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Abstract In the last years, rule-based systems have been

widely employed in several different application domains.

The performance of these systems is strongly affected by

the process of information granulation, which defines in

terms of specific information granules such as sets, fuzzy

sets and rough sets, the labels used in the rules. Generally,

information granules are either provided by an expert,

when possible, or extracted from the available data. In the

framework of rule-based classifiers, we investigate the

importance of determining an effective information gran-

ulation from data, preserving the comprehensibility of the

granules. We show how the accuracies of rule-based clas-

sifiers can be increased by learning number and parameters

of the granules, which partition the involved variables. To

perform this analysis, we exploit a multi-objective evolu-

tionary approach to the classifier generation we have

recently proposed. We discuss different levels of infor-

mation granulation optimization employing both the

learning of the number of granules per variable and the

tuning of each granule during the evolutionary process. We

show and discuss the results obtained on several classifi-

cation benchmark datasets using fuzzy sets and intervals as

types of information granules.

Keywords Granular rule-based classifiers � Multi-

objective evolutionary optimization � Fuzzy sets � Intervals

1 Introduction

In all activities involving knowledge representation, rea-

soning and decision-making, people typically express

themselves by resorting to some generic and conceptually

meaningful entities, which are called information gran-

ules (Zadeh 1997; Yao et al. 2013). The meaning and

purpose of information granulation depend on the specific

application domain. For example, granulation may simply

refer to variable quantization. On the other hand, granules

may correspond to data clusters, or to modules of a soft-

ware design, etc. Granules may, in turn, consist of finer

granules based, e.g., on similarity and functionality criteria.

Various formalisms and processing platforms for infor-

mation granulation exist, including sets (in particular,

intervals Yao 2009), rough sets (Liu et al. 2014), fuzzy sets

(Pedrycz et al. 2014), type-2 fuzzy sets (Mendel and John

2002), interval-valued fuzzy sets (Gorzałczany 1987), and

shadowed sets (Pedrycz and Vukovich 2002). The choice

of a suitable formalism is basically problem-dependent.

Further, granules can be directly specified by a human

expert or derived automatically from data.

The term granular computing (GC) is often used to refer

to a common conceptual and algorithmic platform for

granular information processing. GC can be seen as a
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general framework embracing all methodologies and

techniques that make use of information granules in

problem solving (Pedrycz 2013; Pedrycz et al. 2015).

In this paper, we will consider granular rule-based

classifiers (GRBCs), i.e., rule-based systems aimed at

performing classification and consisting of rules whose

antecedent part includes information granules. In particu-

lar, we are interested in granules that form a partition of the

universe of the variables involved in the rules. To this aim,

we take into account two formalisms for representing

information granules: sets (in particular, numeric inter-

vals Yao 2009) and fuzzy sets (Zadeh 1997). A set (in-

terval) realizes an information granule by allowing each

element of the universe of discourse either to belong or not

to belong to that granule. A fuzzy set generalizes this

notion by allowing any number in the real unit interval to

represent the membership degree of an element to the

information granule. Actually, two further commonly used

formalisms for dealing with GRBCs are type-2 fuzzy sets

and interval-valued fuzzy sets (Pedrycz 2015). We will not

discuss in detail these formalisms in the following, but we

will give some indication on how they can be managed in

our approach.

A granular rule-based system basically includes a rule

base (RB), a database (DB) containing the definition of the

granules used in the RB, and an inference engine. RB and

DB comprise the knowledge base of the rule-based system.

Of course, the input–output mapping performed by the

granular rule-based system relies on the specific formal

frameworks in which the various types of information

granules are defined and processed.

The rules can be generated either by encoding an

expert’s knowledge or automatically from data, typically

exploiting a set of training samples consisting of input-

target pairs. Once you choose the granulation type, the

automatic generation of rules should be guided by a suit-

able trade-off between accuracy and rule interpretability so

as to avoid, e.g., a too high number of rules and hardly

comprehensible partitions of the involved variables. To this

aim, multi-objective evolutionary algorithms can be prof-

itably exploited. In particular, when fuzzy sets are used as

information granules, the systems resulting from multi-

objective evolutionary optimization are typically referred

to as multi-objective evolutionary fuzzy systems

(MOEFSs) in the literature (Ducange and Marcelloni 2011;

Fazzolari et al. 2014).

Several papers, mainly related to MOEFSs, adopt multi-

objective evolutionary algorithms for rule selection (Gacto

et al. 2010) (e.g., from an initial RB heuristically gener-

ated) or rule learning (Cococcioni et al. 2007), DB tuning

(Botta et al. 2009), rule learning/selection together with

DB learning (in particular, partition granularity and mem-

bership function parameters) (Villar et al. 2012; Antonelli

et al. 2009a, b). As regards other formalisms for repre-

senting information granules, in the last years, a number of

evolutionary-based approaches, mainly based on single-

objective optimization, have been proposed (Castillo and

Melin 2012a, b; Sanz et al. 2010, 2011, 2013, 2015).

Recently, researchers have particularly focused on GRBCs

based on interval-valued fuzzy sets (Sanz et al. 2010, 2011,

2013, 2015), which can be considered a simplified version

of type-2 fuzzy sets (Bustince Sola et al. 2015).

In this paper, within the framework of GRBCs, we will

show how granulation tuning (i.e., tuning of the partitions)

and granulation learning (i.e., learning of the most suit-

able number of information granules), used either sepa-

rately or jointly, can sensibly influence performance.

More precisely, we will start from uniform partitions of

the involved variables. Each of these partitions consists of

equally sized information granules, whose number is cho-

sen based on heuristic considerations. In particular, in case

of intervals and fuzzy sets, we adopt, respectively, parti-

tions consisting of consecutive, non-intersecting intervals,

and overlapping triangular fuzzy sets.

In this context, we will exploit rule learning from data.

We will use the performance obtained by the developed

rule-based systems on classification benchmark datasets as

a quantity of reference against which we will assess the

improved results achieved by equipping the rule-based

systems with granulation tuning and/or granulation

learning.

To this aim, on the one hand, starting from fixed uniform

initial partitions of the variables, we will perform, besides

rule learning, partition tuning. The meaning of partition

tuning depends, of course, on the specific granulation tool

adopted, e.g., in the case of intervals, partition tuning

consists in suitably moving the endpoints, whereas, in the

case of fuzzy sets, partition tuning concerns the determi-

nation of the position of fuzzy sets by identifying the

values of the parameters of the corresponding membership

functions.

On the other hand, when dealing with uniform parti-

tions, we may be interested in determining the suit-

able number of elements of each partition: thus, we will

learn, besides the rules, the number of elements of the

partitions (without performing any tuning). Finally, we will

perform concurrently rule learning, learning of the number

of elements making the partitions, and tuning of the

partitions.

We will show that the introduction of tuning and

learning of information granulation helps to improve per-

formance in all the considered cases.

From an operation point of view, we will approach the

generation of the GRBCs, including the number and the

position of the granules, from data through a multi-objec-

tive evolutionary process, considering accuracy and
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interpretability as the objectives to be optimized. At the

end of the optimization process, the decision maker will

just have to choose the system representing the best trade-

off between the considered objectives for the particular

application.

Finally, we present and discuss the results obtained by

applying the generated GRBCs to 24 well-known classifi-

cation benchmark datasets. In particular, we show how

granulation tuning and learning affect the accuracy and the

interpretability of the solutions generated by the multi-

objective evolutionary optimization process.

The paper is organized as follows. Section 2 introduces

the GRBCs and discusses their interpretability. Section 3

describes the main features of multi-objective evolutionary

granular rule-based classifiers, which are simply called

multi-objective granular classifiers (MOGCs) from now on,

such as chromosome coding, mating operators, objective

functions and multi-objective evolutionary algorithm. In

Sect. 4, we discuss experimental results obtained by

applying MOGCs to classification problems. Finally, Sect.

5 draws conclusions.

2 Rule-based classifiers

Let X ¼ fX1; . . .;XFg be the set of input variables and XFþ1

be the output variable. Let Uf , with f ¼ 1; . . .;F, be the

universe of the fth input variable Xf . Let Pf ¼

fAf ;1; . . .;Af ;Tf g be a partition of variable Xf consisting of

Tf information granules. In classification problems, the

output variable XFþ1 is a categorical variable assuming

values in the set C of K possible classes C ¼ fC1; . . .;CKg.

Let fðx1; xFþ1;1Þ; . . .; ðxN ; xFþ1;NÞg be a training set com-

posed of N input–output pairs, with xt ¼ ½xt;1. . .; xt;F � 2

R
F , t ¼ 1; . . .;N and xFþ1;t 2 C.

With the aim of determining the class of a given input

vector, we adopt an RB composed of M rules expressed as:

Rm : IF X1 is A1;jm;1
AND. . .AND Xf is Af ;jm;f

AND. . .

. . .AND XF is AF;jm;F
THEN XFþ1 is Cjmwith RWm

ð1Þ

where Cjm is the class label associated with the mth rule,

and RWm is the rule weight, i.e., a certainty degree of the

classification in the class Cjm for a pattern belonging to the

subspace delimited by the antecedent of the rule Rm.

In this paper, we consider only sets (intervals) and fuzzy

sets as information granule types. A set A defined on a

universe of discourse U is typically described by a char-

acteristic function AðxÞ : U ! f0; 1g: the value 1 (respec-

tively, 0) means that the element belongs (does not belong)

to the information granule represented by the set. The

characteristic function is also used to define the three

fundamental set operations, namely, union, intersection and

complement. A particular type of sets are intervals, for

which both set-theoretic and algebraic operations are

defined (Moore 1966; Yao 2009).

The classical notion of set (or crisp set) can be extended

by introducing fuzzy sets. A fuzzy set A defined on a

universe of discourse U is characterized by a membership

function AðxÞ : U ! ½0; 1� which associates with each

element x̂ of U a number Aðx̂Þ in the interval [0, 1]: Aðx̂Þ

represents the membership degree of x̂ in A (Zadeh 1965).

The support and the core of A are the crisp subsets of

A with, respectively, nonzero membership degrees and

membership degrees equal to 1.

Though different types of membership functions, such

as Gaussian, triangular and trapezoidal, can be used for

characterizing fuzzy sets, for the sake of simplicity, we will

consider triangular fuzzy sets, which are identified by the

tuples (a, b, c), where a and c correspond to the left and

right extremes of the support, and b to the core. Formally, a

triangular membership function can be defined as follows:

AðxÞ ¼

a� x

b� a
a� x� b

c� x

c� b
b\x� c

0 otherwise:

8
>>><
>>>:

ð2Þ

A variable whose values are linguistic terms is called lin-

guistic variable (Zadeh 1965). A linguistic variable L is

characterized by a term set T(L), with each term labeling an

information granule defined on universe U. The set of

terms P ¼ fA1; . . .;AjTðLÞjg, where j � j is the cardinality,

constitutes a partition of the universe U.

Usually, a purposely defined granule Af ;0 (f ¼ 1; . . .;F)

is considered for all the F input variables. This granule,

which represents the ‘‘don’t care’’ condition, is defined by a

characteristic/membership function equal to 1 on the

overall universe. The term Af ;0 allows generating rules that

contain only a subset of the input variables (Ishibuchi et al.

2004).

Given an input pattern x̂ 2 RF , the strength of activation

(matching degree of the rule with the input) of the rule Rm

is computed as:

wmðx̂Þ ¼
YF

f¼1

Af ;jm;f
ðx̂f Þ; ð3Þ

where Af ;jm;f
ðXf Þ is the characteristic/membership function

associated with the granule Af ;jm;f
. For the sake of sim-

plicity, in the formula, we have only considered the product

as t-norm for implementing the logical conjunction.

The estimated output class Ĉ is obtained by first cal-

culating the association degree hmðx̂Þ with class Cjm for

each rule Rm, and then by applying a reasoning method so
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as to take into account all the rules that constitute the

classifier.

The association degree hmðx̂Þ is computed as:

hmðx̂Þ ¼ wmðx̂Þ � RWm: ð4Þ

In this paper, we adopt as rule weight the certainty factor

CFm defined as (Cordon et al. 1999; Ishibuchi et al. 2004):

CFm ¼

P
xt2Cjm

wmðxtÞ
PN

t¼1 wmðxtÞ
: ð5Þ

The reasoning method uses the information from the RB to

determine the class label for a given input pattern. We

adopt the maximum matching as reasoning method: an

input pattern is classified into the class corresponding to the

rule with the maximum association degree calculated for

the pattern. In case of tie, the pattern is classified into the

class associated with the most specific rule.

In the case of type-2 fuzzy sets and interval-valued

fuzzy sets, the structure of the rule shown in (1) does not

change. Obviously, the inference mechanism has to be

adapted to the type of granule. Popular inference mecha-

nisms used with these types of granules have been dis-

cussed in Sanz et al. (2010, 2011, 2013, 2015); Liang and

Mendel (2000).

3 Multi-objective evolutionary granular rule-

based systems

The adequate granulation of the input variables affects the

accuracy of the rule-based system, but also its inter-

pretability. Accuracy is typically expressed in terms of

classification rate. As regards interpretability, it is quite

difficult to find a universally accepted index for inter-

pretability assessment since it is a rather subjective and

application-dependent concept. Thus, researchers have

focused their attention on some factors, which influence

interpretability, and on some constraints that have to be

satisfied for these factors (see, e.g., Guillaume 2001;

de Oliveira 1999). Various semantic and syntactic inter-

pretability issues regarding both the RB and the DB have

been taken into account mainly in the framework of fuzzy

rule-based systems (see, e.g., Mencar and Fanelli 2008;

Alonso et al. 2009; Zhou and Gan 2008).

Recently, the most relevant measures and strategies

exploited to design interpretable fuzzy rule-based systems

have been reviewed in Gacto et al. (2011). Here, a taxon-

omy of the interpretability measures has been proposed by

considering two different dimensions, namely semantics

and complexity, at RB and DB levels. In particular, com-

plexity at RB level is expressed in terms of number of

rules, total rule length (TRL) and average rule length, while

complexity at DB level is determined by the number of

attributes and the number of granules. On the other hand,

the semantic dimension at the RB level concerns aspects

such as consistency of rules, number of rules fired at the

same time, and transparency of the structure, while, at DB

level, concepts such as coverage of the universes, nor-

malization of the functions characterizing the granules,

distinguishability and order of granules are taken into

account. In this paper, we have used just a measure of RB

complexity, namely TRL.

Accuracy and interpretability are objectives in compe-

tition with each other: an increase in the former corre-

sponds typically to a decrease in the latter. The best trade-

off between the two objectives generally depends on the

application context and cannot be fixed a-priori. Thus, the

generation of GRBCs from data taking both the objectives

into consideration is a typical multi-objective optimization

problem, which can be tackled using multi-objective evo-

lutionary algorithms (MOEAs). The output of the MOEA is

a set of rule-based systems with different trade-offs

between accuracy and interpretability: the user can decide

for the best solution on the basis of the specific application

context.

During the evolutionary process, we focus on learning

data and rule bases. We generalize to generic information

granules the approaches we proposed in Antonelli et al.

(2009a, b) for fuzzy sets and regression problems. As

regards data base learning, we aim to learn both the number

and the parameters of the information granules. According

to psychologists, to preserve interpretability, the number of

granules, expressed as linguistic terms, per variable should

be 7� 2 due to a limit of human information processing

capability (Miller 1956). Thus, we can fix an upper bound

Tmax for the number of granules. Tmax is a user-defined

parameter which, for specific application domains, might

be lower, but should never be higher than 9 for preserving

interpretability.

For each variable Xf , we define initial partitions with

the maximum possible number Tmax of granules. These

partitions can be provided by an expert, when possible,

or can be generated uniformly. These partitions are

denoted as virtual partitions in the following Antonelli

et al. (2009a, b). During the evolutionary process, rule

generation and granule parameter tuning are performed

on these virtual partitions. The actual granularity is

used only in the computation of the objectives. In

practice, we generate RBs, denoted as virtual RBs, and

tune granule parameters using virtual partitions, but

assess their quality using each time different ‘‘lens’’

depending on the actual number of granules used to

partition the single variables. Thus, we do not worry

about the actual number of granules in applying
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crossover and mutation operators. Obviously, to com-

pute the fitness, we have to transform the virtual GRBC

into the actual GRBC. This process requires to define

appropriate mapping strategies, both for the RB and for

the granule parameters.

3.1 RB mapping strategy

To map the virtual RB defined on variables partitioned with

Tmax granules into a concrete RB defined on variables

partitioned with Tf granules, we adopt the following simple

mapping strategy proposed in Antonelli et al. (2009a, b).

Let ‘‘Xf is bAf ;h, h 2 ½1; Tmax�’’ be a generic proposition

defined in a rule of the virtual RB. Then, the proposition

mapped to Xf is eAf ;s, with s 2 ½1; Tf �, where eAf ;s is the

granule most similar to bAf ;h among the Tf granules bAf ;h

defined on Xf . The definition of similarity depends on the

specific type of granules considered in the rule-based

system.

In the case of fuzzy sets, we can trivially consider as

similarity measure the distance between the centers of

the cores of the two fuzzy sets. If there are two fuzzy

sets in the partition with centers of the cores at the same

distance from the center of the core of bAf ;h, we choose

randomly one of the two fuzzy sets. In the case of

intervals, similar to the fuzzy case, we consider as

similarity measure the distance between the centers of

the two intervals. Since during the evolutionary process

endpoints are constrained to vary within a pre-fixed

range, this measure, although quite coarse, can be

considered adequate. For the sake of completeness, we

recall that, in the case of type-2 or interval-valued fuzzy

sets, the RB mapping strategy can be easily extended

using appropriate similarity functions between these

types of granules. An interesting analysis on similarity

measures for these granules can be found in Wu and

Mendel (2009).

Note that different rules of the virtual RB can be map-

ped to equal rules in the concrete RB. This occurs because

distinct granules defined on the partitions used in the vir-

tual RB can be mapped to the same granule defined on the

partitions used in the concrete RB. In the case of equal

rules, only one of these rules is considered in the concrete

RB. The original different rules are, however, maintained

in the virtual RB. Indeed, when the virtual RB will be

interpreted using different ‘‘lens’’, all these rules can again

be meaningful and contribute to increase the accuracy of

the granular rule-based system. Thus, the concept of virtual

RB allows us to explore the search space and concurrently

exploit the optimal solutions achieved during the evolu-

tionary process.

3.2 Granule parameter mapping strategy

As regards the granule parameter tuning, we approach the

problem using a piecewise linear transformation (Pedrycz

and Gomide 2007; Klawonn 2006; Antonelli et al. 2009a).

We start from an initial partition of the input variables and

tune the parameters of the granules, which compose the

partition, by applying this transformation. Let ePf ¼

eAf ;1; . . .; eAf ;Tf

n o
and Pf ¼ Af ;1; . . .;Af ;Tf

� �
be the initial

and the transformed partitions, respectively. In the fol-

lowing, we assume that the universes eUf and Uf of the two

partitions are identical. Further, we consider each variable

normalized in [0, 1].

Let tðxf Þ : Uf ! eUf be the piecewise linear transfor-

mation. We have that Af ;jðxf Þ ¼ eAf ;j t xf
� �� �

¼ eAf ;j exf
� �

,

where eAf ;j and Af ;j are two generic granules from the initial

and transformed partitions, respectively. As observed in

Klawonn (2006), the transformation must be non-decreas-

ing. We define the piecewise linear transformation by

considering one representative for each granule. In the case

of fuzzy sets, we assume that the representative coincides

with the center of the core. In the case of intervals, it

corresponds to the center of the interval. Similarly, in the

case of type-2 and interval-valued fuzzy sets, the repre-

sentative may coincide with the center of the core of the

primary membership function and of the interval-valued

fuzzy set, respectively. The representatives determine the

change of slopes of the piecewise linear transformation

tðxf Þ for each variable Xf . Let ebf ;1; . . .; ebf ;Tf and

bf ;1; . . .; bf ;Tf be the representatives of eAf ;1; . . .; eAf ;Tf and

Af ;1; . . .;Af ;Tf , respectively. Transformation tðxf Þ is defined

as:

tðxf Þ ¼
ebf ;j � ebf ;j�1

bf ;j � bf ;j�1

� ðxf � bf ;j�1Þ þ ebf ;j�1 ð6Þ

with bf ;j�1 � xf � bf ;j.

Once defined transformation tðxf Þ, all the parameters

which define the granules are transformed using tðxf Þ. As

an example, we consider triangular fuzzy sets as granules.

Further, we assume that the initial partition is a uniform

partition (see Fig. 1). Thus, bf ;1 and bf ;Tf coincide with the

extremes of the universe Uf of Xf . It follows that tðxf Þ

depends on Tf � 2 parameters, that is,

t ðxf ; bf ;2; . . .; bf ;Tf�1Þ
� �

(Antonelli et al. 2009a). Once fixed

bf ;2; . . .; bf ;Tf�1, the partition Pf can be obtained simply by

transforming the three points ðeaf ;j; ebf ;j; ecf ;jÞ, which

describe the generic fuzzy set eAf ;j, into ðaf ;j; bf ;j; cf ;jÞ

applying t�1ðexf Þ. In those regions where tðxf Þ has a high
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value of the derivative (high slope of the lines), the fuzzy

sets are narrower; otherwise, the fuzzy sets Af ;j are wider.

We define the piecewise linear transformation on the

maximum granularity Tmax.

In the case of intervals, we adopt a similar strategy.

Each interval Af ;j is defined by its endpoints ½af ;j; cf ;j�. For

similarity to the fuzzy case, we assume that bf ;1 and bf ;Tf
coincide with the extremes of the universe Uf of Xf . The

partition Pf can be obtained by simply transforming the

two endpoints ðeaf ;j; ecf ;jÞ, which describe the generic

interval eAf ;j, into ðaf ;j; cf ;jÞ applying t�1ðexf Þ. In the case of

triangular interval-valued fuzzy sets like those used in Sanz

et al. (2010, 2011, 2013, 2015), five parameters are needed

for describing the granules: two for the lower and upper

bounds of the lower membership function, two for the

lower and upper bounds of the upper membership function,

and one for the core. The transformed partition Pf can be

obtained by transforming the five parameters applying

t�1ðexf Þ. As regards the type-2 fuzzy sets, the transforma-

tion of the partitions using the piecewise function is not

trivial and requires additional studies, especially for the

parameters of the secondary membership functions. On the

other hand, recently, in the framework of GRBCs, interval-

valued fuzzy sets are considered the most suitable alterna-

tive to type-2 fuzzy sets.

When we reduce the granularity, to maintain the original

shape of the granules, we apply t�1ðexf Þ for

j ¼ 2; . . .; Tf � 1, where Tf � 3 is the actual granularity,

only to the parameters which describe the granule. In the

case of fuzzy sets, we apply the transformation only to the

three points ðeaf ;j; ebf ;j; ecf ;jÞ, which describe the generic

fuzzy set eAf ;j. Figure 2 shows an example of this trans-

formation for granularity Tf ¼ 5 using the piecewise linear

transformation in Fig. 1, defined with granularity Tmax = 7.

In the case of intervals, we apply the transformation only to

the two endpoints ðeaf ;j;ecf ;jÞ, which describe the generic

interval eAf ;j.

3.3 Chromosome coding

As shown in Fig. 3, each solution is codified by a chro-

mosome C composed of three parts ðCR;CG;CTÞ, which

define the rule base, the number of granules, and the

positions of the representatives of the granules in the

transformed space, respectively.

In particular, CR contains, for each rule Rm, the index

jm;f of the antecedent, for each input variable Xf , and the

consequent class Cjm . Thus, CR is composed by M � ðF þ 1Þ

natural numbers where M is the number of rules currently

present in the virtual RB. The RB (defined as concrete RB)

used to compute the fitness is obtained by means of the RB

mapping strategy using the actual granularities fixed by CG.

We assume that at most Mmax rules can be contained in the

RB.

CG is a vector containing F natural numbers: the fth

element of the vector contains the number Tf 2 2; Tmax½ � of

granules, which partition variable Xf . Tmax is fixed by the

user and is the same for all the variables.

CT is a vector containing F vectors of Tmax � 2 real

numbers: the fth vector bf ;2; . . .; bf ;Tmax�1

� �
determines

Fig. 1 An example of piecewise linear transformation
Fig. 2 An example of piecewise linear transformation with granu-

larity Tf ¼ 5 different from Tmax ¼ 7
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where the granule representatives are moved and conse-

quently the piecewise linear transformation.

To preclude that the piecewise linear transformation can

become decreasing, we force bf ;j to vary in

ebf ;j �
eb f ;j�eb f ;j�1

2
;
ebf ;j þ

eb f ;j�eb f ;j�1

2

� 	
, 8j 2 2; Tmax � 1½ �.

3.4 Mating operators

To generate the offspring populations, we exploit both

crossover and mutation. We apply separately the one-point

crossover to CR and CG and the BLX-a-crossover, with a =

0.5 to CT . Let s1 and s2 be two selected parent chromo-

somes. The common gene for CG is extracted randomly in

[1, F]. The common gene for CR is selected by extracting

randomly a number in ½1; qmin � 1�, where qmin is the

minimum number of rules in s1 and s2. The crossover point

is always chosen between two rules and not within a rule.

When we apply the one-point crossover to CR, we can

generate GRBCs with one or more pairs of equal rules. In

this case, we simply eliminate one of the rules from each

pair. This allows us to reduce the total number of rules.

As regards mutation, we apply two mutation operators

for CR. The first operator adds c rules to the virtual RB,

where c is randomly chosen in ½1; cmax]. The upper bound

cmax is fixed by the user. If cþM[Mmax, then

c ¼ Mmax �M. For each rule Rm added to the chromosome,

we generate a random number v 2 ½1;F�, which indicates

the number of input variables used in the antecedent of the

rule. Then, we generate v natural random numbers between

1 and F to determine the input variables, which compose

the antecedent part of the rule. Finally, for each selected

input variable f, we generate a random natural number jm;f

between 0 and Tmax, which determines the granule Af ;jm;f
to

be used in the antecedent of rule Rm in the virtual RB. To

select the consequent, a random number between 1 and the

number K of classes is generated.

The second mutation operator randomly changes d

propositions of the virtual RB. The number d is randomly

generated in ½1; dmax�. The upper bound dmax is fixed by the

user. For each element to be modified, a number is ran-

domly generated in ½0; Tmax�.

The mutation applied to CG randomly chooses a gene

f 2 ½1;F� and changes the value of this gene by randomly

adding or subtracting 1. If the new value is lower than 2 or

larger than Tmax, then the mutation is not applied.

The mutation applied to CT first chooses randomly a

variable Xf , then extracts a random value j 2 ½2; Tmax � 1�

and changes the value of bf ;j to a random value in the

allowed interval. We experimentally verified that these

mating operators ensure a good balancing between explo-

ration and exploitation, thus allowing the MOEA described

in the next subsection to create good approximations of the

Pareto fronts.

3.5 Multi-objective evolutionary algorithm

As MOEA we use the (2?2)M-PAES that has been suc-

cessfully employed in our previous works (Antonelli et al.

2011a, b, 2012, 2014). Each chromosome is associated

with a bi-dimensional objective vector. The first element of

the vector measures the complexity of the granular rule-

based system as TRL, that is the number of propositions

used in the antecedents of the rules contained in the con-

crete RB (the number of rules may be different between the

virtual and concrete RBs). The second element assesses the

accuracy in terms of classification rate.

(2?2)M-PAES, which is a modified version of the well-

known (2?2)PAES introduced in Knowles and Corne

(2000), is a steady-state multi-objective evolutionary

algorithm which uses two current solutions s1 and s2 and

stores the non-dominated solutions in an archive. Unlike

the classical (2?2)PAES, which maintains the current

solutions until they are not replaced by solutions with

particular characteristics, we randomly extract, at each

iteration, the current solutions. If the archive contains a

unique solution, s1 and s2 correspond to this unique

solution.

At the beginning, the archive is initialized as an empty

structure and two initial current solutions s1 and s2 are

randomly generated. At each iteration, the application of

crossover and mutation operators produces two new can-

didate solutions, o1 and o2, from the current solutions s1
and s2. These candidate solutions are added to the archive

only if they are dominated by no solution contained in the

archive; possible solutions in the archive dominated by the

candidate solutions are removed. Typically, the size of the

archive is fixed at the beginning of the execution of the

Fig. 3 Chromosome coding
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(2?2)M-PAES. In this case, when the archive is full and a

new solution oi, where i ¼ 1; 2, has to be added to the

archive, if it dominates no solution in the archive, then we

insert oi into the archive and remove the solution (possibly

oi itself) that belongs to the region with the highest

crowding degree. The crowding degree is calculated using

an adaptive grid defined on the objective space. If the

region contains more than one solution, then the solution to

be removed is randomly chosen. (2?2)M-PAES terminates

after a given number Z of iterations. The candidate solution

acceptance strategy generates an archive that contains only

non-dominated solutions. On (2?2)M-PAES termination,

the archive includes the set of solutions which are an

approximation of the Pareto front.

We would like to point out that the chromosome coding,

the mating operators and the MOEA described in this

section are applied in the following to learn GRBCs when

the granules are fuzzy sets and intervals, but they can also

be used without any change for the other types of granules

(type-2 and interval-valued fuzzy sets) generally adopted in

rule-based classifiers.

4 Experimental results

In this section, we aim to show how learning number

and/or parameters of information granules affects the

accuracy and interpretability of GRBCs. We will discuss

the two types of granules investigated in this paper

separately. The analysis has been carried out by execut-

ing (2?2)M-PAES in four different modalities. First, we

have executed (2?2)M-PAES for learning only the rules

using a uniform partition with Tf ¼ 5, f ¼ 1; . . .;F,

granules for each input variable. This value has proved to

be the most effective in our previous works (Antonelli

et al. 2009a, b). We have denoted this modality as

PAES-R. In practice, we have used only the CR part of

chromosome C during the evolutionary process. Second,

we have executed (2?2)M-PAES for learning the rules

and the parameters of the granules, using an initial uni-

form partition with Tf ¼ 5, f ¼ 1; . . .;F, granules for

each input variable. We have denoted this modality as

PAES-RT. In practice, we have used the CR and CT parts

of chromosome C during the evolutionary process. Third,

we have executed (2?2)M-PAES for learning the rules

and the number of granules, using a uniform partition

with Tmax ¼ 7, f ¼ 1; . . .;F, granules for each input

variable. This value has been suggested in Miller (1956).

We have denoted this modality as PAES-RG. In practice,

we have used the CR and CG parts of chromosome C

during the evolutionary process. Fourth, we have exe-

cuted (2?2)M-PAES for learning the rules, the number

of granules and the parameters of the granules, using

virtual uniform partitions with Tmax ¼ 7, f ¼ 1; . . .;F,

granules for each input variable. We have denoted this

modality as PAES-RGT. In this last case, we have used

the overall chromosome C during the evolutionary

Table 1 Datasets used in the experiments

Dataset # Instances # Variables # Classes

Appendicitis (APP) 106 7 2

Australian (AUS) 690 14 2

Bands (BAN) 365 19 2

Bupa (BUP) 345 6 2

Cleveland (CLE) 297 13 5

Ecoli (ECO) 336 7 8

Glass (GLA) 214 9 6

Haberman (HAB) 306 3 2

Hayes-roth (HAY) 160 3 3

Heart (HEA) 270 13 2

Hepatitis (HEP) 80 19 2

Iris (IRI) 150 4 3

Magic (MAG) 19,020 10 2

Mammographic (MAM) 830 5 2

Monk-2 (MON) 432 6 2

Newthyroid (NEW) 215 5 3

Page-blocks (PAG) 5472 10 5

Phoneme (PHO) 5404 5 2

Pima (PIM) 768 8 2

Saheart (SAH) 462 9 2

Tae (TAE) 151 5 3

Vehicle (VEH) 846 18 4

Wine (WIN) 178 13 3

Wisconsin (WIS) 683 9 2

Table 2 Values of the parameters used in the experiments for

(2?2)M-PAES

AS (2?2)M-PAES archive size 64

Mmax Maximum number of rules in an RB 50

PCCR
Probability of applying the crossover operator to CR 0.6

PCCG
Probability of applying the crossover operator to CG 0.5

PCCT
Probability of applying the crossover operator to CT 0.5

P1
MCR

Probability of applying the first mutation operator to

CR

0.55

cmax Upper bound of the added rules in the first mutation

operator for CR

2

P2
MCR

Probability of applying the second mutation operator

to CR

0.45

dmax Upper bound of the changed propositions in the

second mutation operator for CR

2

PMCG
Probability of applying the mutation operator to CG 0.2

PMCT
Probability of applying the mutation operator to CT 0.9

Z Number of iterations of (2?2)M-PAES 50,000
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process. We decided to adopt these different modalities

for evaluating the impact on accuracy and interpretability

of each different level of granulation.

We aim to compare the different solutions on the Pareto

fronts in the four different modalities, to evaluate how the

different levels of granulation can affect the accuracy and

the interpretability of the GRBCs. We executed the four

modalities of (2?2)M-PAES on twenty-four classification

datasets extracted from the KEEL repository.1 As shown in

PAES-R Training Set PAES-R Test set PAES-RT Training Set PAES-RT Test set
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Fig. 4 Pareto front approximations visualized using the three representative points for PAES-R, PAES-RT, PAES-RG and PAES-RGT,

employing fuzzy sets as information granules (first group of datasets)

1 Available at http://sci2s.ugr.es/keel/datasets.php (Alcalá-Fdez et al.

2011).

Granul. Comput. (2016) 1:37–58 45

123

http://sci2s.ugr.es/keel/datasets.php


Table 1, the datasets are characterized by different num-

bers of input variables (from 3 to 19), input/output

instances (from 80 to 19,020) and classes (from 2 to 8). For

the datasets CLE, HEP, MAM, and WIS, we removed the

instances with missing values. The number of instances in

the table refers to the datasets after the removing process.

For each dataset, we performed a tenfold cross-validation

and executed three trials for each fold with different seeds

for the random function generator (30 trials in total). All

the results presented in this section are obtained using the
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same folds for all the algorithms. Table 2 shows the

parameters of (2?2)M-PAES used in the experiments.

Since several solutions can lie on the Pareto front

approximations, typically only some representative solu-

tions are considered in the comparison. In our previous

papers (Alcalá et al. 2009; Antonelli et al. 2011b) and also

in Gacto et al. (2010), for each fold and each trial, the

Pareto front approximations of each algorithm are com-

puted and the solutions are sorted in each approximation

according to decreasing accuracies on the training set.

Then, for each approximation, we select the first (the most

accurate), the median and the last (the least accurate)

PAES-R Training Set PAES-R Test set PAES-RT Training Set PAES-RT Test set

PAES-RG Training Set PAES-RG Test set PAES-RGT Training Set PAES-RGT Test set
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Fig. 5 Pareto front approximations visualized using the three representative points for PAES-R, PAES-RT, PAES-RG and PAES-RGT,

employing fuzzy sets as information granules (second group of datasets)
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solutions. We denote these solutions as FIRST, MEDIAN

and LAST, respectively. Finally, for the three solutions, we

compute the average values over all the folds and trials of

the accuracy on both the training and the test sets, and of

the TRL. On the one side, the three solutions allow us to

graphically show the average trend of the Pareto front

approximations obtained in the executions performed on

the different folds. On the other side, we can analyze how

these solutions are able to generalize when applied to the

test set.
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In the following, we discuss the results obtained by

applying the four modalities of the (2?2)M-PAES execu-

tion on fuzzy sets and on intervals.

4.1 Fuzzy sets

Figures 4 and 5 show the FIRST, MEDIAN and LAST

solutions obtained by the execution of PAES-R, PAES-RT,

PAES-RG and PAES-RGT. In the figures, the x and y axes

indicate the complexity calculated as TRL and the accu-

racy expressed in terms of classification rate. We can

realize how the three solutions allow us to visualize the

trend of the average Pareto front approximations. Further,

by comparing the accuracies of the three solutions on the

training and test sets, we can verify whether these solu-

tions, especially the FIRST solution, suffer from over-

training. Indeed, the FIRST solution is in general the most

prone to overtraining since it achieves the highest accuracy

on the training set. We can observe from the plots that there

exists some difference for all the three solutions between

the classification rates obtained on the training set and the

ones achieved on the test set. Thus, we can conclude that

the decrease of performance between training and test sets

does not occur only for the FIRST solution. In general, we

observe that the fronts generated by PAES-R and PAES-

RT are small and concentrated in an area of low TRL

values. The fronts generated by PAES-RG and PAES-RGT

are on average wider than the ones generated by PAES-R

and PAES-RT and concentrated in an area with higher TRL

values. This different distribution of the fronts is mainly

due to the value of Tmax used for learning the number of

granules during the evolutionary process. Indeed, we adopt

Tmax ¼ 7 for each input variable for PAES-RG and PAES-

RGT, while we adopt Tf ¼ 5 for each input variable for

PAES-R and PAES-RT. A higher possible number of fuzzy

sets in the partitions induces a higher number of rules.

Indeed, since the rules can adopt more precise fuzzy sets at

least for the most difficult attributes, they tend to be more

specialized. Thus, a higher number of rules is needed to

cover the dataset instances. On the other hand, this allows

us to achieve in general higher accuracies. Anyway, this

specialization occurs only for a limited number of

Table 3 Average accuracy on the training (AccTr) and test (AccTs) sets, TRL and number of rules (R) for the FIRST solutions generated by

PAES-R, PAES-RT, PAES-RG and PAES-RGT, employing fuzzy sets as information granules

PAES-R PAES-RT PAES-RG PAES-RGT

AccTr AccTs TRL R AccTr AccTs TRL R AccTr AccTs TRL R AccTr AccTs TRL R

APP 94.64 84.44 11.8 9.9 94.85 83.64 11.8 9.9 94.24 84.64 31.8 17.5 94.54 86.09 34.3 18.7

AUS 88.99 84.66 21.3 15.6 88.96 84.11 21.8 17.1 89.26 85.27 31.1 20.7 89.66 85.85 39.4 23.6

BAN 79.14 63.77 90.2 41.3 79.47 63.65 93.9 41.6 76.83 66 173.3 47.8 78.26 62.77 162.9 46.9

BUP 79.1 67.65 23.1 13.6 79.45 64.84 28.9 15.1 76.21 68.48 38.4 18 77.27 64.24 35.7 17.7

CLE 68.41 55.38 37.2 28.8 68.04 56.37 35.4 27.2 67.88 54.82 55.8 32.8 68.25 54.89 59.7 34.4

ECO 83.14 74.83 29.9 22.8 83.34 74.26 37.3 25 80.9 74.55 41.8 26.8 81.84 74.85 35.6 25.3

GLA 74.36 61.06 36 25.1 74.36 61.06 36 25.1 72.4 61.15 44 28.3 72.97 61.11 48.8 31.3

HAB 81.84 72.52 16.8 10.9 81.53 73.15 15.3 10.1 79.58 73.93 25.6 13.9 80.15 74.26 33.4 17

HAY 90.25 79.58 14.4 11 89.88 81.88 15 11.2 89.44 78.96 30 18.2 89.95 80.42 25.5 15.9

HEA 89.44 76.54 24.9 18.3 89.4 76.42 25.7 18.2 89.85 79.26 37.5 22.3 89.89 77.53 50.1 26.3

HEP 93.68 88.31 63 39.5 93.68 88.31 63 39.5 97.6 82.59 54.3 31.7 97.95 83.25 99.4 38.5

IRI 99.16 94.85 8.4 6.6 99.16 93.64 8.1 6.5 98.2 95.36 34.9 17.3 98.65 95.07 41.3 19.9

MAG 84.01 83.59 28.7 16 83.93 83.52 26.5 14.4 83.16 82.93 50.9 21.2 83.43 83.07 75.2 29

MAM 86.76 82.47 24.6 14.3 86.73 82.37 24.9 14 85.94 82.96 58.5 24.3 86 82.59 51.6 20.9

MON 98.15 98.51 6.1 5.7 98.08 98.12 5.9 5.6 99.67 99.24 20.9 13.5 100 100 24.2 13.7

NEW 99.02 93.1 13.2 9.1 98.72 95.22 13.9 9.8 97.24 93.06 36.2 18.3 98.19 94.26 36.8 18.5

PAG 94.68 94.32 26.8 19.7 94.84 94.41 26.5 19.8 95.52 95.24 40.4 24.4 95.42 94.95 43.1 26.6

PHO 84.18 82.8 41.2 18.4 84.36 82.23 45 19.5 81.3 80.46 54 22.4 81.78 80.61 78.7 28.4

PIM 82.34 75.05 29.5 17.5 82.3 73.96 26.2 16.7 80.59 75.14 39.9 19.1 80.9 75.44 29.3 16.8

SAH 79.91 68.69 28 17.7 79.64 68.7 31.9 18.6 79.01 69.99 62.1 26.8 79.02 68.83 53.8 24.5

TAE 73.17 58.81 23.4 15.9 73.66 59.03 24.8 15.7 69.17 53.75 47.4 23.2 69.88 56.18 46 22.5

VEH 70.53 61.2 83 40.5 70.35 60.91 87.6 41.5 66.13 61.38 193.1 49.6 67.36 61.39 182.6 48

WIN 99.51 88.55 24.4 19.5 99.51 88.55 24.4 19.5 99.27 92.44 36.4 25.1 99.76 91.53 44.7 27.1

WIS 98.58 95.98 18.4 15.2 98.56 95.78 18.9 15 98.54 96.31 26.1 17.2 98.58 96.51 34.6 19.9
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attributes, which adopt a high value of granularity. The

other attributes are characterized by a low value of gran-

ularity, thus highlighting the good characteristics of our

granulation learning approach.

For the sake of fairness, we have executed the four

algorithms using the same number of iterations. On the

other hand, we have to consider that the granularity

learning increases the search space and therefore would

need a higher number of iterations. This is true, in partic-

ular, for PAES-RGT which has to cope with the highest

search space.

Table 3 shows the numerical values for the FIRST

solutions obtained by PAES-R, PAES-RT, PAES-RG and

PAES-RGT. For the sake of brevity, we do not show the

values of the MEDIAN and LAST solutions.

To statistically validate the results, we apply a non-

parametric statistical test for multiple comparisons using

all the datasets. First, we generate a distribution consisting

of the mean values of the accuracies of the three solutions

calculated on the test set. Then, we apply the Friedman test

to compute a ranking among the distributions (Friedman

1937), and the Iman and Davenport test (Iman and

Davenport 1980) to evaluate whether there exists a statis-

tical difference among the distributions. If the Iman and

Davenport p value is lower than the level of significance a

(in the experiments a ¼ 0:05), we can reject the null

hypothesis and affirm that there exist statistical differences

among the multiple distributions associated with each

approach. Otherwise, no statistical difference exists. If

there exists a statistical difference, we apply a post hoc

procedure, namely the Holm test (Holm 1979). This test

allows detecting effective statistical differences between

the control approach, i.e., the one with the lowest Friedman

rank, and the remaining approaches.

Table 4 shows the results of the statistical tests for the

fuzzy set granules on the classification rate computed on

the test set. We observe that for the FIRST solution the null

hypothesis is rejected. The Holm post hoc procedure,

Table 4 Results of the non-parametric statistical tests on the accuracy computed on the test set for the FIRST, MEDIAN and LAST solutions

generated by PAES-R, PAES-RT, PAES-RG and PAES-RGT, employing fuzzy sets as information granules

Algorithm Friedman

rank

Iman and Davenport p-

value

Hypothesis

FIRST

PAES-R 2.979

PAES-RT 2.792

PAES-RG 2.250 0.0042 Rejected

PAES-RGT 2.041

i Algorithm z-value p-value alpha/i Hypothesis

Holm post hoc procedure

3 PAES-R 2.515576 0.011884 0.016 Rejected

2 PAES-RT 1.844756 0.065073 0.025 Rejected

1 PAES-RG 0.559017 0.57615 0.05 Not Rejected

Algorithm Friedman

rank

Iman and Davenport p-

value

Hypothesis

MEDIAN

PAES-R 2.833

PAES-RT 2.416

PAES-RG 2.333 0.540 Not Rejected

PAES-RGT 2.416

Algorithm Friedman

rank

Iman and Davenport p-

value

Hypothesis

LAST

PAES-R 2.6042

PAES-RT 2.5625

PAES-RG 2.5 0.897 Not Rejected

PAES-RGT 2.3333
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executed using PAES-RGT as control algorithm, states that

only PAES-RG is statistically equivalent to PAES-RGT.

We can conclude that the learning of the number of gran-

ules allows generating solutions with higher accuracy.

From Table 3 we can realize, however, that these solutions

are obtained at the expense of a higher complexity. For the

MEDIAN and LAST solutions, the null hypothesis is not

rejected, thus stating that these solutions are statistically

equivalent in terms of accuracy. However, the solutions

generated by PAES-R and PAES-RT are typically char-

acterized by a lower complexity, as we can derive from

Figs. 4 and 5. Concluding, we can observe that the different

PAES-R Training Set PAES-R Test set PAES-RT Training Set PAES-RT Test set
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Fig. 6 Pareto front approximations visualized using the three representative points for PAES-R, PAES-RT, PAES-RG and PAES-RGT,

employing intervals as information granules (first group of datasets)
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levels of granulation actually affect the performance of the

classifiers. When we learn the number of granules for each

attribute and we learn the membership parameters together

with the rules, we obtain the best performance in terms of

accuracy, although with a higher complexity.

4.2 Intervals

Figures 6 and 7 show the FIRST, MEDIAN and LAST

solutions obtained by the execution of PAES-R, PAES-RT,

PAES-RG and PAES-RGT using intervals as granules.
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As we have already observed with the fuzzy sets, the

fronts generated by PAES-R and PAES-RT are small and

concentrated in an area of low TRL values. The fronts

generated by PAES-RG and PAES-RGT are on average

wider than the ones generated by PAES-R and PAES-RT,

and concentrated in an area with higher TRL values. This

different distribution of the fronts can be explained using

the same motivations advanced for the case of fuzzy sets.

Table 5 shows the numerical values for the FIRST

solutions obtained by PAES-R, PAES-RT, PAES-RG and

PAES-R Training Set PAES-R Test set PAES-RT Training Set PAES-RT Test set
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Fig. 7 Pareto front approximations visualized using the three representative points for PAES-R, PAES-RT, PAES-RG and PAES-RGT,

employing intervals as information granules (second group of datasets)
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PAES-RGT. For the sake of brevity, we do not show the

values of the MEDIAN and LAST solutions.

To statistically validate the results, we apply a non-

parametric statistical test for multiple comparisons using

all the datasets. Table 6 shows the results of the statistical

tests for the interval granules on the classification rate

computed on the test set. We observe that for the FIRST

solution the null hypothesis is rejected. The Holm post hoc

procedure, executed using PAES-RGT as control algo-

rithm, states that PAES-RG is statistically equivalent to

PAES-RGT. We can conclude that the learning of the

number of granules allows generating solutions with higher
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accuracy. Also for the MEDIAN and LAST solutions, we

have the same situation: The Holm post hoc procedure,

executed using PAES-RGT as control algorithm, states that

PAES-RG is statistically equivalent to PAES-RGT. The

solutions generated by PAES-R and PAES-RT are, how-

ever, characterized by a lower complexity, as we can derive

from Figs. 6 and 7. Concluding, we can again observe that

by learning the number of granules for each attribute and

the interval parameters together with the rules, we obtain

the best performance in terms of accuracy, although with a

higher complexity.

5 Conclusions

In this paper, we have dealt with the problem of developing

accurate and easily comprehensible granular rule-based

classifiers (GRBCs). The classification rules are learnt from

data and describe the involved variables in terms of

information granules, i.e., abstract entities that represent

essential aspects of knowledge and system modeling. The

considered GRBCs have been generated through a multi-

objective evolutionary process, considering accuracy and

interpretability as the objectives to be optimized. Infor-

mation granules have been formalized in terms of sets (in

particular, intervals) and fuzzy sets. With reference to well-

known classification benchmark datasets, we have shown

how granulation tuning (i.e., partition adaptation) and/or

granulation learning (i.e., learning of the number of parti-

tion components) can effectively influence the classifica-

tion performance and the interpretability of the GRBCs. In

particular, we have observed that the best results in terms

of accuracy are obtained when granulation tuning and

learning are used simultaneously. On the other hand, the

GRBCs so generated are characterized by a higher com-

plexity in terms of total rule length and number of rules.

This is basically due to the use of a maximum number of

granules for each variable higher than the number of

Table 5 Average accuracy on the training (AccTr) and test (AccTs) sets, TRL and number of rules (R) for the FIRST solutions generated by

PAES-R, PAES-RT, PAES-RG and PAES-RGT, employing intervals as information granules

PAES-R PAES-RT PAES-RG PAES-RGT

AccTr AccTs TRL R AccTr AccTs TRL R AccTr AccTs TRL R AccTr AccTs TRL R

APP 94.97 84.70 17.1 14.3 95.28 78.85 15.5 13.9 95.21 83.18 24.9 15.5 95.74 85.77 26.9 17.3

AUS 88.78 85.36 24.4 18.3 88.49 84.49 22.6 16.9 88.87 85.46 35.9 25.9 89.68 85.50 34.6 25.1

BAN 74.63 62.41 79.6 40.4 77.31 65.40 58.3 36.5 76.49 64.43 144.4 47.6 77.67 62.88 132.3 46.6

BUP 72.88 58.06 32.0 19.9 74.92 57.64 26.3 17.4 73.79 61.35 35.9 19.8 74.66 62.20 35.1 19.2

CLE 67.65 56.10 36.8 28.9 68.56 53.80 34.5 28.6 68.30 55.67 42.6 31.4 67.70 53.85 47.4 34.4

ECO 77.88 71.71 31.2 27.0 81.77 73.87 30.0 26.4 82.47 77.89 41.1 30.1 83.81 77.50 36.2 27.8

GLA 70.64 59.20 31.0 25.8 76.92 64.03 29.3 24.9 72.26 62.74 38.8 28.9 74.02 64.15 37.1 28.6

HAB 83.05 72.64 33.9 20.0 84.43 71.08 32.4 20.0 78.90 70.67 38.4 19.6 79.43 74.51 35.3 18.0

HAY 90.88 82.71 17.0 13.1 91.16 82.71 17.1 13.2 87.15 76.46 40.8 22.0 88.77 78.54 40.2 21.3

HEA 89.12 77.16 24.7 18.1 90.00 76.42 26.1 19.7 90.82 80.25 38.5 24.4 90.96 76.42 40.4 25.5

HEP 95.95 50.00 66.0 42.0 90.54 100.00 146.0 50.0 96.85 77.78 115.3 44.7 95.19 78.79 103.5 41.5

IRI 95.95 90.00 14.7 13.2 98.81 92.89 11.3 9.6 96.61 92.82 39.0 19.9 98.21 95.83 41.0 20.0

MAG 79.33 79.16 24.2 17.0 81.67 81.20 21.9 16.0 81.67 81.63 24.1 15.8 82.68 82.34 28.2 18.2

MAM 86.19 82.51 24.3 15.8 86.39 82.06 20.6 13.9 85.81 82.96 40.1 19.2 85.94 82.80 38.6 18.2

MON 100.00 100.00 7.9 6.9 99.91 99.85 8.0 7.0 100.00 100.00 19.1 11.9 100.00 100.00 21.9 13.1

NEW 96.76 93.82 16.6 13.5 97.74 90.76 14.1 11.7 96.35 92.72 28.6 18.0 97.11 91.62 25.6 15.8

PAG 92.10 91.82 25.9 21.3 92.14 91.75 25.7 21.7 92.89 92.68 36.0 27.3 93.06 92.70 36.2 28.6

PHO 81.12 79.74 48.0 24.9 82.48 80.47 33.2 19.4 79.42 78.95 47.0 21.9 80.75 79.64 45.4 20.6

PIM 78.94 71.92 28.1 18.5 80.78 73.75 23.4 17.4 79.47 73.28 36.9 20.5 80.68 73.41 34.0 19.8

SAH 78.30 66.43 26.3 17.7 79.73 67.24 25.5 18.6 79.35 68.18 44.7 23.9 80.29 69.55 46.3 23.5

TAE 74.03 52.06 30.5 19.5 74.10 53.56 26.1 18.4 70.45 53.93 51.3 23.7 71.48 56.38 51.0 23.9

VEH 62.45 56.30 93.1 45.1 66.42 57.94 94.6 46.1 65.24 59.07 104.3 44.0 68.38 63.62 100.7 43.2

WIN 98.44 90.25 26.2 23.4 99.30 90.33 23.5 21.6 98.90 90.83 34.7 27.2 99.45 92.27 33.7 26.4

WIS 98.39 95.81 22.4 19.5 98.68 95.48 22.8 19.7 98.62 95.62 36.9 21.2 98.70 96.13 36.1 21.7
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granules used when only granulation tuning is used.

Although we have considered only intervals and fuzzy sets

as granules in our experiments, we have highlighted

throughout the paper that the approach can be easily

employed for other types of granules such as type-2 and

interval-valued fuzzy sets.
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Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, Garcı́a S, Sánchez L,

Herrera F (2011) Keel data-mining software tool: data set

repository, integration of algorithms and experimental analysis

framework. Multiple Valued Logic Soft Comput

17(2–3):255–287

Table 6 Results of the non-parametric statistical tests on the accuracy computed on the test set for the FIRST, MEDIAN and LAST solutions

generated by PAES-R, PAES-RT, PAES-RG and PAES-RGT, employing intervals as information granules

Algorithm Friedman

rank

Iman and Davenport p-

value

Hypothesis

FIRST

PAES-R 3.2917

PAES-RT 2.875

PAES-RG 2.0833 0.000016 Rejected

PAES-RGT 1.75

i Algorithm z-value p-value alpha/i Hypothesis

Holm post hoc procedure

3 PAES-R 4.136726 0.000035 0.016 Rejected

2 PAES-RT 3.018692 0.002539 0.025 Rejected

1 PAES-RG 0.894427 0.371093 0.05 Not Rejected

Algorithm Friedman

rank

Iman and Davenport p-

value

Hypothesis

MEDIAN

PAES-R 2.9167

PAES-RT 3.00

PAES-RG 2.1667 0.005587 Rejected

PAES-RGT 1.9167

i Algorithm z-value p-value alpha/i Hypothesis

Holm post hoc procedure

3 PAES-T 2.906888 0.00365 0.016 Rejected

2 PAES-RT 2.683282 0.00729 0.025 Rejected

1 PAES-RG 0.67082 0.502335 0.05 Not Rejected

Algorithm Friedman

rank

Iman and Davenport p-

value

Hypothesis

LAST

PAES-R 3.5417

PAES-RT 2.8333

PAES-RG 2.0417 0.000000005 Rejected

PAES-RGT 1.5833

i Algorithm z-value p-value alpha/i Hypothesis

Holm post hoc procedure

3 PAES-R 5.25476 0 0.016 Rejected

2 PAES-RT 3.354102 0.000796 0.025 Rejected

1 PAES-RG 1.229837 0.218758 0.05 Not Rejected

56 Granul. Comput. (2016) 1:37–58

123
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