of cases with two winning channels instead of one (bottom of Figure
3) is smaller for the CBG. Hence, the additional degrees of freedom permitted
by the CBG (Figure 1) are useful for our purposes, as they lead to a better
adequacy to a WTA function.

Parameter contribution. The MOEA help identifying the contribution of
a given parameter to a particular behavior. Maximised parameters along the
front give informations on the most important parameters needed to achieve a



presupposed function. For the CBG, these parameters are S → D1/D2, D1 →

GPi, D2 → GPe and TGPe/GPi (Table 2). This outlines some of the principal
connections of the Direct / Indirect pathway hypothesis [20], comforting in some
sense the fundamental pertinence of these two loops in order to achieve selection.
Interestingly, the less complete GPR structure does not permit to see this, as
the D2 → GPe connection is limited (Table 3).

Minimised parameters indicates that they are in opposition with the desired
behavior. In both models, the GPe → GPi connection is minimised. On one
hand, this is contradictory with anatomical data pointing out that one third of
the projecting GPe neurons target the GPi/SNr [21], implying that the connec-
tion from GPe to GPi is not non-existent. On the other hand, electrophysiological
data lead to the hypothesis that they might be weak [22]. Our contribution to
this precise point is that, in all the variations of WTA obtained with both the
CBG and GPR structures, this connection grieves the supposed functionality. To
explain this result, we can conceive three non-contradictory hypothesis : (1) both
the CBG and GPR lack in the modeling of a (perhaps unknown) fundamental
connection or property enabling the GPe → GPi to contribute to a WTA algo-
rithm; (2) the BG is performing another function which gives meaning to this
connection; (3) in accordance with electrophysiological data, this connection is
effectively weak.

The study of the parameter variances for solutions exhibiting comparable
fitnesses permits to isolate parameters that are not needed for the desired be-
havior. The thalamic loop of the CBG and GPR models has a high first difference
SD (Table 4), hence the modeling of these is not pertinent with regards to the
defined objectives. This is coherent with the intuition of the modelers [23] who
used it to modulate the time taken for the selection. Defining a third objective
for the time of convergence could help to explore the thalamic loop role.

Future work will first involve examining in details what in the BG model
structure underlies the appearance of a base level plateau for the best WTA
solutions obtained, and its possible relevance for the functional neurobiology of
the BG. We will also dig deeper into the biological plausibility of BG models.
By adding connections and neuronal properties neglected in BG models and
by polishing our set of constraints, we will evolve a more complete model with
the goal of imitating data from electrophysiological experiments and make new
predictions on the role of various BG connections.
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