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 Quantitative and qualitative objectives are both significant to solve any facility layout problem 
(FLP), which is called as multi-objective FLP. Generally, quantitative factors are considered as 
material handling cost, time, etc., and qualitative factors are considered as closeness rating, 
hazardous movement between the facilities, etc. For solving and optimizing two or more 
objectives, two methods are available. First is weight approach method and second is non-
dominated sorting method. In the former method, suitable weights are given to each objective 
and combined in a single objective function; while in later method, the objectives are defined 
separately and by making comparison of the solutions on the non-dominance criteria, best 
Pareto-optimal solutions are obtained. In this paper, equal area multi-objective FLPs which are 
formulated as quadratic assignment problem (QAP) are considered and optimized using 
biogeography based optimization (BBO) algorithm and non-dominated sorting BBO (NSBBO) 
algorithm. BBO is one of the efficient metaheuristic techniques, developed to solve complex 
optimization problems. Computational results of BBO algorithm using weight approach 
illustrate its better performance compared to other methods while solving multi-objective FLPs. 
Furthermore to obtain Pareto optimal solutions, NSBBO algorithm is implemented. 
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1. Introduction 

In any manufacturing industry, the material handling cost (MHC) is the key factor for obtaining the 
optimal layout. The MHC is termed as quantitative factor and is considered as a single objective function 
to minimize. However, while solving any facility layout problem (FLP), only considering quantitative 
factor does not guarantee the optimal layout, therefore qualitative factors such as closeness relation 
between the departments should be considered. In the past literature, for solving the FLPs, more reliable 
factors such as material handling time, distance requirement in case of hazardous movement between the 
facilities, input/output stations, orientation of facilities, etc. are also considered. Various types of FLPs 
are extensively studied by researchers in the past literature. These are solved by formulating several 
mathematical models of facility layout. The FLPs are categorised as equal area, unequal area, static, 
dynamic, multi-objective, multi-floor, etc. In this paper, equal area FLPs are considered in which all the 
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facilities in the layout are of equal area and identical shape and formulated as QAP. Each facility is 
assigned to a square block in the layout. The problems are solved using multi-objective optimization. 
Singh and Singh (2010) proposed an approach to solve multi-objective FLPs by using weight method. In 
this work, the same problems are solved and optimized using BBO algorithm with weight approach and 
non-dominated sorting biogeography-based optimization (NSBBO) algorithm with Pareto approach. In 
this paper, BBO and NSBBO algorithms are proposed because it is observed that BBO and NSBBO 
algorithms are applicable in wide variety of complex optimization problems. BBO and NSBBO are 
innovative non-traditional optimization techniques and till date, they are not applied to solve multi-
objective FLPs. The results obtained using BBO are better than previous employed techniques. The 
performance of NSBBO is compared with non-dominated sorting genetic algorithm (NSGA-II). The 
paper further consists of Section 2: Literature review; Section 3: QAP function for multi-objective FLP; 
Section 4: BBO and NSBBO algorithm; Section 5: Performance evaluation of BBO and NSBBO 
algorithms for multi-objective FLPs and Section 6: Conclusion.  
 
2. Literature Review  

The facility layout of equal and unequal area with single objective function is discussed and solved by 
many researchers; however for obtaining more improved results, layout planner should consider more 
than one objective while solving FLP. The present literature review focussed on multi-objective FLPs 
and various heuristic and meta-heuristic techniques used to optimize them. The literature review 
categorised as follows: 

 
2.1 Multi-objective FLPs using weight approach 
 
Weight method is implemented by many researchers while solving multi-objective FLPs to normalise 
the different objective functions and obtain the optimal solution. Rosenblatt (1979) first attempted the 
concept of multi-goal approach for FLPs. Dutta and Sahu (1982) implemented a pairwise exchange 
heuristic to solve multi-objective FLP considering material handling cost and closeness rating. 
Fortenberry and Cox (1985) considered material flow as quantitative objective to minimize and closeness 
rating as qualitative objective to maximize. The objectives are combined using weight approach. Khare 
et al. (1988) proposed a combined computer-aided approach for multi-objective FLP. They obtained the 
solutions by summation of objective values at different weightage. Harmonosky and Tothero (1992) 
formulated a methodology to solve multi-factor FLP by combining the quantitative and qualitative factors 
with suitable weights. Chen and Sha (2001) proposed a new approach by considering suboptimal 
solutions for large size multi-objective layout problems. Chen and Sha (2005) considered four objectives 
to solve equal area FLP (namely material handling cost, adjacency requirement, material handling time 
and hazardous movement between the facilities).   
 
While designing a facility layout, the effect of workflow interference is studied (Chiang et al., 2006) with 
linear and non-linear formulations of the problem. Ye and Zhou (2007) developed a hybrid algorithm 
using genetic algorithm (GA) and tabu search to solve multi-objective FLPs having material handling 
cost and adjacency requirement. They considered unequal area facilities with fixed aisle structure. A 
multi-goal layout approach is presented by Peer and Sharma (2008) and the objective function consists 
of closeness relationship and workflow. Material flow factor cost (MFFC), shape ratio factor (SRF) and 
area utilisation factor (AUF) are considered by Ku et al. (2011) to determine total layout cost by 
conducting a weighted summation of MFFC, SRF and AUF and optimized using parallel GA. Total MHC 
(quantitative) and the total closeness rating (qualitative) are considered to solve FLP by using weight 
assignment method for each objective by Sahin (2011). Matai (2015) proposed modified simulated 
annealing (SA) algorithm to solve multi-objective FLP using the weight assignment method introduced 
by Singh and Singh (2010). This method is independent of decision maker and thus makes the layout 
design process easy. 
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2.2 Multi-objective FLPs using Pareto-optimal approach 
 
This section gives the idea about the Pareto-optimal criteria used to solve multi-objective FLPs in 
previous literature. Aiello et al. (2006) applied a multi-objective constrained GA to find Pareto-optimal 
solutions of unequal area FLP and the optimal solution is selected using multi-criteria decision-making 
procedure i.e. Electre. They considered four objectives namely, MHC, aspect ratio, closeness request and 
distance request between the departments. A dynamic FLP with unequal shape facilities and pickup-
drop-off points explained by Jolai et al. (2012) using multi-objective particle swarm optimization (PSO). 
The objectives considered are adjacency, distance request, orientation and rearrangement cost of moving 
or reorienting departments. A multi objective GA is proposed for solving unequal area FLP with more 
than one objective function and obtained Pareto-optimal solutions (Aiello et al. 2012).  
 
Hathhorn et al. (2013) considered two objective functions of minimising material handling and facility 
building costs and formulated using mixed integer programming (MIP); further they proposed a 
lexicographic ordering technique to handle multiple objectives. A multi-objective FLP having unequal 
area facilities with slicing tree representation is approached in two steps by Aiello et al (2013). The first 
step is to determine Pareto-optimal solutions by using multi-objective GA and the second step is to select 
the optimal solution by means of the multi-criteria decision-making procedure. A modified SA based 
approach is presented for solving equal area multi-objective FLP by Matai et al. (2013). An evolutionary 
approach is investigated by Ripon et al. (2013) for solving unequal area multi-objective FLP using 
variable neighbourhood search (VNS) with an adaptive scheme that presents the final layouts as a set of 
Pareto-optimal solutions. A mathematical model presented for equal area FLP considering two objectives 
(i.e. MHC and adjacency requirement) and optimized using a new developed heuristic technique (Chen 
& Lo, 2014). 

 
2.3 Application of BBO and NSBBO from literature 
 
The literature survey states that a number of meta-heuristic techniques such as GA, PSO, SA, etc., have 
been implemented to solve multi-objective FLPs, but till now, BBO algorithm is not attempted to solve 
the FLPs. However, an application of BBO algorithm for machine layout design problems to minimize 
the material handling distance is described by Sooncharoen et al. (2015). A hybrid technique is proposed 
combining BBO and TS algorithms to solve QAP and obtained better results within reasonable 
computational time by Lim et al. (2016). Regarding multi-objective BBO, some of its applications are 
depicted here. Ma et al. (2012) introduced biogeography-based multi-objective optimization (BBMO) to 
solve several test functions and compared with NSGA-II developed by Deb et al. (2002). Further, Simon 
(2013) explained multi-objective BBO and NSBBO algorithms to find Pareto optimal solutions of multi-
objective problems. Chutima and Naruemitwong (2014) implemented Pareto-BBO algorithm to solve 
mixed-model sequencing problems on a two-sided assembly line by considering three conflicting 
objectives. Ma et al. (2015) proposed an ensemble multi-objective BBO (EMBBO) algorithm to solve 
the automated warehouse scheduling problem. The EMBBO algorithm constitutes vector evaluated BBO 
(VEBBO), NSBBO and niched Pareto BBO (NPBBO). A community detection problem in dynamic 
networks with two objectives is solved using multi-objective BBO algorithm with decomposition 
mechanism (Zhou et al., 2015). 
 
BBO is a nature-inspired optimization technique which is developed by Simon in 2008 and is based on 
the migration characteristic of species from one island to another. Simon (2008) successfully optimized 
all the continuous functions by using BBO algorithm. Therefore, by observing the efficiency of BBO and 
NSBBO algorithm, it is implemented to solve multi-objective FLP which is capable of providing better 
solutions in combinatorial optimization problems. The comparison of results obtained from BBO 
algorithm and the previous literature’s results are shown with the best obtained layouts. In weight 
approach, the solutions are dominated towards one of the objectives whose data is more than the other. 
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Therefore, NSBBO algorithm is implemented to solve multi-objective FLPs to obtain non-dominated 
solutions and to test the performance of NSBBO algorithm.    

 
3. QAP function for multi-objective FLP 
 
In this paper, two objective functions (i.e. MHC and closeness rating) are considered. The multi-objective 
FLP is formulated as QAP (Singh & Singh, 2010).  

	 	 	  (1)

 

	 	 	 (2)

 
To compare the results with previous methods, weight approach is considered. The objective functions 
are converted into single-objective function using suitable weights given as below: 
 

	 	  (3)
 
where 
 
f1 -Objective function to minimise the material work flow or MHC 
f2 - Objective function to maximise the closeness rating (CR) 
n - Number of facility 
fij -Work flow from facility i to j 
dij - Distance from facility i to j 
cij - Closeness rating between facility i and facility j 
w - Objective weight for each objective  
F1 - Combined objective function  
 
It is observed that Singh and Singh (2010) and Matai (2015) considered the sum of closeness rating as a 
second objective which is constant for every solution and it is not having contribution towards the 
improvement of the layout. However, as mentioned by Urban (1987) and Khare et al. (1988), closeness 
rating is multiplied with the distance between the departments which will provide the actual combined 
solution of multi-objective FLP. Therefore, second objective is considered as given in Eq. (4) and the 
combined objective function is shown in Eq. (5). 

					 	 	 	  (4)

 
						 	  (5)

                                                         
The multi-objective FLPs from (Singh & Singh, 2010) are solved using the objective function considered 
by them for making comparison. The same problems are solved using the function in Eq. (5) to observe 
the difference between the results. Using weighted sum method, each objective function should be given 
proper weight to obtain the best solution. All factors are normalized before solving the final objective 
function, as the value of each factor is different from other. For instance, the values of material flow can 
vary from zero to very large amount while the value of closeness rating can be in the range of 0 to 5. 
Singh and Singh (2010) described a capable method to calculate the weights of each objective. For detail 
procedure, please refer (Singh & Singh, 2010). To calculate weights for each objective following steps 
are given: 
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Stage1: Matrix normalization 
 
Normalize the matrices of material work flow and closeness rating. The first step is summation of all the 
elements of each matrix and the second step is dividing each element of the matrix with the sum of all 
the elements of the matrix.  
 
Stage 2: Objective weight calculation 
 
In this stage, suitable weight of each objective is calculated using four methods proposed by (Singh & 
Singh, 2010). These methods are mean weight method (MWM), geometric mean weight method 
(GMWM), standard deviation weight method (SDWM) and critical importance through inter criteria 
correlation method (CRITICM). The weights considered in this paper for solving multi-objective FLPs 
are directly considered from weights calculated by Singh and Singh (2010). 
 
Stage 3: Solve multi-objective FLP considering above weights using BBO algorithm 
 
Each problem is solved considering the weight values of all the above mentioned methods and optimized 
using BBO algorithm. Amongst all the methods, whichever is providing minimum objective function 
value will be considered as best method. 

 
4. Biogeography-based optimization (BBO) 
 
In this section, the working of BBO and NSBBO algorithms are described in details. BBO algorithm is 
implemented using weight approach to compare with previous results and NSBBO is implemented to 
obtain Pareto-optimal solutions. 

  
4.1 Introduction to BBO algorithm 
 
BBO is an evolutionary, population-based algorithm (Simon, 2008). This algorithm is based on the 
principle of island biogeography in which geographical distribution of biological species is explained 
(Alroomi et al., 2013). BBO algorithm follows migration and mutation operations to reach global 
minimum solution. The mathematical formulation of BBO algorithm is developed by considering the 
migration behaviour of species from one place to another. On an island or habitat, if the living conditions 
are appropriate for species then that habitat have high suitability index (HSI), because this habitat have 
better features than other habitats. The variables that characterize habitability of an island are called as 
suitability index variables (SIVs) (Simon, 2008). Habitats having high HSI consist of more number of 
species than that of low HSI habitats. Therefore, the species on the high HSI habitats can emigrate to 
other habitat and have low species immigration rate as they are already full with species. Similarly, the 
low HSI habitats have high immigration rate of species because of their low population.  

 
4.1.1 BBO Algorithm 
 
BBO algorithm is established on the concept of distribution of species on islands which converts into a 
general problem function solution. Each island is considered as one member or solution. By considering 
the emigration (μ) and immigration (λ) rates of each member, the information between the habitats is 
shared probabilistically. High-HSI habitat represents a good solution and low-HSI habitat represents poor 
solution. The good solution means the island has lots of good features such as trees, food, rainfall, 
temperature, humidity, etc.; therefore this island or habitat has high HSI. Each feature is indicated as 
SIV, which denotes the independent variable of the problem function or facilities in case of FLP. Good 
solution features emigrate from high-HSI islands to low-HSI islands (Rahmati & Zandieh, 2012). A poor 
solution accepts features and information from good solution and further improves the solutions in 
algorithm. In BBO algorithm, there is an elitism strategy, which preserves best member from the 
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population in each iteration. If the algorithm traps in local minima, then the elitist solutions will remain 
intact and gives near-optimal solutions.   
 
4.1.2 Algorithm Steps of BBO 
 

Step 1. Initialisation of BBO parameters  
k - Number of islands or number of layouts, each island represents the permutation of 
facilities from n =1,2,…..,k 
G - Generations of algorithm 
I – maximum immigration rate (Fig. 2) 
E – maximum emigration rate (Fig. 2)  
Smax – Maximum number of species on an island  

Step 2. Defining the objective function and finding the objective function value (OFV)  of 
each island or layout 

Step 2. Migration of species from one island to another with a probability 
Step 3. Mutation is performed to update the islands 
Step 4. Calculation of OFV of updated islands  
Step 5. Repeat steps 2-4 until best value is obtained or maximum iterations are reached.  

 
4.2 Non-dominated sorting biogeography-based optimization (NSBBO) 
 
NSBBO algorithm is described by Simon (2013). The working of NSBBO algorithm is the same as that 
of NSGA-II. To overcome the problem of assigning the proper weights to the objective, NSGA-II is 
developed by Deb et al. (2002) for multi-objective optimization problems of continuous functions. The 
working of NSGA-II is based on the sorting of non-dominated or Pareto-optimum solutions, calculation 
of crowding distance and sharing fitness between the solutions. A Pareto frontier is generated when a set 
of optimal solutions are connected together.  
 
Pareto optimal solutions are called as non-dominated solutions. For understanding, two objective 
functions Fi and Fj are considered with two solutions, P1 and P2. If P1 dominates P2 in terms of both 
objectives, P1 is dominant over P2. If P1 is not dominated by the other solution, P1 is called the non-
dominant solution. The set of non-dominant solutions is called the Pareto front or frontier. A non-
dominated solution can be considered as explained here. Suppose, x∗ represents a feasible solution while 
x represents some other feasible solution. For a minimization problem, if x∗ satisfy following two 
conditions  

(1) Fi (x*) < Fi (x) and 
(2) Fj (x*) ≤ Fj (x)( j≠i), 

Then x∗ is called the non-dominated solution. Therefore, when x∗ is a non-dominated solution, its 
objective function value can be equal to or less than other feasible solutions (Chen & Lo, 2014). The 
non-dominated sorting procedure of NSGA-II is implemented in NSBBO. The crossover and mutation 
operators of NSGA-II are replaced by migration and mutation operators of BBO algorithm. 
 
4.2.1 NSBBO procedure steps 

 
1. Initialisation 

 
Initial solutions of arbitrary islands are generated. Each island solution is compared with other solutions 
to find the non-dominant solutions. These island solutions are sorted using non-dominance approach and 
numbers of Pareto-fronts of final objective values are obtained as discussed in section 4.2. According to 
non-domination level, each solution is allotted a fitness or rank. The first front of subpopulation of islands 
is given rank 1. This subpopulation is assigned a dummy fitness F1 to this front set. 
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2. Crowding distance calculation 
 

After obtaining non-dominated solutions, crowding distance is calculated; this is the distance between 
the islands. The distance is calculated to get an evaluation of the concentration of solutions nearby a 
particular point in the population of islands. The crowding distance provides an estimate of the density 
of solutions around each solution belonging to the same front. Suppose, n number of solutions belonging 
to the same feasible front, so these solutions are sorted in descending order, with respect to an objective 
K. The crowding distance is shown in Fig. 1. 

 

		  (6)

                                                                                                               
(i = 2, 3, . . ., n-1) and (K= 1, 2, …., k) 
 

where  and  are the maximum and minimum values of the objective function K of the solutions 
belonging to the front, respectively. The overall crowding distance of the solution i, considering all the k 
objectives, is 

 (7)

 
 
 
 

i+1 
di

1 

                          i 
       objective 1                                        di

2          i-1 
 
 
 

Objective 2 
Fig. 1 Crowding distance (Aiello et al., 2006) 

 
3. Sharing function and niche count 
 
A proportionate variety is maintained using the sharing function with suitable setting of all the associated 
parameters. A sharing parameter σshare is involved in sharing function method which sets the level of 
sharing preferred in a problem. The parameter indicates the largest value of that distance within which 
any two solutions share each other’s fitness. This parameter is usually set by the user (Deb et al., 2002). 
The sharing function is as follows: 

1

0,
, 	  (8)

where, σshare is the maximum distance allowed between any two island solutions to be the members of a 
niche. The σshare value is to be chosen properly. A niche count (nci) that provides an estimate of the extent 
of crowding near a chromosome is calculated using following equation: 

 (9)

The shared fitness values are calculated by dividing the dummy fitness values by the niche count, which 
is given by 
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	  (10)

This procedure is continued till the shared fitness values are calculated for all the fronts. 
 
4. Selection of the habitats for migration 
 
In migration operator, the good features and information are shared between habitats or islands. This 
depends on emigration rate μ and immigration rate λ of each solution. Migration is the interchanging of 
facilities between the population members or habitats.  We determine the objective function value or HSI 
of each island. In FLP, the objective function is to minimize the MHC/total layout cost; therefore low-
HSI is a good solution. In Fig. 2, immigration curve is indicated as I, which follows when there are no 
species on the island. The maximum number of species that an island can maintain is Smax, at this point 
the immigration rate becomes zero. Now, considering the emigration curve indicated as E. If no species 
present on an island then the emigration rate will be zero. When an island holds the largest number of 
species, then the maximum emigration rate is E. The emigration rate μs and immigration rate λs at the 
presence of S species in that island are calculated from Eq. (11) and Eq. (12) respectively to start the 
migration operator. 

 (11)

 

1  (12)
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Fig. 2 Immigration and Emigration rates of species (Alroomi et al., 2013) 
 

Now the probability of presence of S species in the island is calculated, which is denoted by PS.  This 
probability is obtained from Eq. (13), as the number of species varies from time t to t+Δt. 

 
         		 Δ 1 Δ Δ Δ Δ  (13)

 
From Eq. (13), one of the following three conditions should satisfy to contain S species on an island at 
time (t+Δt):   

   1. S species at time t and no immigration or emigration took place during the interval Δt; 
   2. (S - 1) species at time t and one species immigrated; 
   3. (S + 1) species at time t and one species emigrated 
 

For finding Ps(t) in steady state, Eq. (14) is as given: 
         	

∑
 (14)

where  and i can be calculated from following Eq. (15) and Eq. (16) 
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, , … . . ,  (15)
       

!
1 ! 1 !

									 1, … , 1  (16)

 
Migration loop of NSBBO algorithm: 
 
Select an island Hi in which the species will immigrate using probability λi  (i =1,2,…..,k) 
        If rand < i   
           for j=1 to k 
         Select an island Hj from which the species will emigrate using probability μj 
            If Hj is selected 
             Randomly select an SIV or department from Hj 
            Replace a random SIV or department in Hi with that of Hj 
           end If 
       end for 
    end If 
   go to next SIV or department 
  go to next Island 
After selecting immigrating and emigrating islands from initial population, the migration is done using 
the probabilities.  
 
5. Mutation  
 
In island principle, the number of species present at equilibrium state can be differed due to some 
peripheral happenings such as diseases, tsunamis, volcanoes or earthquakes which cause decrease in total 
number of species. If there are other suitable events which provide good features to an island, they 
improve the solution (Alroomi et al., 2013). The mutation operation is used to increase the diversity of 
the population members to obtain the good solutions. In BBO algorithm, mutation is done based on 
probability of species PS  and is used for modifying SIV or facility which is randomly selected. The 
mutation rate can be obtained from Eq. (17). 
 

1  (17)

 
mmax is a user-defined maximum mutation rate that m can reach, and Pmax is the maximum species 
probability.  
 
Mutation loop of NSBBO algorithm: 
 
 For i = 1:k (k is the number of islands) 
       Calculate mutation rate (m) using Eq. (17) 
             Select an island Hi with probability PS  for mutating SIV 
       If Hi is selected for mutation 
                   Replace selected SIV of island with a randomly generated SIV 
            end if  
     end for 
 
5. Application of NSBBO and BBO algorithms to multi-objective FLPs 
 
The problems considered are having 6, 8, 12 and 15 departments. To make comparison with previous 
results, BBO algorithm is applied to solve multi-objective FLPs. The data related to material flow and 
closeness rating is provided by Singh and Singh (2010) and shown in Appendix B. The demonstration 
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steps of NSBBO algorithm are shown in Appendix A.2 with 8-department FLP. The proposed BBO and 
NSBBO algorithms are programmed in MATLAB (2010) for all the problems and run on Microsoft 
Windows 8, Intel core processor with 4GB RAM. The detail procedure of implementation of BBO 
algorithm to equal area FLP is given in Appendix A.1 with an illustrative pseudo example of 5 
departments. 

 

5.1 Performance evaluation of BBO algorithm  
 

The specifications of FLPs are shown in Table 1. The problem size, objectives, fine-tuned parameter 
values of BBO algorithm and computational time required to run one trial of algorithm presented in Table 
1. The parameters are finalised by taking number of trials to reach at optimum solutions. Table 2 shows 
the objective weights of all the problems determined by MWM, GMWM, SDWM and CRITICM 
methods explained in (Singh & Singh, 2010). 

Table 1  
Problem specification and BBO parameters setting 

Problem Objectives k G Mutation rate Computational Time (s) 
N=6 material handling cost and closeness rating 100 100 0.3 14.75 
N=8 material handling cost and closeness rating 200 200 0.2 36.75 
N=12 material handling cost and closeness rating 1000 100 0.2 153.24 
N=15 material handling cost and closeness rating 1000 500 0.2 324.14 

 

Table 2  
Objective weights obtained using MWM, GMWM, SDWM and CRITICM  

Problem MWM GMWM SDWM CRITICM 
N = 6 (Rosenblatt, 1979)  w1 = 0.5899  

w2 =0.4101 
w1 = 0.5036  
w2 =0.4964 

w1= 0.5051  
w2 =0.4949 

w1 = 0.5051  
w2 =0.4949 

N = 8 (Fortenberry and Cox, 1985)  w1 = 0.5949 
w2 = 0.4051 

w1 = 0.4703  
w2 = 0.5297 

w1 = 0.5991  
w2 = 0.4009 

w1 = 0.5991  
w2 = 0.4009 

N = 12 (Dutta and Sahu, 1982)  w1 = 0.6945  
w2 =0.3055 

w1 = 0.4693  
w2 =0.5307 

w1 = 0.5096  
w2 =0.4904 

w1 = 0.5096  
w2 =0.4904 

N = 15 (Chen and Sha, 1999)  w1 = 0.7448  
w2 =0.2552 

na w1 = 0.4566  
w2 =0.5434 

w1 = 0.4566  
w2 =0.5434 

 
The objective function value (OFV) using each weight method and the layout obtained using BBO 
algorithm is shown in Table 3. The best solutions are displayed in bold face. For N=8, BBO obtained 
two layouts using GMWM method which are shown in Table 3.  

 
Fig. 3 Convergence of BBO for N= 6 FLP 

From Table 3, it is seen that for problem size of 6, 8 and 12 the results obtained using BBO algorithm 
are same as obtained by Matai (2015)  and for size 15, BBO algorithm is giving better solutions in all the 
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three methods. In 8-department FLP, two layouts are obtained for the same OFV. In Figs. 3-6, the graphs 
are plotted between generations and OFV which show the convergence nature of BBO algorithm. The 
algorithm is converging to near optimal solutions in minimum number of generations. This shows the 
capability of BBO algorithm to solve FLPs. 
 

 
 

Fig. 4 Convergence of BBO for N= 8 FLP 

Table 3  
Comparison of multi-objective FLPs with previous results 

Problem Approach MWM GMWM SDWM CRITICM 
N = 6 

(Rosenblatt, 
1979)  

Singh and Singh 
(2010)  

34.1759 
[2-6-5-3-1-4] 

22.0076 
[2-6-5-3-1-4] 

22.2191 
[2-6-5-3-1-4] 

22.2191 
[2-6-5-3-1-4] 

Matai (2015)  
 

34.1759 
[4-3-1-5-6-2] 

22.0076 
[5-6-3-4-2-1] 

22.2191 
[4-3-1-5-6-2] 

22.2191 
[4-3-1-5-6-2] 

BBO 
 

34.1759 
[2-6-5-3-1-4] 

22.0076 
[3-6-5-1-2-4]

22.2191 
[5-6-2-4-3-1] 

22.2191 
[1-2-4-3-6-5] 

N = 8 
(Fortenberry 

and Cox, 1985)  

Singh and Singh 
(2010)       

128.6624 
[1-5-8-3-2-7-6-4] 

105.78 
[4-6-7-2-3-8-5-1] 

127.256 
[2-7-6-4-1-5-8-3] 

127.256 
[2-7-6-4-1-5-8-3] 

Matai (2015)    
 

124.6624 
[1-5-8-3-2-7-6-4] 

52.8928 
[4-6-7-2-3-8-5-1] 

127.0816 
[2-7-6-4-1-5-8-3] 

127.0816 
[2-7-6-4-1-5-8-3] 

BBO 
 

124.6624 
[2-7-6-4-1-5-8-3] 

52.8928 
[1-5-8-3-2-7-6-4] 
[3-8-5-1-4-6-7-2]

127.0816 
[3-8-5-1-4-6-7-2] 

 

127.0816 
[3-8-5-1-4-6-7-2] 

 
N = 12 (Dutta 

and Sahu, 1982)  
Singh and Singh 

(2010)       
1766.99                

[1-6-7-2-9-10-12-8-4-
11-5-3]             

1116.36                 [4-6-
5-2-9-10-12-8-1-11-7-

3] 

1255.435             [4-6-
5-2-9-10-12-8-1-11-7-

3] 

1255.435               [4-6-
5-2-9-10-12-8-1-11-7-

3] 
   Matai (2015)   

 
1678.2656              

[3-5-12-2-8-7-10-6-1-
11-9-4] 

1050.4075             [3-5-
12-2-8-6-7-10-1-11-9-

4] 

1162.7645           [4-9-
11-1-10-7-6-8-2-12-5-

3] 

1162.7645             [4-9-
11-1-10-7-6-8-2-12-5-

3] 
BBO 1678.2656             

[4-9-11-1-10-7-6-8-2-
12-5-3] 

1050.4000             [2-
12-5-3-6-10-7-8-4-9-

11-1]

1164.8000           [3-8-
11-1-12-5-6-7-2-10-9-

4] 

1164.8000             [3-8-
11-1-12-5-6-7-2-10-9-

4] 
N = 15 (Chen 

and Sha, 1999)  
Singh and Singh 

(2010)       
2701.64                  [10-
12-1-13-6-15-14-8-2-

11-4-7-9-3-5] 

na 
 

1557.68            
[10-12-1-7-4-11-14-2-

8-15-5-13-9-3-6] 

1557.68               [10-
12-1-7-4-11-14-2-8-15-

5-13-9-3-6] 
Matai (2015)   

 
2459.5818              [12-
7-14-15-6-13-9-1-8-11-

10-5-3-2-4] 

na 
 

1411.1108           
[12-7-14-15-6-13-9-1-

8-11-10-5-3-2-4] 

1411.1108           [12-7-
14-15-6-13-9-1-8-11-

10-5-3-2-4] 
BBO 2445.5000              [10-

5-3-2-4-13-1- 14-8-11-
12-9-7-15-6] 

na 1402.4000        
 [10-5-3-2-4-13-1- 14-

8-11-12-9-7-15-6] 

1402.9000            [10-
3-1-2-4-13-5-14-8-11-

12-9-7-15-6] 
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Fig. 5 Convergence of BBO for N= 12 FLP 

 

Fig. 6 Convergence of BBO for N= 15 FLP 

 
As we have earlier stated in section 3 about the objective functions; the results of multi-objective FLPs 
obtained using Eq. (4) and Eq. (5) are shown in Table 4. All the objective functions are evaluated 
separately to show the difference between the results. The comparison of original OFV obtained in this 
work with that of Singh and Singh (2010) and Matai (2015) is given in Table 4. It is seen from Table 4 
that the new values obtained from remodelled objective functions are different from original values. The 
results obtained for different objective weights are presented in Table 4 and these results cannot be 
compared with the previous results due to the difference in second objective i.e. f2. The reason to show 
the difference between the results obtained in this paper and results obtained by Singh and Singh (2010) 
and Matai (2015), is the correct values of the objective functions which should be considered as best 
layout by the layout planner. 
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Table 4  
Results of multi-objective FLPs using BBO algorithm 

Problem MWM GMWM SDWM CRITICM 

N=6 w1 = 0.5899 
w2 =0.4101 
OFV= 86.26 

Layout= [5 6  2  4 1 3] 

w1 = 0.5036 
w2 =0.4964 

OFV = 85.05 
Layout= [2 6 5 3 1 4] 

w1= 0.5051 
w2 =0.4949 

OFV = 85.07  
Layout= [3 2 4 1 6 5] 

w1= 0.5051 
w2 =0.4949 

OFV = 85.07 Layout= 
[3 2 4 1 6 5] 

N=8 w1 = 0.5949 
w2 = 0.4051 

OFV = 196.57 Layout= [2 
1 4 3 7 5 6 8] 

 

w1 = 0.4703 
w2 = 0.5297 

OFV = 195.82 Layout= 
[2 1 4 3 7 5 6 8] 

w1 = 0.5991 
w2 = 0.4009 

OFV = 188.22 Layout= 
[1 5 8 3 2 7 6 4] 

w1 = 0.5991 
w2 = 0.4009 

OFV = 188.22 
Layout= [1 5 8 3 2 7 6 

4] 
N=12 w1 = 0.6945 

w2 =0.3055 
OFV = 996.72 Layout= [3 
1 4 2 8 11 6 9 5 7 12 10] 

w1 = 0.4693 
w2 =0.5307 

OFV = 754.46 
Layout= [1 8 6 4 2 5 

12 10 3 11 7 9]

w1 = 0.5096 
w2 =0.4904 

OFV = 794.15 Layout= 
[1 11 4 9 3 8 6 7 2 5 12 

10]

w1 = 0.5096 
w2 =0.4904 

OFV = 794.15 
Layout= [1 11 4 9 3 8 

6 7 2 5 12    10]
N=15 w1 = 0.7448 

w2 = 0.2552 
OF V = 1182.4 

Layout=[12 10 2 13 5 9 7 
15 1 6 11 3 8 14 4] 

Na w1 = 0.4566 
w2 = 0.5434 

OFV = 859.41 
Layout=[4 1 2 13 5 14 
15 8 3 10 6 7    11 9 12] 

w1 = 0.4566 
w2 = 0.5434 

OFV =868.14 
Layout=[12 5 2 13 10 
11 1 8 15 4 6 14 7 3 9] 

 
5.2 Performance evaluation of NSBBO algorithm 
 
The multi-objective FLPs considered in this paper are not solved using Pareto-optimality method or non-
dominance criteria in previous literature. In this section, NSBBO algorithm is applied to solve multi-
objective FLPs. As we cannot compare the solutions obtained using weight approach with the solutions 
obtained using Pareto-optimality criteria, therefore both NSBBO and NSGA-II algorithms are 
implemented. The objective functions are described in previous section. In Pareto-optimality procedure 
the objective function are kept separate to obtain non-dominated solutions. The multi-objective FLP can 
be stated as: 
 

	 , 	  (18)
 
Eq. (18) indicates the functions of MHC and CR. In f2, which represents closeness rating score, is 
considered as a penalty to be minimized (Sahin & Turkbey, 2009). The parameters of NSBBO and 
NSGA-II such as population or island size (P), generations (G), mutation rate and sharing fitness are 
decided by taking number of trials and kept same for both the algorithms. The values of these parameters 
are mentioned in Table 5.  

 
Table 5  
NSBBO and NSGA-II parameters setting 

Problem P G Mutation rate Sharing fitness 

N=6 100 100 0.15 1.3 

N=8 100 150 0.15 1.2 

N=12 200 500 0.20 1.2 

N=15 200 1000 0.20 1.3 
Note: MHC-Material handling cost, CR-Closeness rating, P-Population and G-Generation 
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Table 6  
Results of 6-department FLP  

Algorithm Layouts MHC CR 

NSBBO 

3-1-2-4-5-6 192 76 
1-2-3-6-5-4 208 72 
1-5-6-3-2-4 212 71 
3-1-4-2-6-5 184 78 
4-2-5-3-1-6 204 75 
3-2-1-4-6-5 196 75 

NSGA-II 

3-1-4-2-6-5 184 78 
5-1-4-6-2-3 196 75 
2-5-6-3-1-4 212 71 
5-2-4-6-1-3 204 75 
1-2-3-6-5-4 208 72 
6-5-4-2-1-3 192 76 

 
The results of 6-department FLP using NSBBO and NSGA-II are shown in Table 6. This problem is 
small in size; therefore best solutions are obtained from both the algorithms. Each method has provided 
6 solutions with different layouts. Therefore, the layout planner can decide the layout according to his/her 
preference. Pareto solutions and efficient frontier of 6-department FLP for NSBBO and NSGA-II are 
shown in Fig. 7 and Fig. 8, respectively. It is seen that both the frontier are same.  

 

Fig. 7. Pareto solution front of 6-department FLP using NSBBO 

 
 

Fig. 8. Pareto solution front of 6-department FLP using NSGA-II 
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Table 7 shows the results of 8-department problem using NSBBO and NSGA-II methods. NSBBO 
algorithm has provided five non-dominated solutions while NSGA-II has provided four solutions of 
MHC and CR.  

 
Table 7  
Results of 8-department FLP  

Algorithm Layouts MHC CR

NSBBO 

7-5-8-4-2-1-6-3 206 206
4-6-5-8-2-7-1-3 210 203
3-8-5-1-4-7-6-2 203 208
6-7-1-4-8-5-2-3 228 182
3-6-8-2-4-7-5-1 202 212

NSGA-II 

2-4-1-3-7-6-5-8 208 195
2-1-5-7-3-4-6-8 225 195
2-1-8-3-7-6-5-4 206 206
2-1-7-6-4-3-5-8 227 184

 
Fig. 9 and Fig. 10 show that Pareto frontiers of NSBBO and NSGA-II respectively for 8-department 
problem.  
 

 
Fig. 9. Pareto solution front of 8-department FLP using NSBBO 

 

 
Fig. 10. Pareto solution front of 8-department FLP using NSGA-II 
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In Table 8, results of 12-department problem are presented. NSBBO has provided four non-dominated 
solutions while NSGA-II has provided three solutions. Efficient Pareto frontier of NSBBO and NSGA-
II for 12-department MOFLP are shown in Fig. 11 and Fig. 12, respectively.  
  
Table 8  
Results of 12-department FLP  

Algorithm Layouts MHC CR

NSBBO 

4-10-5-11-9-12-7-8-2-1-6-3 1334 307 
10-8-7-4-12-5-6-3-9-2-11-1 1380 265 
1-4-7-6-10-9-12-8-2-11-5-3 1322 314
2-7-9-4-1-11-8-6-3-12-5-10 1367 304 

NSGA-II 
4-1-3-2-6-5-11-8-7-9-12-10 1386 270 
1-2-3-4-5-12-6-11-8-10-7-9 1380 280
1-2-3-8-9-11-5-10-4-7-6-12 1373 284 

 

 
Fig. 11 Pareto solution front of 12-department FLP using NSBBO 

 

 
Fig. 12 Pareto solution front of 12-department FLP using NSGA-II 

 
 

Table 9 shows the Pareto solutions of 15-department FLP. NSBBO provided 6 solutions while NSGA-II 
provided 9 solutions. The Pareto curves of NSBBO and NSGA-II for 15-department problem are shown 
in Fig. 13 and Fig.14, respectively. 
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Table 9  
Results of 15-department FLP 

Algorithm Layouts MHC CR

NSBBO 

13-7-6-2-4-3-5-10-8-1-11-12-14-15-9 1886 280
4-7-12-10-5-9-3-13-2-1-6-15-8-11-14 1624 318
2-14-8-4-11-12-1-7-6-9-5-10-13-15-3 1617 357
5-10-12-6-11-2-8-14-1-9-3-13-7-15-4 1667 302
4-13-1-6-11-12-15-8-2-3-7-9-14-5-10 1693 298
6-5-1-4-10-14-11-3-13-9-12-8-2-7-15 1714 285

NSGA-II 

14-1-11-8-2-3-4-7-12-5-6-9-13-10-15 1734 305
7-4-1-2-3-9-13-8-5-12-6-10-15-14-11 1807 289
7-15-1-2-12-4-13-8-3-5-9-10-11-6-14 1820 282
5-4-2-15-1-3-10-8-7-6-13-9-12-11-14 1677 308
1-2-5-7-3-4-10-11-6-14-9-8-15-13-12 1968 277
6-2-1-7-4-3-5-10-8-9-11-13-14-12-15 1893 279
5-3-1-4-9-2-14-8-11-7-6-13-15-10-12 1742 295
4-1-3-8-2-6-11-15-7-5-14-13-9-12-10 1653 329
1-2-3-5-11-4-13-6-7-8-9-10-15-14-12 1892 280

 

 

Fig. 13. Pareto solution front of 15-department FLP using NSBBO 

 

Fig. 14. Pareto solution front of 15-department FLP using NSGA-II 
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All the 15 solutions obtained are non-comparable and considered as equally good. This gives flexibility 
to the layout planner to select appropriate layout considering other criteria as per requirement. The overall 
performance of both BBO and NSBBO algorithms show their applicability on complex combinatorial 
problems of multi-objective FLPs. 

6. Conclusion 
 
In this paper, BBO meta-heuristic algorithm has been employed to solve complex multi-objective FLPs, 
which are otherwise very difficult to solve using traditional techniques. Both weight approach and Pareto-
optimality approach were considered to obtain better results. The results obtained using BBO algorithm 
(weight approach)  for 6, 8, 12 and 15 departments FLP are better or equal as compared to previous 
results. Furthermore, NSBBO algorithm was proposed to find Pareto-optimal solutions of FLPs. The 
solutions are non-dominated which are not biased to any one objective. The comparison of NSBBO and 
NSGA-II is proving that NSBBO is performing as good as NSGA-II. The layout planner can decide best 
layout among number of solutions according to his/her preference. 
 
The computational time required to run BBO algorithm is satisfactory. This makes BBO algorithm 
efficient to solve combinatorial optimization problems like FLP. An important observation regarding 
objective functions of FLP is discussed and remodelled functions are evaluated to show the difference 
between the final solutions. The distance between the departments should be incorporated while 
considering the objectives related to movement of material. As BBO and NSBBO algorithms are capable 
to solve multi-objective FLPs, it can be further implemented to solve multi-objective, dynamic and 
unequal area FLPs. 
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Appendix A 
 
A.1 Demonstration steps of BBO algorithm with an illustrative example of n=5 department 
problem 
 
Step 1: Randomly generate islands (k = 5). Each layout is considered as one island. Since there are 5 
departments, string length of each island consists of 5 random numbers. 

{0.8147    0.0975    0.1576    0.1419    0.6557} 
{0.9058    0.2785    0.9706    0.4218    0.0357} 
{0.1270    0.5469    0.9572    0.9157    0.8491} 
{0.9134    0.9575    0.4854    0.7922    0.9340} 
{0.6324    0.9649    0.8003    0.9595    0.6787} 

 
Step 2: Obtain the integer numbers for departments by sorting and indexing each row of above matrix. 
Evaluate OFV of each layout.  

L1 : 2 – 4 – 3 – 5 – 1;    OFV: 186 
L2 : 5 – 2 – 4 – 1 – 3;    OFV: 168 
L3 : 1 – 2 – 5 – 4 – 3;    OFV: 179 
L4 : 3 – 4 – 1 – 5 – 2;    OFV: 151 
L5 : 1 – 5 – 3 – 4 – 2;    OFV: 163 

 
From initial layouts, the minimum OFV is 151 and the corresponding layout is the best layout. 
 
Step 3: Start first iteration. The emigration rate μs and immigration rate λs are calculated using Eqs. (11) 
and (12) respectively. 

μs = {0.2, 0.4, 0.6, 0.8, 1} 
λs = {0.8, 0.6, 0.4, 0.2, 0} 

    Probability of the species Ps is calculated using Eq. (13) 
Ps  = {0.0313, 0.1563, 0.3125, 0.3125, 0.1563, 0.0313 } 

 
Step 4: Start migration operation. Select two islands for emigration and immigration. Using μs, fourth 
island is selected for emigration and using λs, first island is selected for immigration. Randomly select 
SIVs from fourth and first island to replace their positions. Suppose fifth and second SIVs are selected 
from fourth and first island respectively and their positions are replaced. The numbers replaced are shown 
in bold. The new islands will be as follows: 

{0.8147    0.9340    0.1576    0.1419    0.6557} 
{0.9058    0.2785    0.9706    0.4218    0.0357} 
{0.1270    0.5469    0.9572    0.9157    0.8491} 
{0.9134    0.9575    0.4854    0.7922    0.0975} 
{0.6324    0.9649    0.8003    0.9595    0.6787} 

 
Step 5: Start mutation operation. The mutation rate is calculated using Eq. (17).  

m = {0.8998, 0.4998, 0, 0, 0.4998, 0.8998} 
Using Ps, two islands are selected. In each island, one SIV is selected to replace with randomly generated 
number. Suppose first and fifth islands are selected for mutation. From first island, third SIV is selected 
and from fifth island, fourth SIV is selected to replace with random numbers r1 = 0.3781and r2 = 0.4424, 
respectively. After mutation the islands obtained are 

{0.8147    0.9340    0.3781    0.1419    0.6557} 
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{0.9058    0.2785    0.9706    0.4218    0.0357} 
{0.1270    0.5469    0.9572    0.9157    0.8491} 
{0.9134    0.9575    0.4854    0.7922    0.0975} 
{0.6324    0.9649    0.8003    0.4424    0.6787} 

 
Again find the integer numbers by sorting and indexing each row of above matrix to get the layouts and 
their OFVs after mutation. 
                                          L1 : 4 – 3 – 5 – 1 – 2;    OFV: 166    
                                          L2 : 5 – 2 – 4 – 1 – 3;   OFV: 168   
                                          L3 : 1 – 2 – 5 – 4 – 3;   OFV: 179  
                                          L4 : 5 – 3 – 4 – 1 – 2;   OFV: 172     
                                          L5 : 4 – 1 – 5 – 3 – 2;   OFV: 148  
 
 
Step 7: After first iteration, the best layout and its OFV obtained is: 

4 – 1 – 5 – 3 – 2;     OFV = 148 
 
Step 8: Repeat steps 3 to 7 until maximum number of iterations is reached. 
 
A.2 Demonstration steps of NSBBO with an illustrative example of 8 departments. 
 
Step 1. Generate initial islands/population (P=10) of random numbers. Set the values of 
iterations/generations (G), mutation rate, sharing fitness (σshare) and dummy fitness. The random numbers 
are indexed and sorted to obtain layouts. Calculate both the objectives of material handling cost (MHC) 
and closeness rating (CR) for each layout. 
 

Sr. 
No. 

Randomly generated islands Layout MHC CR 

1 0.7772 0.6679 0.0615 0.7989 0.1103 0.9705 0.0866 0.1006 3 7 8 5 2 1 4 6 244 212
2 0.9051 0.6034 0.7801 0.7343 0.1174 0.8669 0.7719 0.2940 5 8 2 4 7 3 6 1 247 227
3 0.5337 0.5261 0.3375 0.0513 0.6407 0.0862 0.2056 0.2373 4 6 7 8 3 2 1 5 226 198
4 0.1091 0.7297 0.6078 0.0728 0.3288 0.3664 0.3882 0.5308 4 1 5 6 7 8 3 2 269 237
5 0.8258 0.7072 0.7412 0.0885 0.6538 0.3691 0.5517 0.0914 4 8 6 7 5 2 3 1 261 234
6 0.3380 0.7813 0.1048 0.7983 0.7491 0.6850 0.2289 0.4053 3 7 1 8 6 5 2 4 264 226
7 0.2939 0.2879 0.1278 0.9430 0.5831 0.5979 0.6419 0.1048 8 3 2 1 5 6 7 4 232 210
8 0.7463 0.6925 0.5495 0.6837 0.7400 0.7893 0.4844 0.1122 8 7 3 4 2 5 1 6 243 216
9 0.0103 0.5566 0.4852 0.1320 0.2348 0.3676 0.1518 0.7844 1 4 7 5 6 3 2 8 252 218

10 0.0484 0.3965 0.8904 0.7227 0.7349 0.2060 0.7819 0.2915 1 6 8 2 4 5 7 3 241 221

 
 
Step 2: Start first iteration. Rank the objectives according to non-dominated solutions as shown below: 

Rank Layouts Islands MHC CR 
1 4 6 7 8 3 2 1 5 0.5337 0.5261 0.3375 0.0513 0.6407 0.0862 0.2056 0.2373 226 198 
2 8 3 2 1 5 6 7 4 0.2939 0.2879 0.1278 0.9430 0.5831 0.5979 0.6419 0.1048 232 210 
3 3 7 8 5 2 1 4 6 0.7772 0.6679 0.0615 0.7989 0.1103 0.9705 0.0866 0.1006 244 212 
3 8 7 3 4 2 5 1 6 0.7463 0.6925 0.5495 0.6837 0.7400 0.7893 0.4844 0.1122 243 216 
3 1 6 8 2 4 5 7 3 0.0484 0.3965 0.8904 0.7227 0.7349 0.2060 0.7819 0.2915 241 221 
4 5 8 2 4 7 3 6 1 0.9051 0.6034 0.7801 0.7343 0.1174 0.8669 0.7719 0.2940 247 227 
4 1 4 7 5 6 3 2 8 0.0103 0.5566 0.4852 0.1320 0.2348 0.3676 0.1518 0.7844 252 218 
5 4 8 6 7 5 2 3 1 0.8258 0.7072 0.7412 0.0885 0.6538 0.3691 0.5517 0.0914 261 234 
5 3 7 1 8 6 5 2 4 0.3380 0.7813 0.1048 0.7983 0.7491 0.6850 0.2289 0.4053 264 226 
6 4 1 5 6 7 8 3 2 0.1091 0.7297 0.6078 0.0728 0.3288 0.3664 0.3882 0.5308 269 237 
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Step 3. Calculate shared fitness, niche count and dummy fitness using Eqs.8-10 respectively.  Calculate 
probability and cumulative probability for selection of islands. 

Sr. No. Niche count Dummy fitness Shared fitness Probability Cumulative probability 
1 1.2 50.0000 41.6666 0.3949 0.3949 
2 1.2 41.5631 34.6359 0.3282 0.7232 
3 4.2 34.1715 8.1360 0.0771 0.8003 
4 4.2 34.1715 8.1360 0.0771 0.8774 
5 4.2 34.1715 8.1360 0.0771 0.9545 
6 4.2 8.0685 1.9210 0.0182 0.9727 
7 4.2 8.0685 1.9210 0.0182 0.9910 
8 4.2 1.7263 0.4110 0.0038 0.9948 
9 4.2 1.7263 0.4110 0.0038 0.9987 
10 1.2 0.1529 0.1274 0.0012 1.0000 

 

Step 4: Generate random number for each member and sort the islands with respect to probability and 
cumulative probability. 

Rand no. Sorted Islands sorted with respect to cumulative probability and random no. 
0.6554 2 0.2939 0.2879 0.1278 0.9430 0.5831 0.5979 0.6419 0.1048 
0.1097 4 0.7463 0.6925 0.5495 0.6837 0.7400 0.7893 0.4844 0.1122 
0.9337 5 0.0484 0.3965 0.8904 0.7227 0.7349 0.2060 0.7819 0.2915 
0.1874 10 0.1091 0.7297 0.6078 0.0728 0.3288 0.3664 0.3882 0.5308 
0.2661 9 0.3380 0.7813 0.1048 0.7983 0.7491 0.6850 0.2289 0.4053 
0.7978 7 0.0103 0.5566 0.4852 0.1320 0.2348 0.3676 0.1518 0.7844 
0.4876 1 0.5337 0.5261 0.3375 0.0513 0.6407 0.0862 0.2056 0.2373 
0.7689 8 0.8258 0.7072 0.7412 0.0885 0.6538 0.3691 0.5517 0.0914 
0.3960 6 0.9051 0.6034 0.7801 0.7343 0.1174 0.8669 0.7719 0.2940 
0.2729 3 0.7772 0.6679 0.0615 0.7989 0.1103 0.9705 0.0866 0.1006 

 

Step 5: Apply migration operator to the islands by using migration probability. Mutation is done by using 
mutation probability. The updated islands are given below: 

Sr. No. Islands after migration Islands after mutation 

1 0.2939 0.2879 0.1278 0.9430 0.5831 0.5979 0.6419 0.1048 0.2939 0.2879 0.1278 0.9430 0.5831 0.5979 0.6419 0.1048 

2 0.7463 0.6925 0.5495 0.6837 0.7400 0.7893 0.4844 0.1122 0.7463 0.6925 0.5495 0.6837 0.7400 0.7893 0.4844 0.1122 

3 0.0484 0.3965 0.8904 0.0728 0.5831 0.2060 0.7819 0.2915 0.0484 0.3965 0.8904 0.0728 0.5831 0.2060 0.7819 0.2915 

4 0.1091 0.7297 0.6078 0.7983 0.2348 0.6850 0.3882 0.5308 0.1091 0.7297 0.6078 0.7983 0.2348 0.6850 0.3882 0.5308 

5 0.0484 0.7813 0.1048 0.7983 0.2348 0.6850 0.2289 0.4053 0.0484 0.7813 0.1048 0.7983 0.2348 0.6850 0.2289 0.4053 

6 0.0103 0.6679 0.7412 0.1320 0.1174 0.3676 0.7719 0.0914 0.0103 0.6679 0.7412 0.1320 0.1174 0.3676 0.7719 0.0914 

7 0.0103 0.5261 0.7412 0.0513 0.6407 0.7893 0.7719 0.1006 0.0103 0.5261 0.7412 0.0513 0.6407 0.7893 0.7719 0.1006 

8 0.9051 0.6034 0.8904 0.0513 0.5831 0.3691 0.3882 0.1006 0.9051 1.5346 0.8904 0.0513 0.5831 0.3691 0.3882 0.1006 

9 0.9051 0.6034 0.7801 0.7343 0.1174 0.8669 0.7719 0.2940 0.9051 0.6034 0.7801 0.7343 0.1174 0.8669 0.7719 0.2940 

10 0.7772 0.6679 0.0615 0.7989 0.1103 0.9705 0.0866 0.1006 0.8667 0.6679 0.0615 0.7989 0.1103 0.9705 0.0866 0.1006 
 

Step 6: Evaluate the objective function values after first iteration as follows: 

Sr. No. Layouts MHC CR
1 8 3 2 1 5 6 7 4 232 210
2 8 7 3 4 2 5 1 6 243 216
3 1 4 6 8 2 5 7 3 220 216
4 1 5 7 8 3 6 2 4 250 215
5 1 3 7 5 8 6 2 4 254 231
6 1 8 5 4 6 2 3 7 256 233
7 1 4 8 2 5 3 7 6 252 222
8 4 8 6 7 5 3 1 2 234 219
9 5 8 2 4 7 3 6 1 247 227

10 3 7 8 5 2 4 1 6 244 207
 

Step 7: The non-dominated solutions after first iteration are given below: 

Sr. No. Layouts MHC CR 
1 1 3 7 5 8 6 2 4 254 231 
2 1 8 5 4 6 2 3 7 256 233 
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Appendix B: Tables B.1 – B.8 shows the material flow and closeness rating for multi-objective FLPs. 

Table B.1  
Flow-matrix of n=6 

fij 1 2 3 4 5 6
1 0 4 6 2 4 4
2 4 0 4 2 2 8
3 6 4 0 2 2 6
4 2 2 2 0 6 2
5 4 2 2 6 0 10
6 4 8 6 2 10 0

 
Table B.2  
Closeness rating of n=6 

cij 1 2 3 4 5 6
1 0 5 3 2 6 4
2 5 0 5 2 6 2
3 3 5 0 1 2 1
4 2 2 1 0 2 2
5 6 6 2 2 0 6
6 4 2 1 2 6 0

 

Table B.3  
Flow matrix n=8  

fij 1 2 3 4 5 6 7 8 
1 0 6 1 1 8 2 4 4 
2 6 0 1 2 3 3 6 2 
3 1 1 0 5 2 3 1 10 
4 1 2 5 0 2 8 3 3 
5 8 3 2 2 0 4 10 10 
6 2 3 3 8 4 0 8 8 
7 4 6 1 3 10 8 0 2 
8 4 2 10 3 10 8 2 0 

 
 

Table B.4  
Closeness rating n=8  

cij 1 2 3 4 5 6 7 8 
1 0 6 5 5 6 4 5 2 
2 6 0 3 5 3 2 6 2 
3 5 3 0 6 3 1 2 2 
4 5 5 6 0 2 2 3 1 
5 6 3 3 2 0 5 6 6 
6 4 2 1 2 5 0 6 6 
7 5 6 2 3 6 6 0 4 
8 2 2 2 1 6 6 4 0 

 
Table B.5  
Flow matrix n=12  

fij 1 2 3 4 5 6 7 8 9 10 11 12 
1 0 2 4 6 3 5 7 8 6 5 7 1 
2 2 0 4 3 2 5 1 4 3 7 2 6 
3 4 4 0 1 8 8 6 9 1 1 10 9 
4 6 3 1 0 2 10 11 7 10 11 11 12 
5 3 2 8 2 0 10 20 20 9 19 19 20 
6 5 5 8 10 10 0 20 18 13 15 14 12 
7 7 1 6 11 20 20 0 11 13 15 12 16 
8 8 4 9 7 20 18 11 0 3 14 17 13 
9 6 3 1 10 9 13 13 3 0 19 21 15 

10 5 7 1 11 19 15 15 14 19 0 8 22 
11 7 2 10 11 19 14 12 17 21 8 0 13 
12 1 6 9 12 20 12 16 13 15 22 13 0 
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Table B.6  
Closeness rating n=12  

cij 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 5 4 1 1 1 1 1 -1 1 2 2 

2 5 0 3 1 4 4 1 5 1 3 2 2 

3 4 3 0 3 1 1 1 1 -1 1 2 2 

4 1 1 3 0 4 3 3 3 1 1 2 2 

5 1 4 1 4 0 5 4 1 1 1 2 2 

6 1 4 1 3 5 0 5 1 1 1 2 2 

7 1 1 1 3 4 5 0 1 1 1 2 2 

8 1 5 1 3 1 1 1 0 1 4 2 2 

9 -1 1 -1 1 1 1 1 1 0 1 2 2 

10 1 3 1 1 1 1 1 4 1 0 2 2 

11 2 2 2 2 2 2 2 2 2 2 0 2 

12 2 2 2 2 2 2 2 2 2 2 2 0 

 
Table B.7  
Flow matrix n=15 

fij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 4 5 8 12 16 3 7 2 6 8 9 12 17 12
2 15 0 6 8 12 0 9 35 4 7 3 6 9 8 12
3 15 16 0 9 2 0 15 6 17 6 12 3 5 8 9
4 1 25 9 0 2 6 5 8 0 0 0 0 3 2 9
5 5 0 15 6 0 2 0 8 0 9 0 6 6 3 2
6 8 5 0 6 9 0 5 8 8 0 6 0 3 5 8
7 0 3 5 0 8 9 0 9 9 8 7 12 0 13 15
8 16 17 0 16 15 11 14 0 1 4 12 2 15 15 13
9 17 6 9 11 25 6 12 12 0 5 7 8 9 2 6

10 3 8 9 6 0 0 0 0 0 0 0 5 6 0 7
11 8 9 0 12 15 16 0 0 2 4 0 5 0 5 7
12 6 7 2 8 9 12 15 5 5 0 0 0 7 0 5
13 6 4 3 8 9 0 11 5 15 15 10 10 0 5 10
14 12 6 9 8 10 11 15 5 16 12 10 10 5 0 7
15 2 3 4 8 0 12 15 16 12 0 0 0 0 2 0

 
Table B.8  
Closeness rating n=15 

cij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 2 0 3 0 -1 2 0 3 1 4 -1 2 2 0
2 2 0 3 1 2 3 2 4 0 3 0 1 1 0 1
3 0 3 0 0 3 1 0 2 -1 0 4 0 2 1 0
4 3 1 0 0 -1 0 1 0 4 4 0 1 2 0 2
5 0 2 3 -1 0 0 1 3 0 2 1 0 1 0 0
6 -1 3 1 0 0 0 2 0 0 3 0 1 3 3 0
7 2 2 0 1 1 2 0 0 0 0 -1 2 1 0 1
8 0 4 2 0 3 0 0 0 1 4 3 2 3 3 2
9 3 0 -1 4 0 0 0 1 0 3 0 2 1 0 3

10 1 3 0 4 2 3 0 4 3 0 1 0 1 0 1
11 4 0 4 0 1 0 -1 3 0 1 0 3 2 1 1
12 -1 1 0 1 0 1 2 2 2 0 3 0 -1 1 1
13 2 1 2 2 1 3 1 3 1 1 2 -1 0 0 1
14 2 0 1 0 0 3 0 3 0 0 1 1 0 0 0
15 0 1 0 2 0 0 1 2 3 1 1 1 1 0 0
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