
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:361–392 

https://doi.org/10.1007/s40747-021-00368-z

ORIGINAL ARTICLE

Multi-objective fault-tolerant optimization algorithm for deployment 
of IoT applications on fog computing infrastructure

Yaser Ramzanpoor1 · Mirsaeid Hosseini Shirvani2 · Mehdi Golsorkhtabaramiri1

Received: 24 November 2020 / Accepted: 1 April 2021 / Published online: 6 May 2021 

© The Author(s) 2021

Abstract

Nowadays, fog computing as a complementary facility of cloud computing has attracted great attentions in research com-

munities because it has extraordinary potential to provide resources and processing services requested for applications at the 

edge network near to users. Recent researchers focus on how efficiently engage edge networks capabilities for execution and 

supporting of IoT applications and associated requirement. However, inefficient deployment of applications’ components 

on fog computing infrastructure results bandwidth and resource wastage, maximum power consumption, and unpleasant 

quality of service (QoS) level. This paper considers reduction of bandwidth wastage in regards to application components 

dependency in their distributed deployment. On the other hand, the service reliability is declined if an application’s compo-

nents are deployed on a single node for the sake of power consumption management viewpoint. Therefore, a mechanism for 

tackling single point of failure and application reliability enhancement against failure are presented. Then, the components 

deployment is formulated to a multi-objective optimization problem with minimization perspective of both power consump-

tion and total latency between each pair of components associated to applications. To solve this combinatorial optimization 

problem, a multi-objective cuckoo search algorithm (MOCSA) is presented. To validate the work, this algorithm is assessed 

in different conditions against some state-of the arts. The simulation results prove the amount 42%, 29%, 46%, 13%, and 5% 

improvement of proposed MOCSA in terms of average overall latency respectively against MOGWO, MOGWO-I, MOPSO, 

MOBA, and NSGA-II algorithms. Also, in term of average total power consumption the improvement is about 43%, 28%, 

41%, 30%, and 32% respectively.

Keywords Internet of things (IoT) · Fog computing · Fault tolerance · Traffic-aware deployment · Component deployment

Introduction

Recently, fog computing joint with cloud computing to 

cover its deficit such as intrinsic latency and to serve dif-

ferent industries. Since a fog server can process data gath-

ered by IoT devices independently from cloud computing, 

it can efficiently save network communication bandwidth, 

cloud storage space, and reserving resources for mission-

critical applications [1]. Also, fog supports unifying edge 

and cloud resources for customers. Fog computing facilitates 

deployment of IoT applications in vicinity of source data. 

Therefore, it reduces network load and guarantees on-time 

service delivery. However, deployment, management, and 

updating of IoT application lead new challenges in such lay-

ered environment. Fog computing in larger scale includes 

numerous heterogeneous computing nodes with separate 

processing, memory, and storage. In addition to, workload 

on each node is completely dynamic. Also, each IoT appli-

cation has its own requirement in terms of sensitivity on 

latency, computing requirement, and privacy constraints. 

Therefore, the deployment of application components must 

be properly done on fog nodes; at the same time the applica-

tion requirement, software and hardware features, bandwidth 

and tolerable latency between components on fog infra-

structure must be taken into account [2]. Deployment of an 

application components on a single node yields maximize 

resource utilization, decrease in power consumption, and 

optimizing network bandwidth as well. Nevertheless, when 
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a fog node which hosts all of the components associated with 

an application crashes, the application cannot work properly 

in which it affects the reliability of customer applications. 

For this reason, it is clear-cut to take an efficient policy for a 

suitable and reliable components deployment scheme.

There are miscellaneous mapping possibilities in distri-

bution of application components on fog nodes in which 

one of the most appropriate and optimal amongst them 

should be selected. For a small application with low num-

ber of components, there are several feasible solutions to 

deploy components on different fog nodes. Therefore, with 

the increase the number of application components and the 

number of fog nodes regarding to its heterogeneity, finding 

the optimal deployment scheme is computationally com-

plex and there is not any exact solution for this. So, this 

problem belongs to NP-Hard class [3]. Recently, researches 

have been done in literature in regards to component distri-

bution over fog and cloud computing nodes. A unified fog 

computing platform was proposed by Hong et al. [4] in year 

2018 for dynamic component deployment on fog devices. 

In their proposed approach, it paid on distribution of com-

ponent over more than one fog node to avoid single point of 

failure. Another algorithm for distribution of IoT applica-

tion components with regards to application sensitivity on 

latency and efficient network resource usage viewpoints has 

been proposed by Taneja et al. [5] in year 2017. A general 

and extensible description model was proposed to specify 

QoS-aware IoT application deployment on fog infrastructure 

proposed by Brogi et al. [6] in 2017. Review on literature 

reveals that there are clear lack in component placement 

of IoT applications with two different viewpoints at the 

same time. In the other words, this paper presents power-

aware and latency-aware algorithm for reliable component 

deployment on fog infrastructure. The former awareness is 

for provider as a prominent stakeholder and latter aware-

ness is considered for service customer as another promi-

nent stakeholder side viewpoints. To this end, this paper 

presents two new models in IoT-Fog environment in regards 

to application modules deployment viewpoint. The accurate 

models indicate whether the proposed algorithm is effective 

or not. So, after presenting two intricate new models namely 

power and reliability models for IoT components deploy-

ment on fog platforms, the multi-objective cuckoo search 

algorithm is extended which exploits Pareto dominance and 

crowding distance concepts for both gaining the set of non-

dominated solutions and diversity in search space. Since the 

stated problem is a discrete optimization in nature, the CSA 

algorithm that permutes search space efficiently has been 

selected. Also, its operators are conducted in such a way 

that the good adjustment and balance between exploration 

and exploitation is achieved in which the final simulation 

results endorse it although there is no guarantee in stochastic 

approaches to reach optimal point.

Therefore, the main contributions of the current paper 

are as follow:

1. To reach the optimal power consumption, a Fullmesh 

sub networks is extracted from whole fog network by a 

proposed heuristic algorithm; among Fullmesh sub net-

works, the most appropriate one is selected for distribu-

tion of application components.

2. To mitigate the effect of single point of failure in appli-

cation components deployment, the fault tolerance pol-

icy against failure is provided for each application to 

improve reliability; to this end, the minimum number of 

fog nodes for components deployment can be bounded 

to the maximum number of existing nodes in Fullmesh 

sub network.

3. The overall latency concept is modeled. In the process of 

application components deployment, efficient utilization 

of fog bandwidth resource is increased by minimizing 

overall latency. This can be potentially decrease resource 

wastage and power consumption.

4. The deployment of application components over fog 

nodes is formulated to a multi-objective optimization 

problem with minimization of both power consump-

tion and overall latency viewpoints. To solve this com-

binatorial problem, a multi-objective cuckoo search 

optimization algorithm (MOCSA) is presented which 

compromises objectives and considers reliability in its 

constraints.

The rest of the paper is structured as follows. Related 

works are placed in Sect. “Related works”. Some models 

associated to problem statement are presented in Sect. “Pro-

posed framework and models”. Section “Problem statement” 

states the problem under study. Proposed MOCSA is pre-

sented in Sect. “Proposed MOCSA algorithm for component 

deployment problem”. This algorithm is validated in simula-

tion and evaluation section which is placed in Sect. “Simula-

tion and evaluation”. Section “Conclusion and future direc-

tion” concludes this paper along with future direction.

Related works

This section investigates related works to find research gap 

in component deployment problem. A cloud service man-

agement standard named TOSCA was proposed for IoT com-

ponent placement [7]. The main objective of this paper was 

to deploy components automatically by using application 

components description commensurate with fog nodes. The 

aid of this standard was to improve portability of applica-

tions in heterogeneous environment such as in cloud and 

fog environment. In proposed standard, a model for descrip-

tion of service structure and service process management 
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was presented. In this model, placement of application 

components is automatically done by applying conceptual 

description of components topology and related application 

deployment.

An approach has been propounded in literature for 

latency-aware application component management in fog 

environment [8]. In this work, latency of service access, 

service delivery time, and internal communication latency 

have been considered. The objective was to guarantee the 

service delivery deadline and efficient resource utilization 

in fog environment. To optimize the number of utilized fog 

nodes for hosting application components, this exploits for-

ward and reallocation strategy for application components. 

In addition, to cope with limitations of fog environment such 

as management overhead, single point of failure, redundant 

communications, and latency in decision, the decentralized 

organizing is proposed for substitution and forwarding the 

components.

A platform was proposed for a dynamic distribution of 

application components on fog sub networks [4]. In pro-

posed approach, all requests are submitted to a server; then, 

the requests are registered in a database. Each request is 

split to multiple components which are encapsulated to a 

Docker or Container. Afterwards, a heuristic algorithm is 

run to determine components placement plan. The obtained 

plan is sent to fog platform for component distribution. The 

main goal is to maximize of generating successful placement 

plans for user applications.

A DIANE framework has been presented by Vogler et al. 

[9] in 2015 for producing optimal deployment topology of 

cloud-based IoT applications commensurate with existing 

infrastructures. To increase the flexibility of application 

that their deployment topologies undergo evolution during 

the time, separation of executing components is necessary. 

The application deployment topology changes may be for 

deployment requirement of new application, changes in edge 

network physical infrastructure such as add/remove sensors 

and gateways, environmental changes such as customer 

request patterns, and evolutionary changes in business logic 

during its life cycle. In production process of deployment 

topology, some parameters such as time needed for deploy-

ment, time and bandwidth request for application running, 

and exploitation of edge devices are evaluated.

A distributed programming interface was presented for 

colony of fog computing nodes so-called Foglets by Saurez 

et al. [10] in 2016. Foglets automatically detect fog comput-

ing resources in network hierarchy and deploys application 

components on fog nodes with tolerable latency requirement 

of each component.

An approach was devised for component deployment of 

IoT services on M2M platform to reduce traffic from the net-

work to cloud datacenter because IoT application are made 

on M2M platforms [11].

A network-aware algorithm in regarding to optimal utiliz-

ing of resource was presented by Taneja et al. [5] in 2017. 

This algorithm detects fog nodes based on their capacity and 

application components requirement. If requirement is met, 

the mapping of components over fog nodes is done.

To facilitate deployment of applications on cloud2fog 

environment, a platform as a service (PaaS) architecture 

was propounded by Yangui et al. [12] in year 2016. In this 

architecture, engaging and execution of application compo-

nents, SLA meeting evaluation and component migration 

via management interface are met. Accordingly, exploitation 

and execution of application components with regards to the 

objectives are detected, configured, and initiated.

Table 1 summarizes comparison of related works associ-

ated to IoT application component deployment on fog and a 

cloud infrastructure.

Review of literate illustrates that published works have 

been formulated to optimization problems with different 

viewpoints. Generally, optimization problems are catego-

rized in two classes: single objective and multi-objective 

problems. Since the majority of optimization problems 

belong to NP-Hard category problems, the heuristics (or 

exact algorithms) and the meta-heuristic algorithms are 

engaged to solve these kind of problems. In single objective 

problems, only one objective function must be optimized. 

For instance, Refs. [13–17] were presented in literature to 

solve single objective engineering problems with heuris-

tic and exact approaches. Some meta-heuristics GA-based 

[18–23], PSO-based [3, 24, 25], SA-based [26–28] have 

been developed to solve optimization problems in engi-

neering domain. In addition, multi-objective optimization 

algorithms such as NSGA-II [29], MOPSO [30], MOGA 

[18, 31], MOBA [32], and MOGWO [33] among others have 

been extended in literature to solve multi-objective optimiza-

tion problems which need to make a trade-off between con-

flicting objectives at the same time. In this line, several tech-

niques were presented in literature to improve the quality of 

multi-objective optimization problems [34–38]. Specially, 

these methods were tested in some famous and applicable 

engineering benchmarks [34–38]. Since the modules place-

ment associated to IoT application in fog environment is a 

discrete optimization problem, it urges to utilize an efficient 

discrete optimization algorithm this the reason to select CSA 

algorithm which permutes search space efficiently.

Overall investigation of reviewed literature also reveals 

that the majority of published works scarcely have paid 

on single point of failure avoidance and its effect on how 

to distribute application components over fog nodes and 

at the same time how to optimize bandwidth utilization. 

The distinction point of the current paper in comparison 

to other literatures revolves around the fact that the current 

paper strives in enhancement of user application’s reli-

ability in regards to tolerance against failure and to present 
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traffic-aware deployment to optimize network bandwidth 

utilization in component distribution process.

It is worth noting that presenting the accurate models 

indicate whether the proposed algorithm is effective or not. 

So, this paper presents two intricate new models namely 

power and reliability models for IoT components deployment 

on fog platforms to cover literature shortcomings. Then, it is 

formulated to multi-objective optimization problem.

Proposed framework and models

This section presents system framework and associated mod-

els. Then, all of them are engaged in problem statement. For 

the sake of simplicity, Table 2 illustrates utilized nomencla-

ture in presented models.

Table 1  Summary of the literature study

Author/Ref Deployment aims Advantages Disadvantages

Distributed Fault tolerant Resource 

aware

Latency 

Aware

Traffic aware Energy 

efficient

Mahmud et al. (2018) 

[8]

✓ ✖ ✓ ✓ ✖ ✓ Deployed time-sensi-

tive applications at 

proximity of source 

data

Lack of considering the 

chain of dependency 

during distribution 

process

Hong et al. (2016) [4] ✓ ✖ ✓ ✓ ✖ ✓ Component distribu-

tion on the mini-

mum number of 

computing nodes

It does not elaborate 

how to distribute 

components against 

one point of failure

Vögler et al. (2015) 

[9]

✓ ✖ ✓ ✖ ✖ ✓ A framework pre-

sented for generat-

ing optimal deploy-

ment topology

A descriptive model 

presented for com-

ponent deployment

It does not elaborate 

how to distribute 

components

Saurez et al. (2016) 

[10]

✓ ✖ ✖ ✖ ✖ ✖ A programming 

infrastructure for 

development and 

deployment of 

components

An approach pre-

sented for compo-

nents migration

It does not dependency 

challenges between 

components

Chen et al. (2017) 

[11]

✓ ✖ ✖ ✖ ✖ ✖ Component distribu-

tion with minimum 

latency

QoS degradation with 

increase the number 

of components

Lack of elaboration 

between components’ 

dependency

A single point of fail-

ure problem

Taneja et al. (2017) 

[5]

✓ ✖ ✓ ✓ ✖ ✓ Supporting different 

netwrok topologies

Lack of elaboration 

between components’ 

dependency

A single point of fail-

ure problem

Yangui et al. (2016) 

[12]

✓ ✖ ✖ ✓ ✖ ✖ Automated PaaS for 

componentt deploy-

ment

It does not guarantee 

optimal deployment

A single point of fail-

ure problem

Current article ✓ ✓ ✓ ✓ ✓ ✓ Reliability enhance-

ment

Traffic-aware deploy-

ment

Although it is not a 

weakness, it depends 

on sub full mesh 

derived from whole 

network
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System framework

The proposed target system framework is depicted in Fig. 1. 

As this figure shows, an organizer is placed in top level of 

fog layer. One of its most missions is to extract Fullmesh 

sub networks of fog nodes known as a Mega Node. The 

Mega Node architecture is similar to wireless mesh network 

(WMN) presented by Akyildiz et al. [39] in year 2005. Its 

computing pattern differs from traditional mesh networks 

in which it utilizes network of fog nodes such as switches 

and routers in distribution operation of inside the network. 

After the Mega Nodes extraction, the suitable Mega Node 

is adopted and organizer makes decision for component 

deployment in selected Mega Node in regards to applica-

tion components features and requirements. Conceptually, 

the organizer is centralized, but it can be distributedly 

implemented for the sake of avoidance from the single point 

of failure phenomenon.

In the proposed framework, the high priority is to extract 

deployment plan based on selected Mega Node; then, the 

components are distributed based on extracted plan. Only 

the components which are not time-sensitive or are executed 

periodically for information processing are deployed on 

cloud infrastructure. In this regards, a deployment planner 

framework is used to manage and run suitable application 

components deployment regarding to system performance.

As Fig. 2 demonstrates, planner module contains appli-

cation component manager and associated collaborative 

components. Beside deployment planner, some modules are 

placed for storage and retrieval of information associated to 

the network and other Mega Node’s resources.

Table 2  Nomenclature utilized 

in proposed models
Notation Description

F Fog network

Mega node A fullmesh sub network including fog nodes

N Number of fog nodes in Mega Node

M Number of Applications Components

fni Fog node i, where i = 1, 2,..,N

Id Fog node identifier

H Fog node hardware specification

S Fog node software specification

HWfn Computing, memory, and storage capacity of a fog node

SWMega Node Software capacity of Mega Node

SMega Node Sensor capacity of Mega Node

sensorlist Sensor list associated to a fog node

B Bandwidth of communication link

L Latency of communication link

B
mn

Communication Bandwidth between nodes m and n

L
mn

Communication latency between nodes m and n

d
mn

Distance between nodes m and n

n
L

Serving fog nodes to application i

UApp User application

M
i

Number of components in Application i

cmplisti List of Components associated to application i

cmpk k-th component of an application

h Hardware requested for a component

s Software requested for a component

m
i

A component of an application i deployed on a fog node L

bij Favorite Communication Bandwidth between component i and j

lij Favorite Communication latency between component i and j

hw
cmp

Computing, memory, and storage capacity requested for application components

sw
cmp

Software resource requested for application components

s
cmp

Sensor resource requested for application components

tij traffic between component i and j

xcmp,fn Decision variable which determines a component is deployed on a fog node or not

yfn Decision variable which determines a fog node is active or not
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The integrated information is used for management of 

application components and presenting favorite deployment 

plan via deployment planner. In the following, the proposed 

framework’s modules are clarified.

Application component manager This is a main module 

amongst others, which decides how to deploy application 

components on fog or cloud nodes. In a multi-component 

application, for the sake of dependency between its com-

ponents, decision of deployment strongly depend on sev-

eral issues such as resource availability, network structure, 

QoS requirement of applications, load sharing and etc. the 

deployment of components can be done based on objectives 

such as power consumption reduction, minimizing commu-

nication and reduction of overall traffic owing to running of 

applications.

Component resource information It extracts processing and 

memory requirement associated to application components 

from user submitted request. Then, it delivers this informa-

tion to application component manager for decision making 

on deployment plan.

Components communication information Since communica-

tion plays a major role in resource consumption of fog nodes 

in running IoT applications, the management of application 

components on fog nodes includes optimizing usage of com-

puting resources, memory, and communications at the same 

time. To this end, this section extracts communication infor-

mation of application components from user requests and 

delivers it to application component manager.

Mega node resource discovery This module manipulates 

Mega Node’s information repository which is obtained via 

application component manager. Then, it sends back the 

information of favorite Mega Node for application compo-

nents deployment.

Fig. 1  Proposed system framework and associated mega nodes

Fig. 2  Management framework 

for application components
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Mega node manager Based on information received from fog 

nodes, the Fullmesh sub networks of fog nodes are extracted; 

then, information of Fullmesh sub networks, known as Mega 

Nodes, are saved in a repository. In addition to, it validates 

status of existing Mega Nodes by periodically monitoring 

of fog infrastructure.

Fog model

This article assumes there exists a network of N number of 

fog nodes which are heterogeneous in terms of processing 

capacity and power consumption; all of them are enable to 

store and execute application components. These fog nodes 

belong to one or more Mega Node sets. Each node in a Mega 

Node can directly or indirectly access to different kind of 

sensors via wired or wireless connections. A fog node 

fn ∈ F is introduced by a vector ( id, mid, H, S, sensorlist ) 

where id, mid, H, S, and sensorlist are fog node identifier, 

Mega Node id, hardware, software, and available sensors 

respectively. The components which are distributed among 

Mega Node’s processors can avail to the software and sen-

sors of that same Mega Node. In this regards, the commu-

nication link can be modeled by a vector (L,B) where L and 

B are latency and bandwidth respectively. The details of a 

Mega Node is elaborated in Fig. 3.

In this line, the communication network is modeled by a 

graph G =  < FN,D > where FN = { fn1, fn2,… , fnN } is a set 

of fog nodes and edge dij ∈ D shows distance between nodes 

fn
i
 and fnj . Matrix D in Eq. (1) is dedicated for distance 

between each pair of fog nodes. In each Mega Node, if all 

components are placed on single node, then, dij = 0 ; other-

wise dij = 1 . In addition, the Fig. 4 illustrates a communica-

tion network in a Mega Node with three different fog nodes.

Application model

In recent years, regarding to the nature of users requests 

and new expectations on internet-based services, the design 

of applications which manipulate users’ data is constantly 

fluctuated based on changing requests; then, to meet user 

requirement, the multi-component structure approach is uti-

lized [40]. So, application components are dependent and 

cooperate with each other to meet users’ requirements. For 

instance, take a company that serves a smart health care 

service in a small IoT application for surveillance of aged 

people. This application includes three different components 

that Fig. 5 illustrates.

(1)

Fig. 3  Mega node specification and its belonged fog nodes

Fig. 4  Communication network 

in a mega node

Fig. 5  Specification of application components
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Status manager (cmp1) This component monitors aged and 

disabled people; it alarms the nearest medical and health-

care center once it detects a disorder in physical or mental 

behavior.

Control center (cmp2) This component is used for interpret 

of integrated data and manual control of the system.

Machine Learning (cm3) This component is utilized to save 

data history of individuals and to estimate future wellbeing 

and health provided it is not latency-sensitive which can be 

deployed on cloud datacenter or fog infrastructure.

Figure 5 also depicts hardware resources along with soft-

ware capabilities required for each component. Communi-

cation between components are drawn by special links. To 

manage on time status of aged people, component cmp1 

must avail to needed sensors (physical state controller sen-

sors) and an actuator which activates initial operation mech-

anism and announcement to medicine centers; this must be 

done during 10 ms. from deployed component cmp3 to the 

place of installed sensors and actuators. Furthermore, it is 

expected that the fog or cloud nodes can remotely access to 

existing neighbor things via APIs provided by fog middle-

ware [41]. The problem that should be solved for application 

components deployment is how to place components so that 

the requested resources are met. Even for this simple exam-

ple, different deployment plans must be evaluated for finding 

an optimal component mapping for this application because 

more than one component can be deployed on a fog node 

based on existing resources. Finding favorite and optimal 

deployment is impractical when the number of components 

and fog nodes are significantly increased. Then, this combi-

natorial problem must be solved by intricate meta-heuristic 

algorithms.

This paper assumes that there are R number of IoT appli-

cations each of r ∈ R is shown by a vector (M,cmplist). 

Each application has M number of components listed 

in cmplist. Also, each component is shown by a vector 

( k, h, s, sensorlist ) (see Fig. 5).

User applications are modeled by a graph G = (cmplist, T) 

where cmplist =
{

cmp1, cmp2,… , cmp
m

}

 and T = tij shows 

the traffic matrix (TM) between components cmpi and cmpj . 

Equation (2) demonstrates traffic matrix and the Fig. 6 illus-

trates components communication graph.

(2)

Reliability model

Deployment of an application’s components on the mini-

mum number of fog nodes leads to reach the goals such as 

reduction in power consumption and efficient utilization of 

cloud computing resources, but one of the confronting chal-

lenges is the acceleration of the single point of failure phe-

nomenon in users’ applications. Therefore, for the sake of 

meeting both optimization objective functions of cloud com-

puting owners and to decrease the degree of applications’ 

vulnerability in centralized distribution in fog infrastructure, 

the threshold parameter is considered for the number of fog 

nodes in distribution of applications’ components. To this 

end, in the worst case, at most number of needed nodes for 

components distribution is bounded to the number of avail-

able nodes in selected Mega Node. In the other words, the 

best effort is bounded to Mega Node capacity.

Deployment model

To deploy components, one of the Mega Nodes regarding to 

claimed requirement is selected among the list of extracted 

Mega Nodes. In each Mega Node, if all components are 

placed on single node, then, dij = 0 ; otherwise dij = 1 . Fog 

nodes in a Mega Node meet all of components resource 

requirements in terms of latency, bandwidth, and sensors. In 

this paper, we assume that all of sensors or software request 

for application components cab be shared by fog nodes asso-

ciated to Mega Node. In distribution process of application 

components on fog nodes, the computing resources, fog 

nodes distance, and QoS parameter requested for applica-

tion components must be taken into consideration. To reduce 

traffic load, the distance matrix which is used for each pair 

of fog nodes in network graph and also traffic pattern matrix 

between each pair of components must be calculated. Note 

that, communication links between fog nodes fnm and fnn 

have constant capacity in terms of latency and bandwidth. 

Therefore, traffic rate between application components is 

bounded to fog nodes’ capacity. So, this limitation is shown 

in Eq. (3).

Fig. 6  Components communication graph
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where bij and lij are favorite bandwidth and latency between 

components cmpi and cmpj . Also, parameters B
mn

 and L
mn

 

are bandwidth and latency between fog nodes fnm and fnn 

respectively. Note that, a component can be deployed on a 

fog node provided this node is active. For this reason, deci-

sion variable yfn is set to one when fog node fn is an active 

node to adopt a component. Equation (4) shows this decision 

variable.

Furthermore, the requested hardware associated to com-

ponents cannot exceed the capacity of underlying fog nodes. 

Therefore, Eq. (5) is used to show this constraints.

In Eq. (5), parameter HWfn is relevant to fog node capac-

ity in term of hardware and  hw
cmp

 is requetsed resources 

relevant to components.

As assumed all software resources are available for each 

node in Mega Node, the software limitation is drwan in 

Eq. (6).

where the term SWMega Node is software capacity of Mega 

Node and sw
cmp

 is the requested software by application 

components. Also, another constraint on requetsed sen-

sors for application components cannot exceed from Mega 

Node’s capacity in term of number of its availabe sensors. 

This is elaborated in Eq. (7).

A decision variable xcmp,fn is used to determine whether 

component cmp is placed on fog node fn or nor. Equation (8) 

is dedicated to this issue.

Furthermore, each component is only placed on one fog 

node in which Eq. (9) depicts.

(3)

∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(4)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(5)

∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(6)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node,∀Mega Node ∈ F

(7)

∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node,∀Mega Node ∈ F

(8)

xcmp,fn =

{

1 application’s cmp is placed on fog node fn

0 otherwise

(9)

∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

Problem statement

In this paper, deployment of IoT application components is 

formulated to a multi-objective optimization problem. To 

address the issue, two objective functions and problem for-

mulation are presented.

Overall latency

One of the most prominent objective functions of deploy-

ment problem is to minimize system overall latency which 

has drastic impact on average QoS degradation. So, the 

amount of latency owing to dependent components of an 

application which are placed on two different fog nodes in a 

Mega Node, is calculated via Eq. (10).

The latency between each pair of dependent components 

depends on latency between fog nodes which are hosting 

separate components. Note that, the amount of latency is 

ignored when two dependent components are placed on 

the same node. The overall latency of the system, owing to 

deployment of all applications and related components, is 

measured via Eq. (11).

Power consumption

The effective subjects on fog nodes’ power consumption are 

load of computation, communication technology, the trans-

fer data traffic volume, distance between nodes and etc. To 

calculate the power consumption of a fog node, power con-

sumption owing to both application’s components process-

ing and data transfer between nodes should be taken into 

account. Literature review proves that the power consump-

tion of a processing node has linearly relation to its resource 

utilization [42]. So, the average normalized resource utiliza-

tion associated to each fog node is measured via Eqs. (12).

where parameters W
1
 and W

2
 are two coefficients that show 

the importance of them in fog node’s power consump-

tion. Note that, their values are 0 ≤ W
1
 ≤ 1, 0 ≤ W

2
 ≤ 1, and 

W
1
 + W

2
 = 1. Since the power consumption of processing 

units outwieghts versus the main memory, the processor uti-

lization is taken for power consumption; consequently, the 

(10)
Latencymn =

∑

cmpi∈fnm

∑

cmpj∈fnn

Lmn

(11)
UApplatency =

∑

fnm,n∈Mega Node

Latencymn

(12)
URes

fni
=

W
1
⋅

∑fni

j

RCPU

Comj

RCPU

fni

+ W
2
⋅

∑fni

j

RRAM

Comj

RRAM

fni

2
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parameters are set as W
1
 = 0.9 and W

2
 = 0.1 [42]. The Eq. (13) 

measures the power consumption owing to utilized resources 

relevant to each node that hosts different components.

where parameters P
min

 and P
max

 are used to indicate the 

minimum and maximum power consumption of each pro-

cessing node in the minimum and maximum utilization con-

ditions respectively. In addition to, decision binary varibale 

yfn is used to show whether the processing node is active or 

not. Moreover, the power consumption owing to data transfer 

via communication links are obtained by Eq. (14).

The parameter P
Tr

 is of prower consumption unit for traf-

fic trasfer. Note that, this power is taken in case the compo-

nents are placed on different computing nodes. Cosequently, 

the total power consumption is obtained via Eq. (15). The 

first section is for resource utilization and the second section 

is for traffic transfering power consumption.

Problem formulation

The deployment of IoT application components by distribut-

ing over fog nodes is formulated to a multi-objective optimi-

zation problem. After definition of objective functions, this 

formulation is brought in Eqs. (16)–(24).

Subject to:

(13)PRes

fn
= yfn ×

(

P
max

− P
min

)

× URes

fn
+ P

min

(14)
PTr

fn
=

∑

fni≠fnj

tComi,Comj
× PTr

(15)Pfn = PRes

fn
+ PTr

fn

(16)
min TPC = Min

∑

fn∈F

Pfn

(17)
min UApplatency = Min

∑

fnm,n∈Mega Node

Latencymn

(18)

∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(19)

∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(20)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node, ∀Mega Node ∈ F

(21)

∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node, ∀Mega Node ∈ F

In the aforementioned problem formulation, the Eqs. (16, 

17) are objective functions to be minimized at the same time 

the constraints drawn in Eqs. (18–24) must be met. To solve 

this combinatorial optimization problem, an intricate multi-

objective optimization algorithm is presented.

Proposed MOCSA algorithm for component 
deployment problem

As the stated problem is a multi-objective optimization prob-

lem, we extend a multi-objective optimization algorithm in 

regards to two equal important objectives. A multi-objective 

optimization algorithm differs from a single objective opti-

mization algorithm because in multi-objective optimization 

algorithm a trade-off between objectives must be done. To 

this end, the dominance concept is utilized [24, 31, 42]. The 

multi-objective optimization algorithm must be conducted 

in search space to find non-dominated solutions known as 

Pareto front [31]. Regarding to the discrete nature of the 

search space associated to stated problem, the cuckoo search 

algorithm (CSA) is adopted for the sake of its performance 

and adaptation with discrete search space. The CSA was 

firstly introduced in literature by Yang and Deb [43] at year 

2009. It had successful outcome in different optimization 

domains such as in [44–46]. To solve deployment prob-

lem, a multi-objective version of CSA known (MOCSA) is 

extended which inherits strength of both CSA and NSGA-II 

algorithms [29].

The CSA mimics its behavior from cuckoo birds. This 

kind of bird has an aggressive attitude in which it even lays 

eggs in the other birds’ nests along with throwing away their 

eggs. In CSA, every egg in a nest is a candidate solution. 

When a cuckoo lays one egg in a nest in fact it produces a 

new solution. In this regards, a single objective CSA utilizes 

three rules:

At first, each cuckoo lays one egg in a randomly selected 

nest.

Secondly, better nests holding eggs (solutions) with better 

quality remain for next generation.

Thirdly, number of existing nests are fix; and a host 

nest, a cuckoo can detect strange egg with the probability 

p
a
∈ [0,1] ; in this case, the host bird can either smash the 

egg or leave the nest for constructing completely new nest 

in the new place.

(22)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(23)

∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

(24)xcmp,fn ∈ {0, 1}, yfn ∈ {0, 1}
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To construct MOCSA with k objective functions, three 

mentioned rules of canonical CSA needs to be customized 

in regards to objective functions. New rules are:

In each iteration, each cuckoo lays k eggs in a randomly 

selected nest in which the i-th egg is representative of the 

i-th objective function. In regard to similarity and discrep-

ancy between eggs, each nest is left with probability  p
a
 

and the new nest is constructed with k new eggs. In addi-

tion to, some operations can be defined to permute search 

space efficiently. Mathematically, the first rule can utilize 

Random Walk or Levy flight approaches (c.f. Eqs. (25, 26) 

to uniformly permute (traverse) search space for generating 

new solutions. The second rule is an elitism based approach 

so that better solutions remain in next generation. In this 

line, selection of better solutions generates the suitable 

convergence of algorithm. The third rule can be taken as a 

mutation approach so the worse solutions are probabilisti-

cally omitted and the new solutions are generated in regards 

to similarities the solutions with other solutions. This muta-

tion approach is done by vector operator via combined Levy 

flight and quality differential of solutions. Figure 7 draws 

block diagram of proposed algorithm.

This algorithm receives problem specifications and 

execution’s settings as input such as information about 

requested resources for applications, number of components 

and their communication details, number of fog nodes and 

associated network information, number of initial solutions, 

and number of maximum iterations. Then, it returns a set of 

non-dominated solutions as deployment plans.

Fig. 7  Block diagram of pro-

posed algorithm
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Problem encoding

One of the most important issues in CSA algorithm is the 

concept of nest which is a candidate solution. Encoding on 

nest has intensive impact on algorithm performance. There 

are miscellaneous encoding viewpoint for different prob-

lems. The art is to find the most appropriate one. Each nest 

is a possible solution for IoT application components deploy-

ment on fog nodes. A nest contains |M| number of eggs each 

of which is representative of a component. The number 

assigned to each egg is drawn from [1...|N|] interval which 

indicates the fog node number hosting that component. Fig-

ure 8 depicts encoding of an example for deployment of 10 

components on 3 fog nodes.

Proposed MOCSA

In single objective optimization cuckoo search algorithm, 

the population is partitioned into two superior and inferior 

nests with predetermined probability based on their fitness 

value. In the other words, the determined parameter Pa is the 

fraction of population which are placed in the inferior nests 

whereas the rest are placed in the superior nests after sorting 

population based on their fitness values. In each generation, 

iteration, the algorithm works in two stages. At first stage, 

for each individual of inferior nests, each new position is 

generated by Levy Flight distribution; then, the old individ-

ual is directly constituted by the new generated one. At the 

second stage, for each individual in superior nests, each new 

position is generated by Levy Flight distribution; if the new 

generated individual is better than the old version in term of 

fitness value, the old version is substituted by the new gener-

ated one. Since the multi-objective optimization algorithm 

differs from a single objective, we have customized CSA to 

MOCSA algorithm to gain non-dominated solutions. The 

general behavior is the same, but the differences are in the 

ranking and partitioning processes. For ranking, we utilize 

non-dominated and crowding distance concepts. Once it is 

needed to partition population into two parts, we utilize non-

dominated sorting strategy based on Algorithm 6; then from 

the worst ranking to best ranking, the solutions are directly 

copied to inferior nests; in this direction according to the 

probability Pa, if the solutions associated to the k-th rank-

ing value overflows the inferior nests, the crowding distance 

values are considered. In the other words, the rest individu-

als with the worst crowding distance values are selected to 

be copied to fulfill the rest of inferior nests. Afterwards, the 

rest populations are copied to superior nests. It is worth men-

tioning that, in the second stage when the new individual 

is generated for each individual in the superior nests, if the 

new individual dominates the old version in regards to two 

objective functions, the old individual is substituted by the 

new generated solution.

The proposed MOCSA algorithm is elaborated in Algo-

rithm 1 which deploys IoT application components efficiently 

on fog nodes in regards to objective functions. As mentioned 

earlier, Algorithm 1 receives the problem specifications as 

input and returns non-dominated solutions in regards to two 

prominent objective functions. It is iterated until the termi-

nation criterion is met. Here, the condition of termination 

is to execute MaxIteration times. Before the Algorithm 1 

starts in its main loop which is between lines 14 through 

27, it performs preprocessing stages. Algorithms 2 and 3 are 

dedicated to extract Mega Nodes and desired Mega Nodes 

which are explained in preprocessing stages. New solutions 

are generated in line 5 from extracted desired Mega Nodes. 

In line 7, Algorithm 4 is called to check and correct infeasible 

solutions. Then, the associated Data Structure is updated in 

line 8. Algorithm 5 is called to assign two fitness values to 

each individual based on Eqs. (16, 17) since it is a multi-

objective problem. The main loop of proposed MOCSA starts 

in line 14 and ends in line 27. In the proposed algorithm in 

each generation the population is partitioned into two inferior 

and superior nests. As explained earlier, the main loop runs 

two stages. At first, the worst solutions in inferior nests are 

updated and at the second stage the better solutions in supe-

rior nests are updated provided the new generated solutions 

dominate the old version otherwise no update is done. In line 

9, all fitness values associated to all solutions are assigned 

by calling Algorithm 5. In lines 10–11 the Algorithms 6–7 

are called to make Pareto fronts and crowding distance for 

current solutions. In the main loop, Pa percent of solutions 

associated to the worst ranking is copied in the inferior nests 

by utilizing Pareto front and crowding distance values and the 

rest is copied to superior nests. Before algorithm plummets 

into the main loop, in line 12 the current solutions are sorted 

based on ranking concepts. Then, the first ranking solutions 

are kept in Pareto-Set repository in line 13. As mentioned 

 

Eggs(components) cmp1 cmp2 cmp7 cmp8 cmp4 cmp6 cmp9 cmp3 cmp5 cmp10

Fog Nodes n1 n2 n3

cmp1 cmp2 cmp3 cmp4 cmp5 cmp6 cmp7 cmp8 cmp9 cmp10
Nest 1 1 3 2 3 2 1 1 2 3

Fig. 8  An example for deployment encoding and associated Nest
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earlier, in line 15, the Algorithm 8 is called to update solu-

tions in inferior nests; afterwards, the second stage is started 

where the solutions pertained to superior nests are to be 

updated. If the new changes dominate the old version, the 

old version is substituted by the new generated solution in 

superior nests. This change is done by calling Algorithm 9 

in line 16. In line 17, Algorithm 4 is called to check and 

correct infeasible solutions. Then, the associated Data Struc-

ture is updated in line 18. In line 19, the fitness values of 

all updated solutions are calculated by calling Algorithm 5; 

then, the non-dominated solutions and crowding distance are 

calculated by calling Algorithms 6 and 7 respectively. The 

current solution is then sorted by their rank values. The tem-

porary solutions are made by merging the current solutions 

and the last Pareto-Set values. The temporary solutions are 

sorted based on rank values. From the first ranking to the 

last are copied to the current solutions variable by consider-

ing crowding distance values if needed. In addition, the first 

rank is directly copied in Pareto-Set variable. After the last 

iteration is done. The final values in Pareto-Set containing the 

first ranking solutions of the last operation is return as final 

non-dominated solutions.

MOCSA
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Preprocessing

In this stage, the preprocessing is performed to extract 

desired Mega Nodes. Algorithm 2 selects different Mega 

Nodes from input fog network. The Mega Node character-

istics was clarified earlier which is abstracted to clique in 

graph theory. It returns all cliques with K-nodes. Mega Node 

extraction brings some merits; firstly the search space reduc-

tion for finding optimal deployment plan; secondly, provid-

ing common sensors and software associated to Mega Node 

for requested components. In Algorithm 2, in the while-loop 

between lines 3 through 11, firstly all nodes which are con-

nected are extracted; each pair of connected nodes is placed 

in a row in Mega_Nodes array. In lines 13 through 20, in 

the for-loop, each fog node i is compared with each row in 

Mega_Nodes array that does not containing node i. If node 

i is connected with all nodes in that row, then the node i is 

added to that row. In each iteration, the repeated row is omit-

ted. The main loop is iterated until the last array of Mega_

Nodes which contains the set of Mega Nodes is delivered.

After Mega Nodes extraction, some Mega Nodes are 

selected by Algorithm 3 in regards to meeting of constraints 

in Eqs. (18–21) in the stated problem. In this algorithm, if 

latency and bandwidth are provisioned by the Mega Node 

in the current row, then, Latency_BW_status variable is set 

to true. In addition to, if hardware, software, and sensors 

can be provided by the current Mega Node, the amount of 

HW_Status, SW_Status, and S_Status are set to true. If a 

current Mega Node can fulfill all required resources, it is 

added to selected Mega Node list.
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The termination criterion of Algorithm 2 is the num-

ber of desired clique size (K). In the other words, the main 

loop is iterated K times. Since the effective statements of 

Algorithm 2 are in the while-loop, its time complexity is O 

(K∙N2 ) where K < N. Also, Algorithm 3’s time complexity 

is O (N + M) because the main work is done in the for-loop 

between lines 1 through 9.

Initialization step

Similar to other meta-heuristic algorithms, the CSA 

starts with initialization phase in which line 5 of Algo-

rithm 1 performs this. It randomly generates individuals 

from search space. To reduce MOCSA’s time complex-

ity, the value domain of eggs are confined to the proposed 

encoding approach. Since some solutions may violate 

problem constraints during the individual productions, the 

Check&Correct algorithm is designed which Algorithm 4 

shows. Indeed, Algorithm 4 is presented to exploit maxi-

mum benefit from produced population for utilizing them 

in optimal solutions.
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fitness functions in regards to problem’s objective func-

tions. In this paper, fitness function is adjusted based on 

total power consumption and overall latency which are in 

Eqs. (16) and (17). The proposed fitness function is depicted 

in Algorithm 5.

Time complexity of Algorithm  4 is O (N∙PopSize) 

because two nested for-loop are the most effective 

statements.

Fitness function

Generally, one of the most important things in evolution-

ary computation is to evaluate solutions. This is done by 
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It is clear-cut that its time complexity of Algorithm 5 is 

O (PopSize).

Non-dominated sorting

In multi-objective optimization algorithms the goal is to 

omit unfavorable solutions and to select superlative solu-

tions with special strategy in such a way that solutions in 

lower levels are omitted at the same time the better solutions 

are remained until the final solution is obtained step by step. 

In the proposed MOCSA, we apply non-dominated sorting 

algorithm to find Pareto front. This algorithm investigates 

the state of current solutions in term of dominance concept 

regarding to objective functions. In fact, it classifies solu-

tions in different Pareto levels so that all solutions in the 

same ranking level cannot dominate each other whereas the 

solutions in upper levels dominate solutions in downer level. 

The favorable non-dominated solutions belong to the first 

ranking level. Algorithm 6 finds non-dominated solutions.
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Since the effective statements of Algorithm 6 are in 

nested For-loop, its time complexity is O ( PopSize2).

Crowding distance

Finding efficient solutions strongly depends on the strategy 

that the algorithm takes. The best strategy must be con-

ducted in such a way that explore search space efficiently. 

More distribution in search space, more contingent to gain 

better and logical solutions. Diverse solutions in larger dis-

trict are preferable against denser solutions in smaller region 

the reason why we apply crowding distance algorithm to 

investigate solutions in term of density in a district search 

area. This way avoids to integrate solutions locally. Algo-

rithm 7 elaborates crowding distance procedure.

It is clear that the time complexity of Algorithm 7 is O 

(PopSize).

Inferior nests update

In this process, the fraction of worse solutions by probabil-

ity Pa are detected and amended. This operation is similar 

to mutation in GA [43–46]. Since our algorithm works in 

multi-objective domain, the worst solutions are selected 

from the worst ranking frontier; also, the crowding distance 

is called where needed. The modification of worse solutions 

are done by walking around approach. Algorithm 8 is dedi-

cated to do so. In line 4, the invalid solutions are amended. 

Then, updated solutions as new solutions are returned.
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Time complexity of Algorithm 8 is θ (Pa∙PopSize); there-

fore is O (PopSize) because of its only one for-loop and the 

fact that Pa < 1.

Superior nests possibly updates

To produce next generation solutions, the elitism mecha-

nism is applied so the better solutions are transferred to the 

next generation. The favorable trait of each meta-heuristic 

algorithm is how to make balance between exploration and 

exploitation in search space, but some of them fail to make a 

balance; for instance, PSO suffers from earlier convergence 

[24, 25] or simulated annealing (SA) suffers from not to be 

strong in exploration phase [26–28]. Fortunately, our pro-

posed MOCSA makes a good adjustment between exploita-

tion and exploration. Once it exchanges a random solution 

with the best so far if it is better, it tries in exploitation phase 

such as in Algorithm 9. For exploration, it utilizes uniform 

distribution in search space to explore search space glob-

ally such as in Algorithm 8. A prominent part of CSA is to 

utilize Levy Flight for both local and global searching; it 

uses random walk which is characterized by probabilistically 

instantaneous jumping in search space [47]. To do so, by 

utilizing Levy Flight approach [44], the new generation indi-

viduals are produced in line 2; if each new generated indi-

vidual dominates the previous generation individual then the 

old generation is substituted by new one. It is well depicted 

in lines 4–6 of Algorithm 9. As the obtained values in new 

solutions are continuous, these values are amended commen-

surate with the problem conditions in line 3 of Algorithm 9. 

Table 3  Different scenarios of 

simulation
Scenarios # 1 2 3 4 5 6 7 8

Fog nodes # 10 15 20 25 40 55 70 100

Appcmp # 20 25 30 40 60 75 100 150

Table 4  Fog nodes resources

FN# 1 2 3 4 5

CPU(GHz) 1.02 1.15 1.38 1.46 1.06

RAM(GB) 1.3 1.6 1.2 1.4 1.3

CPU_Thr 0.98 0.93 0.96 0.94 0.92

RAM_Thr 1.00 0.99 0.91 0.92 0.98

P_min 94 82 99 81 91

P_max 133 132 133 147 142

Sensor 1.2 1.2 1.2 2 0

Software 0 1.2 2 0 1.2

P_tr 0.2 0.2 0.2 0.1 0.1

Table 5  Bandwidth between fog nodes

FN# 1 2 3 4 5

1 1 0.98 0.80 0.89 0.97

2 0.84 1 0.82 0.94 0.92

3 0.93 0.94 1 0.97 0

4 0.88 0.92 0.91 1 1.00

5 0.92 0.99 0 0.90 1

Table 6  Latency between fog nodes

FN# 1 2 3 4 5

1 0 0.17 0.19 0.10 0.10

2 0.12 0 0.10 0.11 0.18

3 0.18 0.14 0 0.12 1

4 0.16 0.19 0.14 0 0.14

5 0.11 0.14 1 0.16 0

Table 7  Resource requested for application components

Appcmp# 1 2 3 4 5

CPU 0.15 0.19 0.24 0.26 0.29

RAM 0.2 0.2 0.1 0.2 0.1

Sensors 1 0 2 0 2

Software 0 1 0 1.2 1

Table 8  Bandwidth requested for application components

Appcmp# 1 2 3 4 5

1 1 0 0 0 0

2 0 1 0.33 0 0.32

3 0 0 1 0.31 0.20

4 0 0 0 1 0.39

5 0 0 0 0 1

Table 9  Latency requested for application components

Appcmp# 1 2 3 4 5

1 0 1 1 1 1

2 0 0 0.20 1 0.28

3 0 0 0 0.24 0.21

4 0 0 0 0 0.20

5 0 0 0 0 0
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Then, the new obtained solution is added to the list of next 

generation solutions.

different fog nodes. Furthermore, the Pareto front relevant 

to each algorithm are compared. Also, final deployment that 

MOCSA gives is dawn.

Note that, Mirjalili et al. [33] in year 2016 added two 

new modules to canonical GWO algorithm to make multi-

objective version of GWO algorithm. The first is Archive 

module that is used to save non-dominated solutions so far 

and the second is for leader wolf to select alpha, beta, and 

delta wolves; this is used for updating position of omega 

wolves in the course of optimization. The aforementioned 

features are utilized to keep current solutions and gradually 

update them toward final Pareto front. In this line, Coello 

et al. [30] proposed MOPSO which utilizes history record 

for saving the best solution experienced by an particle and 

save it for non-dominated solutions of previous rounds. This 

mechanism works similar to elitism of evolutionary compu-

tation. It also use a global repository so that each particle 

keeps experience during its flight. This repository is used 

for leader selection to guide other particles in search space. 

Accordingly, each particle can select different leaders. The 

MOPSO works based on generating different hypercube 

which divide search space in several sections [30]. One of 

the most successful meta-heuristic algorithm is bat optimiza-

tion algorithm (BOA) which was firstly introduced by Yang 

[48] in 2010. Afterwards, in 2011, he proposed multi-objec-

tive bat optimization algorithm by incorporating dominance 

concepts to solve multi-objective optimization problems 

[32]. One of the famous and applicable multi-objective opti-

mizer which is based on genetic algorithm is NSGA-II that 

was firstly introduced by Deb et al. [29] in 2002. NSGA-II 

generates population then calls fast non-dominated sorting 

algorithm to place solutions in different ranks. All solutions 

In line 2, Algorithm 9 produces a number y as a random 

nest number from Levy distribution based on Eq. (25).

where the variable u is a uniform variable in [0...1] inter-

val and the parameter � is obtained by Eq. (26).

where the parameter G is the generation number [44]. 

After that, line 3 updates the obtained solutions according 

to boundary of problem domain. Time complexity of Algo-

rithm 9 is O(PopSize) because of its only for-loop.

Simulation and evaluation

To assess the effectiveness of proposed MOCSA algorithm 

in solving multi-objective optimization problem of compo-

nents deployment on fog nodes, experiments are defined, 

executed and evaluated. To reach concrete results different 

scenarios are conducted. Also, the performance of proposed 

MOCSA is compared with four prominent and successful 

multi-objective optimization algorithms, namely, MOGWO 

[33], MOPSO [30], MOBA [32] and NSGA-II [29]. In this 

comparison, the evaluation metrics are total power consump-

tion and overall latency which are relevant to stated prob-

lem’s objective functions. As mentioned earlier, the total 

power consumption is sum of processing power consumption 

owing to resource utilization and power consumption owing 

to data transfer between fog nodes via communication links. 

In addition to, the overall latency is sum of latency obtained 

from communication components which are placed on 

(25)y = (1 − u)
−

1

�

(26)� = G
1∕6

For Each Solution [i] in Solutions do 
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in the same rank cannot dominate each other, but they can 

dominate the solutions placed in lower ranks. By utilizing 

canonical crossover and mutation, the new generated solu-

tions may dominate the solutions associated to previous 

solutions. In this case, the dominated solutions are omitted. 

This procedure is repeated until the termination criteria is 

met. Finally, the non-dominated solution of the first rank is 

returned.

Experimental settings

To evaluate the proposed approach, different scenarios are 

conducted in which the number of requested components 

and fog nodes increase gradually. Table 3 elaborates sce-

narios in details. Note that, the scenarios (5–8) are defined 

for scalability testing of comparative algorithms where the 

size of inputs are significantly increased. All experiments are 

executed on a dual core Intel Corei3 380 M platform with 

2.53 GHZ clock rate, four logical processors, and 8 GB as 

main memory.

Since fog computing is ad-hoc and there is not abun-

dant datasets in literature, we produce dataset by uniform 

distribution fashion such as in Tables 4, 5, 6, 7, 8 and 9. In 

addition to, the fog is completely heterogeneous in terms 

of resources and their speed the reason why we consider 

fluctuations in produced dataset. Tables 4, 5 and 6 gives 

underlying fog computing specifications for an example with 

5 fog nodes. In this regards, Table 4 shows fog nodes speci-

fications in terms of CPU clock rate, main memory and their 

threshold, minimum and maximum power consumption (idle 

vs full-loaded), kind of supported sensors and software, and 

power consumption of data transfer. In this table, the zero 

value indicates lack of support. The value 1 and 2 indicates 

the type of sensors. Tables 5 and 6 show bandwidth and 

latency between direct communications of fog nodes. The 

values was normalized in [0...1] interval. In Table 5, the 

value zero means that there is not any connection between 

nodes whereas the value one indicates the nodes are the 

same; this concept is reverse in Table 6.

In this regards, Tables 7, 8, and 9 draw an example of 

resources requested for applications containing 5 different 

components. Table 7 is used for CPU, RAM, kind of sen-

sors, and software requests for components. Table 8 is used 

for bandwidth requested for each pair of components. Also, 

Fig. 9  Performance comparison of different algorithms in scenario with 20 components on 10 fog nodes
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Table 9 is utilized for the least latency tolerable between 

each pair of components.

For simulations and comparisons, parameter settings 

of algorithms MOCSA, MOGWO, MOPSO, MOBA, and 

NSGA-II are brought in Table 10.

Experimental results

In this section, the comparison between proposed MOCSA 

and other algorithms are based on Pareto front, two objective 

functions values, and elapsed time. Also, we utilize another 

versions of MOGWO algorithms known as MOGWO-I. In 

the second version, two operators crossover and mutation 

of genetic algorithm are applied for exploring the search 

space. In addition to, optimal deployment plan is drawn and 

the hosting node of application components is drawn in red 

color.

First scenario: 10 fog nodes and 20 application components

Figure 9 demonstrates performance comparison of differ-

ent algorithms in a scenario with 20 requested components 

to be placed on 10 underlying fog nodes. Figure 9a draws 

Pareto frontiers derived from different algorithms. As this 

figure shows, MOCSA outperforms against others. Mega 

Node which MOCSA extracts is depicted in Fig. 9b; it shows 

the optimal deployment plan and the selected fog nodes are 

1, 4, 5, 9, and 10. In addition to, Fig. 9c and d depict com-

parison of different algorithms’ performance in terms of the 

first objective (total power consumption based on Eq. (16)) 

and the second objective (overall latency based on Eq. (17)).

Table 11 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

second place after MOPSO that is the fastest between all, 

but the quality of non-dominated solutions of MOCSA are 

better than others.

Second scenario: 15 fog nodes and 25 application 

components

Figure 10 demonstrates performance comparison of different 

algorithms in a scenario with 25 requested components to be 

placed on 15 underlying fog nodes. Figure 10a draws Pareto 

frontiers derived from different algorithms. As this figure 

shows, MOCSA outperforms against others. Mega Node 

which MOCSA extracts is depicted in Fig. 10b; it shows the 

optimal deployment plan and the selected fog nodes are 3, 

5, 9, 10, and 13. In addition to, Fig. 10c and d depict com-

parison of different algorithms’ performance in terms of the 

first objective (total power consumption based on Eq. (16)) 

and the second objective (overall latency based on Eq. (17)).

Table 12 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

second place after MOPSO that is the fastest between all, 

but the quality of non-dominated solutions of MOCSA are 

better than others. In term of execution time, the proposed 

MOCSA competes marginally with NSGA-II that is in the 

third place.

Third scenario: 20 fog nodes and 30 application 

components

Figure 11 demonstrates performance comparison of differ-

ent algorithms in a scenario with 30 requested components 

to be placed on 20 underlying fog nodes. Figure 11a draws 

Pareto frontiers derived from different algorithms. As this 

figure shows, MOCSA outperforms against others. Mega 

Node which MOCSA extracts is depicted in Fig. 11b; it 

shows the optimal deployment plan and the selected fog 

nodes are 6, 7, 11, 16, and 17. In addition to, Fig. 11c and d 

depict comparison of different algorithms’ performance in 

terms of the first objective (total power consumption based 

on Eq. (16)) and the second objective (overall latency based 

on Eq. (17)).

Table 13 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

third place after MOPSO and NSGA-II that are the fastest 

and the second fastest between all, but the quality of non-

dominated solutions of MOCSA are better than others.

Fourth scenario: 25 fog nodes and 40 application 

components

Figure 12 demonstrates performance comparison of differ-

ent algorithms in a scenario with 40 requested components 

to be placed on 25 underlying fog nodes. Figure 12a draws 

Pareto frontiers derived from different algorithms. As this 

figure shows, MOCSA outperforms against others. Mega 

Node which MOCSA extracts is depicted in Fig. 12b; it 

shows the optimal deployment plan and the selected fog 

nodes are 1, 4, 7, 9, 11, 16 and 21. In addition to, Fig. 12c 

and d depict comparison of different algorithms’ perfor-

mance in terms of the first objective (total power consump-

tion based on Eq. (16)) and the second objective (overall 

latency based on Eq. (17)).

Table 14 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

third place after NSGA-II and MOPSO that is the fastest and 

second fastest between all, but the quality of non-dominated 

solutions of MOCSA are better than others.

Table 11  Performance comparison of algorithms in term of elapsed 

time

MOCSA 238.41 s MOGWO 266.4 s MOBA 548.98 s

MOPSO 210.2 s MOGWO-I 985.56 s NSGA-II 276.07 s
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Fifth scenario: 40 fog nodes and 60 application components

Figure 13 demonstrates performance comparison of different 

algorithms in a scenario with 60 requested components to be 

placed on 40 underlying fog nodes. Figure 13a draws Pareto 

frontiers derived from different algorithms. As this figure 

shows, MOCSA outperforms against others. Mega Node 

which MOCSA extracts is depicted in Fig. 13b; it shows 

the optimal deployment plan and the selected fog nodes are 

1, 2,  3, 7, 9, 12, 14, 15, 16, 19, 24, 28, 31, 33 and 37. In 

addition to, Fig. 13c and d depict comparison of different 

algorithms’ performance in terms of the first objective (total 

power consumption based on Eq. (16)) and the second objec-

tive (overall latency based on Eq. (17)).

Table 15 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

Fig. 10  Performance comparison of different algorithms in scenario with 25 components on 15 fog nodes

Table 12  Performance comparison of algorithms in term of elapsed 

time

MOCSA 269.77 s MOGWO 293.16 s MOBA 301.02 s

MOPSO 241.55 s MOGWO-I 1156.3 s NSGA-II 270.01 s
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second place after MOPSO that is the fastest between all, but 

the quality of non-dominated solutions of MOCSA are better 

than others. In term of execution time, the proposed MOCSA 

competes marginally with NSGA-II that is in the third place.

Sixth scenario: 55 fog nodes and 75 application 

components

Figure 14 demonstrates performance comparison of different 

algorithms in a scenario with 75 requested components to be 

placed on 55 underlying fog nodes. Figure 14a draws Pareto 

frontiers derived from different algorithms. As this figure 

shows, MOCSA outperforms against others. Mega Node 

which MOCSA extracts is depicted in Fig. 14b; it shows the 

optimal deployment plan and the selected fog nodes are 3, 

6, 8, 9, 22, 24, 28, 29, 31, 32, 39, 43, 45 and 55. In addition 

to, Fig. 14c and d depict comparison of different algorithms’ 

performance in terms of the first objective (total power con-

sumption based on Eq. (16)) and the second objective (over-

all latency based on Eq. (17)).

Table 16 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

second place after NSGA-II that is the fastest between all, 

but the quality of non-dominated solutions of MOCSA are 

better than others. In term of execution time, the proposed 

MOCSA competes marginally with MOPSO that is in the 

third place.

Seventh scenario: 70 fog nodes and 100 application 

components

Figure 15 demonstrates performance comparison of differ-

ent algorithms in a scenario with 100 requested components 

Fig. 11  Performance comparison of different algorithms in scenario with 30 components on 20 fog nodes

Table 13  Performance comparison of algorithms in term of elapsed 

time

MOCSA 298.03 s MOGWO 332.02 s MOBA 342.39 s

MOPSO 275.62 s MOGWO-I 1264.3 s NSGA-II 290.87 s
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to be placed on 70 underlying fog nodes. Figure 15a draws 

Pareto frontiers derived from different algorithms. As this 

figure shows, MOCSA outperforms against others. Mega 

Node which MOCSA extracts is depicted in Fig. 15b; it 

shows the optimal deployment plan and the selected fog 

nodes are 8, 10, 13, 17, 18, 19, 20, 24, 30, 35, 38, 39, 40, 42, 

45, 49, 51, 52, 53, 58, 64 and 66. In addition to, Fig. 15c and 

d depict comparison of different algorithms’ performance in 

terms of the first objective (total power consumption based 

on Eq. (16)) and the second objective (overall latency based 

on Eq. (17)).

Table 17 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

second place after NSGA-II that is the fastest between all, 

but the quality of non-dominated solutions of MOCSA are 

better than others. In term of execution time, the proposed 

MOCSA competes marginally with MOPSO that is in the 

third place.

Eighth scenario: 100 fog nodes and 150 application 

components

Figure 16 demonstrates performance comparison of different 

algorithms in a scenario with 150 requested components to 

be placed on 100 underlying fog nodes. Figure 16a draws 

Fig. 12  Performance comparison of different algorithms in scenario with 40 components on 25 fog nodes

Table 14  Performance comparison of algorithms in term of elapsed 

time

MOCSA 446.99 s MOGWO 463.06 s MOBA 469.16 s

MOPSO 401.48 s MOGWO-I 1804.02 s NSGA-II 379.46 s



387Complex & Intelligent Systems (2022) 8:361–392 

1 3

Pareto frontiers derived from different algorithms. As this 

figure shows, MOCSA outperforms against others. Mega 

Node which MOCSA extracts is depicted in Fig. 16b; it 

shows the optimal deployment plan and the selected fog 

nodes are 1, 9, 16, 17, 19, 21, 24, 28, 39, 40, 51, 53, 56, 

57, 59, 60, 62, 63, 65, 72, 73, 78, 84, 86, 88, 89 and 93. In 

addition to, Fig. 16c and d depict comparison of different 

algorithms’ performance in terms of the first objective (total 

power consumption based on Eq. (16)) and the second objec-

tive (overall latency based on Eq. (17)).

Table 18 compares algorithms’ performance in term of 

elapsed time. This Table shows that MOCSA falls in the 

second place after NSGA-II that is the fastest between all, 

but the quality of non-dominated solutions of MOCSA are 

better than others. In term of execution time, the proposed 

MOCSA competes marginally with MOBA that is in the 

third place.

For the sake of data analysis statistically, the proposed 

MOCSA outperforms 43%, 28%, 41%, 30% and 32% 

improvement against MOGWO, MOGWO-I, MOPSO, 

MOBA and NSGA-II in term of average reduction in power 

consumption; also, in the minimum value gained by solu-

tions, the proposed MOCSA outperforms 26%, 36%, 23%, 

39% and 43% improvement against MOGWO, MOGWO-

I, MOPSO, MOBA and NSGA-II in term of minimum 

Fig. 13  Performance comparison of different algorithms in scenario with 60 components on 40 fog nodes

Table 15  Performance comparison of algorithms in term of elapsed 

time

MOCSA 666.82 s MOGWO 760.19 s MOBA 743.96 s

MOPSO 659.77 s MOGWO-I 3401.5 s NSGA-II 676.16 s
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value of power consumption. In addition to, the proposed 

MOCSA outperforms 42%, 29%, 46%, 13% and 5% improve-

ment against MOGWO, MOGWO-I, MOPSO, MOBA and 

NSGA-II in term of average reduction in overall latency; 

also, in the minimum value gained by solutions, the pro-

posed MOCSA outperforms 40%, 33%, 37%, 17% and 6% 

improvement against MOGWO, MOGWO-I, MOPSO, 

MOBA and NSGA-II in term of minimum value of overall 

latency.

Time complexity

Now that, time complexity of all sub algorithms have been 

determined, the time complexity of Algorithm 1 is now 

calculated. The preprocessing takes K∙N
2+M + N which 

belongs to O(M + K∙N2 ). Also, the main loop iterates Max-

Iteration times. For the main loop, we have MaxIteration 

×(N∙PopSize + PopSize2 ). If we consider N < PopSize, 

Algorithm  1’s time complexity is O(M + K.N2 + Max-

Iteration∙PopSize2 ) which is relatively acceptable time 

complexity.

Fig. 14  Performance comparison of different algorithms in scenario with 75 components on 55 fog nodes

Table 16  Performance comparison of algorithms in term of elapsed 

time

MOCSA 835.23 s MOGWO 1024.2 s MOBA 1072.8 s

MOPSO 867.71 s MOGWO-I 3690.06 s NSGA-II 770.96 s
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Conclusion and future direction

In this paper, an algorithm for the deployment of IoT appli-

cation components on fog nodes has been presented to meet 

reliable deployment for user requests. To address this issue, 

this deployment problem was modeled to a multi-objective 

optimization problem with total power consumption and 

overall latency perspectives. To solve this combinatorial 

optimization problem, a multi-objective optimization algo-

rithm based on cuckoo search meta-heuristic algorithm 

known MOCSA was extended. To reach concrete results, 

different scenarios were conducted and the effectiveness 

of proposed MOCSA was compared with well-reputed 

meta-heuristic algorithms MOGWO, MOPSO, MOBA, 

and NSGA-II in fair experimental conditions. The results 

obtained from simulations prove the significant superiority 

of proposed algorithm in terms of average overall latency 

and average total power consumption against other state-

of-the-arts in objective functions. The merit of the current 

paper is to deliver users reliable services along with meeting 

objective functions. Also, the simulation proved the pro-

posed MOCSA is potentially scalable. The limitation of the 

current work is to know the resource request in advance. 

For future work, we intend to present a dynamic model for 

mobile IoT applications in chain of fog computing nodes 

with QoS and economic perspectives to reach equilibrium 

in desired objectives.

Fig. 15  Performance comparison of different algorithms in scenario with 100 components on 70 fog nodes

Table 17  Performance comparison of algorithms in term of elapsed 

time

MOCSA 1139.4 s MOGWO 1769.6 s MOBA 1299.9 s

MOPSO 1236.2 s MOGWO-I 4552.2 s NSGA-II 1082.1 s
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