
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:361–392

https://doi.org/10.1007/s40747-021-00368-z

ORIGINAL ARTICLE

Multi-objective fault-tolerant optimization algorithm for deployment
of IoT applications on fog computing infrastructure

Yaser Ramzanpoor1 · Mirsaeid Hosseini Shirvani2 · Mehdi Golsorkhtabaramiri1

Received: 24 November 2020 / Accepted: 1 April 2021 / Published online: 6 May 2021

© The Author(s) 2021

Abstract

Nowadays, fog computing as a complementary facility of cloud computing has attracted great attentions in research com-

munities because it has extraordinary potential to provide resources and processing services requested for applications at the

edge network near to users. Recent researchers focus on how efficiently engage edge networks capabilities for execution and

supporting of IoT applications and associated requirement. However, inefficient deployment of applications’ components

on fog computing infrastructure results bandwidth and resource wastage, maximum power consumption, and unpleasant

quality of service (QoS) level. This paper considers reduction of bandwidth wastage in regards to application components

dependency in their distributed deployment. On the other hand, the service reliability is declined if an application’s compo-

nents are deployed on a single node for the sake of power consumption management viewpoint. Therefore, a mechanism for

tackling single point of failure and application reliability enhancement against failure are presented. Then, the components

deployment is formulated to a multi-objective optimization problem with minimization perspective of both power consump-

tion and total latency between each pair of components associated to applications. To solve this combinatorial optimization

problem, a multi-objective cuckoo search algorithm (MOCSA) is presented. To validate the work, this algorithm is assessed

in different conditions against some state-of the arts. The simulation results prove the amount 42%, 29%, 46%, 13%, and 5%

improvement of proposed MOCSA in terms of average overall latency respectively against MOGWO, MOGWO-I, MOPSO,

MOBA, and NSGA-II algorithms. Also, in term of average total power consumption the improvement is about 43%, 28%,

41%, 30%, and 32% respectively.

Keywords Internet of things (IoT) · Fog computing · Fault tolerance · Traffic-aware deployment · Component deployment

Introduction

Recently, fog computing joint with cloud computing to

cover its deficit such as intrinsic latency and to serve dif-

ferent industries. Since a fog server can process data gath-

ered by IoT devices independently from cloud computing,

it can efficiently save network communication bandwidth,

cloud storage space, and reserving resources for mission-

critical applications [1]. Also, fog supports unifying edge

and cloud resources for customers. Fog computing facilitates

deployment of IoT applications in vicinity of source data.

Therefore, it reduces network load and guarantees on-time

service delivery. However, deployment, management, and

updating of IoT application lead new challenges in such lay-

ered environment. Fog computing in larger scale includes

numerous heterogeneous computing nodes with separate

processing, memory, and storage. In addition to, workload

on each node is completely dynamic. Also, each IoT appli-

cation has its own requirement in terms of sensitivity on

latency, computing requirement, and privacy constraints.

Therefore, the deployment of application components must

be properly done on fog nodes; at the same time the applica-

tion requirement, software and hardware features, bandwidth

and tolerable latency between components on fog infra-

structure must be taken into account [2]. Deployment of an

application components on a single node yields maximize

resource utilization, decrease in power consumption, and

optimizing network bandwidth as well. Nevertheless, when

 * Mirsaeid Hosseini Shirvani

 mirsaeid_hosseini@yahoo.com;

mirsaeid_hosseini@iausari.ac.ir

1 Department of Computer Engineering, Babol Branch,

Islamic Azad University, Babol, Iran

2 Department of Computer Engineering, Sari Branch, Islamic

Azad University, Sari, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00368-z&domain=pdf

362 Complex & Intelligent Systems (2022) 8:361–392

1 3

a fog node which hosts all of the components associated with

an application crashes, the application cannot work properly

in which it affects the reliability of customer applications.

For this reason, it is clear-cut to take an efficient policy for a

suitable and reliable components deployment scheme.

There are miscellaneous mapping possibilities in distri-

bution of application components on fog nodes in which

one of the most appropriate and optimal amongst them

should be selected. For a small application with low num-

ber of components, there are several feasible solutions to

deploy components on different fog nodes. Therefore, with

the increase the number of application components and the

number of fog nodes regarding to its heterogeneity, finding

the optimal deployment scheme is computationally com-

plex and there is not any exact solution for this. So, this

problem belongs to NP-Hard class [3]. Recently, researches

have been done in literature in regards to component distri-

bution over fog and cloud computing nodes. A unified fog

computing platform was proposed by Hong et al. [4] in year

2018 for dynamic component deployment on fog devices.

In their proposed approach, it paid on distribution of com-

ponent over more than one fog node to avoid single point of

failure. Another algorithm for distribution of IoT applica-

tion components with regards to application sensitivity on

latency and efficient network resource usage viewpoints has

been proposed by Taneja et al. [5] in year 2017. A general

and extensible description model was proposed to specify

QoS-aware IoT application deployment on fog infrastructure

proposed by Brogi et al. [6] in 2017. Review on literature

reveals that there are clear lack in component placement

of IoT applications with two different viewpoints at the

same time. In the other words, this paper presents power-

aware and latency-aware algorithm for reliable component

deployment on fog infrastructure. The former awareness is

for provider as a prominent stakeholder and latter aware-

ness is considered for service customer as another promi-

nent stakeholder side viewpoints. To this end, this paper

presents two new models in IoT-Fog environment in regards

to application modules deployment viewpoint. The accurate

models indicate whether the proposed algorithm is effective

or not. So, after presenting two intricate new models namely

power and reliability models for IoT components deploy-

ment on fog platforms, the multi-objective cuckoo search

algorithm is extended which exploits Pareto dominance and

crowding distance concepts for both gaining the set of non-

dominated solutions and diversity in search space. Since the

stated problem is a discrete optimization in nature, the CSA

algorithm that permutes search space efficiently has been

selected. Also, its operators are conducted in such a way

that the good adjustment and balance between exploration

and exploitation is achieved in which the final simulation

results endorse it although there is no guarantee in stochastic

approaches to reach optimal point.

Therefore, the main contributions of the current paper

are as follow:

1. To reach the optimal power consumption, a Fullmesh

sub networks is extracted from whole fog network by a

proposed heuristic algorithm; among Fullmesh sub net-

works, the most appropriate one is selected for distribu-

tion of application components.

2. To mitigate the effect of single point of failure in appli-

cation components deployment, the fault tolerance pol-

icy against failure is provided for each application to

improve reliability; to this end, the minimum number of

fog nodes for components deployment can be bounded

to the maximum number of existing nodes in Fullmesh

sub network.

3. The overall latency concept is modeled. In the process of

application components deployment, efficient utilization

of fog bandwidth resource is increased by minimizing

overall latency. This can be potentially decrease resource

wastage and power consumption.

4. The deployment of application components over fog

nodes is formulated to a multi-objective optimization

problem with minimization of both power consump-

tion and overall latency viewpoints. To solve this com-

binatorial problem, a multi-objective cuckoo search

optimization algorithm (MOCSA) is presented which

compromises objectives and considers reliability in its

constraints.

The rest of the paper is structured as follows. Related

works are placed in Sect. “Related works”. Some models

associated to problem statement are presented in Sect. “Pro-

posed framework and models”. Section “Problem statement”

states the problem under study. Proposed MOCSA is pre-

sented in Sect. “Proposed MOCSA algorithm for component

deployment problem”. This algorithm is validated in simula-

tion and evaluation section which is placed in Sect. “Simula-

tion and evaluation”. Section “Conclusion and future direc-

tion” concludes this paper along with future direction.

Related works

This section investigates related works to find research gap

in component deployment problem. A cloud service man-

agement standard named TOSCA was proposed for IoT com-

ponent placement [7]. The main objective of this paper was

to deploy components automatically by using application

components description commensurate with fog nodes. The

aid of this standard was to improve portability of applica-

tions in heterogeneous environment such as in cloud and

fog environment. In proposed standard, a model for descrip-

tion of service structure and service process management

363Complex & Intelligent Systems (2022) 8:361–392

1 3

was presented. In this model, placement of application

components is automatically done by applying conceptual

description of components topology and related application

deployment.

An approach has been propounded in literature for

latency-aware application component management in fog

environment [8]. In this work, latency of service access,

service delivery time, and internal communication latency

have been considered. The objective was to guarantee the

service delivery deadline and efficient resource utilization

in fog environment. To optimize the number of utilized fog

nodes for hosting application components, this exploits for-

ward and reallocation strategy for application components.

In addition, to cope with limitations of fog environment such

as management overhead, single point of failure, redundant

communications, and latency in decision, the decentralized

organizing is proposed for substitution and forwarding the

components.

A platform was proposed for a dynamic distribution of

application components on fog sub networks [4]. In pro-

posed approach, all requests are submitted to a server; then,

the requests are registered in a database. Each request is

split to multiple components which are encapsulated to a

Docker or Container. Afterwards, a heuristic algorithm is

run to determine components placement plan. The obtained

plan is sent to fog platform for component distribution. The

main goal is to maximize of generating successful placement

plans for user applications.

A DIANE framework has been presented by Vogler et al.

[9] in 2015 for producing optimal deployment topology of

cloud-based IoT applications commensurate with existing

infrastructures. To increase the flexibility of application

that their deployment topologies undergo evolution during

the time, separation of executing components is necessary.

The application deployment topology changes may be for

deployment requirement of new application, changes in edge

network physical infrastructure such as add/remove sensors

and gateways, environmental changes such as customer

request patterns, and evolutionary changes in business logic

during its life cycle. In production process of deployment

topology, some parameters such as time needed for deploy-

ment, time and bandwidth request for application running,

and exploitation of edge devices are evaluated.

A distributed programming interface was presented for

colony of fog computing nodes so-called Foglets by Saurez

et al. [10] in 2016. Foglets automatically detect fog comput-

ing resources in network hierarchy and deploys application

components on fog nodes with tolerable latency requirement

of each component.

An approach was devised for component deployment of

IoT services on M2M platform to reduce traffic from the net-

work to cloud datacenter because IoT application are made

on M2M platforms [11].

A network-aware algorithm in regarding to optimal utiliz-

ing of resource was presented by Taneja et al. [5] in 2017.

This algorithm detects fog nodes based on their capacity and

application components requirement. If requirement is met,

the mapping of components over fog nodes is done.

To facilitate deployment of applications on cloud2fog

environment, a platform as a service (PaaS) architecture

was propounded by Yangui et al. [12] in year 2016. In this

architecture, engaging and execution of application compo-

nents, SLA meeting evaluation and component migration

via management interface are met. Accordingly, exploitation

and execution of application components with regards to the

objectives are detected, configured, and initiated.

Table 1 summarizes comparison of related works associ-

ated to IoT application component deployment on fog and a

cloud infrastructure.

Review of literate illustrates that published works have

been formulated to optimization problems with different

viewpoints. Generally, optimization problems are catego-

rized in two classes: single objective and multi-objective

problems. Since the majority of optimization problems

belong to NP-Hard category problems, the heuristics (or

exact algorithms) and the meta-heuristic algorithms are

engaged to solve these kind of problems. In single objective

problems, only one objective function must be optimized.

For instance, Refs. [13–17] were presented in literature to

solve single objective engineering problems with heuris-

tic and exact approaches. Some meta-heuristics GA-based

[18–23], PSO-based [3, 24, 25], SA-based [26–28] have

been developed to solve optimization problems in engi-

neering domain. In addition, multi-objective optimization

algorithms such as NSGA-II [29], MOPSO [30], MOGA

[18, 31], MOBA [32], and MOGWO [33] among others have

been extended in literature to solve multi-objective optimiza-

tion problems which need to make a trade-off between con-

flicting objectives at the same time. In this line, several tech-

niques were presented in literature to improve the quality of

multi-objective optimization problems [34–38]. Specially,

these methods were tested in some famous and applicable

engineering benchmarks [34–38]. Since the modules place-

ment associated to IoT application in fog environment is a

discrete optimization problem, it urges to utilize an efficient

discrete optimization algorithm this the reason to select CSA

algorithm which permutes search space efficiently.

Overall investigation of reviewed literature also reveals

that the majority of published works scarcely have paid

on single point of failure avoidance and its effect on how

to distribute application components over fog nodes and

at the same time how to optimize bandwidth utilization.

The distinction point of the current paper in comparison

to other literatures revolves around the fact that the current

paper strives in enhancement of user application’s reli-

ability in regards to tolerance against failure and to present

364 Complex & Intelligent Systems (2022) 8:361–392

1 3

traffic-aware deployment to optimize network bandwidth

utilization in component distribution process.

It is worth noting that presenting the accurate models

indicate whether the proposed algorithm is effective or not.

So, this paper presents two intricate new models namely

power and reliability models for IoT components deployment

on fog platforms to cover literature shortcomings. Then, it is

formulated to multi-objective optimization problem.

Proposed framework and models

This section presents system framework and associated mod-

els. Then, all of them are engaged in problem statement. For

the sake of simplicity, Table 2 illustrates utilized nomencla-

ture in presented models.

Table 1 Summary of the literature study

Author/Ref Deployment aims Advantages Disadvantages

Distributed Fault tolerant Resource

aware

Latency

Aware

Traffic aware Energy

efficient

Mahmud et al. (2018)

[8]

✓ ✖ ✓ ✓ ✖ ✓ Deployed time-sensi-

tive applications at

proximity of source

data

Lack of considering the

chain of dependency

during distribution

process

Hong et al. (2016) [4] ✓ ✖ ✓ ✓ ✖ ✓ Component distribu-

tion on the mini-

mum number of

computing nodes

It does not elaborate

how to distribute

components against

one point of failure

Vögler et al. (2015)

[9]

✓ ✖ ✓ ✖ ✖ ✓ A framework pre-

sented for generat-

ing optimal deploy-

ment topology

A descriptive model

presented for com-

ponent deployment

It does not elaborate

how to distribute

components

Saurez et al. (2016)

[10]

✓ ✖ ✖ ✖ ✖ ✖ A programming

infrastructure for

development and

deployment of

components

An approach pre-

sented for compo-

nents migration

It does not dependency

challenges between

components

Chen et al. (2017)

[11]

✓ ✖ ✖ ✖ ✖ ✖ Component distribu-

tion with minimum

latency

QoS degradation with

increase the number

of components

Lack of elaboration

between components’

dependency

A single point of fail-

ure problem

Taneja et al. (2017)

[5]

✓ ✖ ✓ ✓ ✖ ✓ Supporting different

netwrok topologies

Lack of elaboration

between components’

dependency

A single point of fail-

ure problem

Yangui et al. (2016)

[12]

✓ ✖ ✖ ✓ ✖ ✖ Automated PaaS for

componentt deploy-

ment

It does not guarantee

optimal deployment

A single point of fail-

ure problem

Current article ✓ ✓ ✓ ✓ ✓ ✓ Reliability enhance-

ment

Traffic-aware deploy-

ment

Although it is not a

weakness, it depends

on sub full mesh

derived from whole

network

365Complex & Intelligent Systems (2022) 8:361–392

1 3

System framework

The proposed target system framework is depicted in Fig. 1.

As this figure shows, an organizer is placed in top level of

fog layer. One of its most missions is to extract Fullmesh

sub networks of fog nodes known as a Mega Node. The

Mega Node architecture is similar to wireless mesh network

(WMN) presented by Akyildiz et al. [39] in year 2005. Its

computing pattern differs from traditional mesh networks

in which it utilizes network of fog nodes such as switches

and routers in distribution operation of inside the network.

After the Mega Nodes extraction, the suitable Mega Node

is adopted and organizer makes decision for component

deployment in selected Mega Node in regards to applica-

tion components features and requirements. Conceptually,

the organizer is centralized, but it can be distributedly

implemented for the sake of avoidance from the single point

of failure phenomenon.

In the proposed framework, the high priority is to extract

deployment plan based on selected Mega Node; then, the

components are distributed based on extracted plan. Only

the components which are not time-sensitive or are executed

periodically for information processing are deployed on

cloud infrastructure. In this regards, a deployment planner

framework is used to manage and run suitable application

components deployment regarding to system performance.

As Fig. 2 demonstrates, planner module contains appli-

cation component manager and associated collaborative

components. Beside deployment planner, some modules are

placed for storage and retrieval of information associated to

the network and other Mega Node’s resources.

Table 2 Nomenclature utilized

in proposed models
Notation Description

F Fog network

Mega node A fullmesh sub network including fog nodes

N Number of fog nodes in Mega Node

M Number of Applications Components

fni Fog node i, where i = 1, 2,..,N

Id Fog node identifier

H Fog node hardware specification

S Fog node software specification

HWfn Computing, memory, and storage capacity of a fog node

SWMega Node Software capacity of Mega Node

SMega Node Sensor capacity of Mega Node

sensorlist Sensor list associated to a fog node

B Bandwidth of communication link

L Latency of communication link

B
mn

Communication Bandwidth between nodes m and n

L
mn

Communication latency between nodes m and n

d
mn

Distance between nodes m and n

n
L

Serving fog nodes to application i

UApp User application

M
i

Number of components in Application i

cmplisti List of Components associated to application i

cmpk k-th component of an application

h Hardware requested for a component

s Software requested for a component

m
i

A component of an application i deployed on a fog node L

bij Favorite Communication Bandwidth between component i and j

lij Favorite Communication latency between component i and j

hw
cmp

Computing, memory, and storage capacity requested for application components

sw
cmp

Software resource requested for application components

s
cmp

Sensor resource requested for application components

tij traffic between component i and j

xcmp,fn Decision variable which determines a component is deployed on a fog node or not

yfn Decision variable which determines a fog node is active or not

366 Complex & Intelligent Systems (2022) 8:361–392

1 3

The integrated information is used for management of

application components and presenting favorite deployment

plan via deployment planner. In the following, the proposed

framework’s modules are clarified.

Application component manager This is a main module

amongst others, which decides how to deploy application

components on fog or cloud nodes. In a multi-component

application, for the sake of dependency between its com-

ponents, decision of deployment strongly depend on sev-

eral issues such as resource availability, network structure,

QoS requirement of applications, load sharing and etc. the

deployment of components can be done based on objectives

such as power consumption reduction, minimizing commu-

nication and reduction of overall traffic owing to running of

applications.

Component resource information It extracts processing and

memory requirement associated to application components

from user submitted request. Then, it delivers this informa-

tion to application component manager for decision making

on deployment plan.

Components communication information Since communica-

tion plays a major role in resource consumption of fog nodes

in running IoT applications, the management of application

components on fog nodes includes optimizing usage of com-

puting resources, memory, and communications at the same

time. To this end, this section extracts communication infor-

mation of application components from user requests and

delivers it to application component manager.

Mega node resource discovery This module manipulates

Mega Node’s information repository which is obtained via

application component manager. Then, it sends back the

information of favorite Mega Node for application compo-

nents deployment.

Fig. 1 Proposed system framework and associated mega nodes

Fig. 2 Management framework

for application components

Fog Compu�ng Zone

Mega Node

 Manager

Mega Node

Informa�on

Repository D
e

p
lo

y
m

e
n

t
P

la
n

n
e

r

Mega Node

Resource Discovery

Users Request

(Applica�on)

Applica�on

Component

Manager

Desired Deployment Plan

Components

Communica�on

Informa�on

Components

Resource

Informa�on

367Complex & Intelligent Systems (2022) 8:361–392

1 3

Mega node manager Based on information received from fog

nodes, the Fullmesh sub networks of fog nodes are extracted;

then, information of Fullmesh sub networks, known as Mega

Nodes, are saved in a repository. In addition to, it validates

status of existing Mega Nodes by periodically monitoring

of fog infrastructure.

Fog model

This article assumes there exists a network of N number of

fog nodes which are heterogeneous in terms of processing

capacity and power consumption; all of them are enable to

store and execute application components. These fog nodes

belong to one or more Mega Node sets. Each node in a Mega

Node can directly or indirectly access to different kind of

sensors via wired or wireless connections. A fog node

fn ∈ F is introduced by a vector (id, mid, H, S, sensorlist)

where id, mid, H, S, and sensorlist are fog node identifier,

Mega Node id, hardware, software, and available sensors

respectively. The components which are distributed among

Mega Node’s processors can avail to the software and sen-

sors of that same Mega Node. In this regards, the commu-

nication link can be modeled by a vector (L,B) where L and

B are latency and bandwidth respectively. The details of a

Mega Node is elaborated in Fig. 3.

In this line, the communication network is modeled by a

graph G = < FN,D > where FN = { fn1, fn2,… , fnN } is a set

of fog nodes and edge dij ∈ D shows distance between nodes

fn
i
 and fnj . Matrix D in Eq. (1) is dedicated for distance

between each pair of fog nodes. In each Mega Node, if all

components are placed on single node, then, dij = 0 ; other-

wise dij = 1 . In addition, the Fig. 4 illustrates a communica-

tion network in a Mega Node with three different fog nodes.

Application model

In recent years, regarding to the nature of users requests

and new expectations on internet-based services, the design

of applications which manipulate users’ data is constantly

fluctuated based on changing requests; then, to meet user

requirement, the multi-component structure approach is uti-

lized [40]. So, application components are dependent and

cooperate with each other to meet users’ requirements. For

instance, take a company that serves a smart health care

service in a small IoT application for surveillance of aged

people. This application includes three different components

that Fig. 5 illustrates.

(1)

Fig. 3 Mega node specification and its belonged fog nodes

Fig. 4 Communication network

in a mega node

Fig. 5 Specification of application components

368 Complex & Intelligent Systems (2022) 8:361–392

1 3

Status manager (cmp1) This component monitors aged and

disabled people; it alarms the nearest medical and health-

care center once it detects a disorder in physical or mental

behavior.

Control center (cmp2) This component is used for interpret

of integrated data and manual control of the system.

Machine Learning (cm3) This component is utilized to save

data history of individuals and to estimate future wellbeing

and health provided it is not latency-sensitive which can be

deployed on cloud datacenter or fog infrastructure.

Figure 5 also depicts hardware resources along with soft-

ware capabilities required for each component. Communi-

cation between components are drawn by special links. To

manage on time status of aged people, component cmp1

must avail to needed sensors (physical state controller sen-

sors) and an actuator which activates initial operation mech-

anism and announcement to medicine centers; this must be

done during 10 ms. from deployed component cmp3 to the

place of installed sensors and actuators. Furthermore, it is

expected that the fog or cloud nodes can remotely access to

existing neighbor things via APIs provided by fog middle-

ware [41]. The problem that should be solved for application

components deployment is how to place components so that

the requested resources are met. Even for this simple exam-

ple, different deployment plans must be evaluated for finding

an optimal component mapping for this application because

more than one component can be deployed on a fog node

based on existing resources. Finding favorite and optimal

deployment is impractical when the number of components

and fog nodes are significantly increased. Then, this combi-

natorial problem must be solved by intricate meta-heuristic

algorithms.

This paper assumes that there are R number of IoT appli-

cations each of r ∈ R is shown by a vector (M,cmplist).

Each application has M number of components listed

in cmplist. Also, each component is shown by a vector

(k, h, s, sensorlist) (see Fig. 5).

User applications are modeled by a graph G = (cmplist, T)

where cmplist =
{

cmp1, cmp2,… , cmp
m

}

 and T = tij shows

the traffic matrix (TM) between components cmpi and cmpj .

Equation (2) demonstrates traffic matrix and the Fig. 6 illus-

trates components communication graph.

(2)

Reliability model

Deployment of an application’s components on the mini-

mum number of fog nodes leads to reach the goals such as

reduction in power consumption and efficient utilization of

cloud computing resources, but one of the confronting chal-

lenges is the acceleration of the single point of failure phe-

nomenon in users’ applications. Therefore, for the sake of

meeting both optimization objective functions of cloud com-

puting owners and to decrease the degree of applications’

vulnerability in centralized distribution in fog infrastructure,

the threshold parameter is considered for the number of fog

nodes in distribution of applications’ components. To this

end, in the worst case, at most number of needed nodes for

components distribution is bounded to the number of avail-

able nodes in selected Mega Node. In the other words, the

best effort is bounded to Mega Node capacity.

Deployment model

To deploy components, one of the Mega Nodes regarding to

claimed requirement is selected among the list of extracted

Mega Nodes. In each Mega Node, if all components are

placed on single node, then, dij = 0 ; otherwise dij = 1 . Fog

nodes in a Mega Node meet all of components resource

requirements in terms of latency, bandwidth, and sensors. In

this paper, we assume that all of sensors or software request

for application components cab be shared by fog nodes asso-

ciated to Mega Node. In distribution process of application

components on fog nodes, the computing resources, fog

nodes distance, and QoS parameter requested for applica-

tion components must be taken into consideration. To reduce

traffic load, the distance matrix which is used for each pair

of fog nodes in network graph and also traffic pattern matrix

between each pair of components must be calculated. Note

that, communication links between fog nodes fnm and fnn

have constant capacity in terms of latency and bandwidth.

Therefore, traffic rate between application components is

bounded to fog nodes’ capacity. So, this limitation is shown

in Eq. (3).

Fig. 6 Components communication graph

369Complex & Intelligent Systems (2022) 8:361–392

1 3

where bij and lij are favorite bandwidth and latency between

components cmpi and cmpj . Also, parameters B
mn

 and L
mn

are bandwidth and latency between fog nodes fnm and fnn

respectively. Note that, a component can be deployed on a

fog node provided this node is active. For this reason, deci-

sion variable yfn is set to one when fog node fn is an active

node to adopt a component. Equation (4) shows this decision

variable.

Furthermore, the requested hardware associated to com-

ponents cannot exceed the capacity of underlying fog nodes.

Therefore, Eq. (5) is used to show this constraints.

In Eq. (5), parameter HWfn is relevant to fog node capac-

ity in term of hardware and hw
cmp

 is requetsed resources

relevant to components.

As assumed all software resources are available for each

node in Mega Node, the software limitation is drwan in

Eq. (6).

where the term SWMega Node is software capacity of Mega

Node and sw
cmp

 is the requested software by application

components. Also, another constraint on requetsed sen-

sors for application components cannot exceed from Mega

Node’s capacity in term of number of its availabe sensors.

This is elaborated in Eq. (7).

A decision variable xcmp,fn is used to determine whether

component cmp is placed on fog node fn or nor. Equation (8)

is dedicated to this issue.

Furthermore, each component is only placed on one fog

node in which Eq. (9) depicts.

(3)

∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(4)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(5)

∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(6)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node,∀Mega Node ∈ F

(7)

∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node,∀Mega Node ∈ F

(8)

xcmp,fn =

{

1 application’s cmp is placed on fog node fn

0 otherwise

(9)

∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

Problem statement

In this paper, deployment of IoT application components is

formulated to a multi-objective optimization problem. To

address the issue, two objective functions and problem for-

mulation are presented.

Overall latency

One of the most prominent objective functions of deploy-

ment problem is to minimize system overall latency which

has drastic impact on average QoS degradation. So, the

amount of latency owing to dependent components of an

application which are placed on two different fog nodes in a

Mega Node, is calculated via Eq. (10).

The latency between each pair of dependent components

depends on latency between fog nodes which are hosting

separate components. Note that, the amount of latency is

ignored when two dependent components are placed on

the same node. The overall latency of the system, owing to

deployment of all applications and related components, is

measured via Eq. (11).

Power consumption

The effective subjects on fog nodes’ power consumption are

load of computation, communication technology, the trans-

fer data traffic volume, distance between nodes and etc. To

calculate the power consumption of a fog node, power con-

sumption owing to both application’s components process-

ing and data transfer between nodes should be taken into

account. Literature review proves that the power consump-

tion of a processing node has linearly relation to its resource

utilization [42]. So, the average normalized resource utiliza-

tion associated to each fog node is measured via Eqs. (12).

where parameters W
1
 and W

2
 are two coefficients that show

the importance of them in fog node’s power consump-

tion. Note that, their values are 0 ≤ W
1
 ≤ 1, 0 ≤ W

2
 ≤ 1, and

W
1
 + W

2
 = 1. Since the power consumption of processing

units outwieghts versus the main memory, the processor uti-

lization is taken for power consumption; consequently, the

(10)
Latencymn =

∑

cmpi∈fnm

∑

cmpj∈fnn

Lmn

(11)
UApplatency =

∑

fnm,n∈Mega Node

Latencymn

(12)
URes

fni
=

W
1
⋅

∑fni

j

RCPU

Comj

RCPU

fni

+ W
2
⋅

∑fni

j

RRAM

Comj

RRAM

fni

2

370 Complex & Intelligent Systems (2022) 8:361–392

1 3

parameters are set as W
1
 = 0.9 and W

2
 = 0.1 [42]. The Eq. (13)

measures the power consumption owing to utilized resources

relevant to each node that hosts different components.

where parameters P
min

 and P
max

 are used to indicate the

minimum and maximum power consumption of each pro-

cessing node in the minimum and maximum utilization con-

ditions respectively. In addition to, decision binary varibale

yfn is used to show whether the processing node is active or

not. Moreover, the power consumption owing to data transfer

via communication links are obtained by Eq. (14).

The parameter P
Tr

 is of prower consumption unit for traf-

fic trasfer. Note that, this power is taken in case the compo-

nents are placed on different computing nodes. Cosequently,

the total power consumption is obtained via Eq. (15). The

first section is for resource utilization and the second section

is for traffic transfering power consumption.

Problem formulation

The deployment of IoT application components by distribut-

ing over fog nodes is formulated to a multi-objective optimi-

zation problem. After definition of objective functions, this

formulation is brought in Eqs. (16)–(24).

Subject to:

(13)PRes

fn
= yfn ×

(

P
max

− P
min

)

× URes

fn
+ P

min

(14)
PTr

fn
=

∑

fni≠fnj

tComi,Comj
× PTr

(15)Pfn = PRes

fn
+ PTr

fn

(16)
min TPC = Min

∑

fn∈F

Pfn

(17)
min UApplatency = Min

∑

fnm,n∈Mega Node

Latencymn

(18)

∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(19)

∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(20)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node, ∀Mega Node ∈ F

(21)

∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node, ∀Mega Node ∈ F

In the aforementioned problem formulation, the Eqs. (16,

17) are objective functions to be minimized at the same time

the constraints drawn in Eqs. (18–24) must be met. To solve

this combinatorial optimization problem, an intricate multi-

objective optimization algorithm is presented.

Proposed MOCSA algorithm for component
deployment problem

As the stated problem is a multi-objective optimization prob-

lem, we extend a multi-objective optimization algorithm in

regards to two equal important objectives. A multi-objective

optimization algorithm differs from a single objective opti-

mization algorithm because in multi-objective optimization

algorithm a trade-off between objectives must be done. To

this end, the dominance concept is utilized [24, 31, 42]. The

multi-objective optimization algorithm must be conducted

in search space to find non-dominated solutions known as

Pareto front [31]. Regarding to the discrete nature of the

search space associated to stated problem, the cuckoo search

algorithm (CSA) is adopted for the sake of its performance

and adaptation with discrete search space. The CSA was

firstly introduced in literature by Yang and Deb [43] at year

2009. It had successful outcome in different optimization

domains such as in [44–46]. To solve deployment prob-

lem, a multi-objective version of CSA known (MOCSA) is

extended which inherits strength of both CSA and NSGA-II

algorithms [29].

The CSA mimics its behavior from cuckoo birds. This

kind of bird has an aggressive attitude in which it even lays

eggs in the other birds’ nests along with throwing away their

eggs. In CSA, every egg in a nest is a candidate solution.

When a cuckoo lays one egg in a nest in fact it produces a

new solution. In this regards, a single objective CSA utilizes

three rules:

At first, each cuckoo lays one egg in a randomly selected

nest.

Secondly, better nests holding eggs (solutions) with better

quality remain for next generation.

Thirdly, number of existing nests are fix; and a host

nest, a cuckoo can detect strange egg with the probability

p
a
∈ [0,1] ; in this case, the host bird can either smash the

egg or leave the nest for constructing completely new nest

in the new place.

(22)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(23)

∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

(24)xcmp,fn ∈ {0, 1}, yfn ∈ {0, 1}

371Complex & Intelligent Systems (2022) 8:361–392

1 3

To construct MOCSA with k objective functions, three

mentioned rules of canonical CSA needs to be customized

in regards to objective functions. New rules are:

In each iteration, each cuckoo lays k eggs in a randomly

selected nest in which the i-th egg is representative of the

i-th objective function. In regard to similarity and discrep-

ancy between eggs, each nest is left with probability p
a

and the new nest is constructed with k new eggs. In addi-

tion to, some operations can be defined to permute search

space efficiently. Mathematically, the first rule can utilize

Random Walk or Levy flight approaches (c.f. Eqs. (25, 26)

to uniformly permute (traverse) search space for generating

new solutions. The second rule is an elitism based approach

so that better solutions remain in next generation. In this

line, selection of better solutions generates the suitable

convergence of algorithm. The third rule can be taken as a

mutation approach so the worse solutions are probabilisti-

cally omitted and the new solutions are generated in regards

to similarities the solutions with other solutions. This muta-

tion approach is done by vector operator via combined Levy

flight and quality differential of solutions. Figure 7 draws

block diagram of proposed algorithm.

This algorithm receives problem specifications and

execution’s settings as input such as information about

requested resources for applications, number of components

and their communication details, number of fog nodes and

associated network information, number of initial solutions,

and number of maximum iterations. Then, it returns a set of

non-dominated solutions as deployment plans.

Fig. 7 Block diagram of pro-

posed algorithm

372 Complex & Intelligent Systems (2022) 8:361–392

1 3

Problem encoding

One of the most important issues in CSA algorithm is the

concept of nest which is a candidate solution. Encoding on

nest has intensive impact on algorithm performance. There

are miscellaneous encoding viewpoint for different prob-

lems. The art is to find the most appropriate one. Each nest

is a possible solution for IoT application components deploy-

ment on fog nodes. A nest contains |M| number of eggs each

of which is representative of a component. The number

assigned to each egg is drawn from [1...|N|] interval which

indicates the fog node number hosting that component. Fig-

ure 8 depicts encoding of an example for deployment of 10

components on 3 fog nodes.

Proposed MOCSA

In single objective optimization cuckoo search algorithm,

the population is partitioned into two superior and inferior

nests with predetermined probability based on their fitness

value. In the other words, the determined parameter Pa is the

fraction of population which are placed in the inferior nests

whereas the rest are placed in the superior nests after sorting

population based on their fitness values. In each generation,

iteration, the algorithm works in two stages. At first stage,

for each individual of inferior nests, each new position is

generated by Levy Flight distribution; then, the old individ-

ual is directly constituted by the new generated one. At the

second stage, for each individual in superior nests, each new

position is generated by Levy Flight distribution; if the new

generated individual is better than the old version in term of

fitness value, the old version is substituted by the new gener-

ated one. Since the multi-objective optimization algorithm

differs from a single objective, we have customized CSA to

MOCSA algorithm to gain non-dominated solutions. The

general behavior is the same, but the differences are in the

ranking and partitioning processes. For ranking, we utilize

non-dominated and crowding distance concepts. Once it is

needed to partition population into two parts, we utilize non-

dominated sorting strategy based on Algorithm 6; then from

the worst ranking to best ranking, the solutions are directly

copied to inferior nests; in this direction according to the

probability Pa, if the solutions associated to the k-th rank-

ing value overflows the inferior nests, the crowding distance

values are considered. In the other words, the rest individu-

als with the worst crowding distance values are selected to

be copied to fulfill the rest of inferior nests. Afterwards, the

rest populations are copied to superior nests. It is worth men-

tioning that, in the second stage when the new individual

is generated for each individual in the superior nests, if the

new individual dominates the old version in regards to two

objective functions, the old individual is substituted by the

new generated solution.

The proposed MOCSA algorithm is elaborated in Algo-

rithm 1 which deploys IoT application components efficiently

on fog nodes in regards to objective functions. As mentioned

earlier, Algorithm 1 receives the problem specifications as

input and returns non-dominated solutions in regards to two

prominent objective functions. It is iterated until the termi-

nation criterion is met. Here, the condition of termination

is to execute MaxIteration times. Before the Algorithm 1

starts in its main loop which is between lines 14 through

27, it performs preprocessing stages. Algorithms 2 and 3 are

dedicated to extract Mega Nodes and desired Mega Nodes

which are explained in preprocessing stages. New solutions

are generated in line 5 from extracted desired Mega Nodes.

In line 7, Algorithm 4 is called to check and correct infeasible

solutions. Then, the associated Data Structure is updated in

line 8. Algorithm 5 is called to assign two fitness values to

each individual based on Eqs. (16, 17) since it is a multi-

objective problem. The main loop of proposed MOCSA starts

in line 14 and ends in line 27. In the proposed algorithm in

each generation the population is partitioned into two inferior

and superior nests. As explained earlier, the main loop runs

two stages. At first, the worst solutions in inferior nests are

updated and at the second stage the better solutions in supe-

rior nests are updated provided the new generated solutions

dominate the old version otherwise no update is done. In line

9, all fitness values associated to all solutions are assigned

by calling Algorithm 5. In lines 10–11 the Algorithms 6–7

are called to make Pareto fronts and crowding distance for

current solutions. In the main loop, Pa percent of solutions

associated to the worst ranking is copied in the inferior nests

by utilizing Pareto front and crowding distance values and the

rest is copied to superior nests. Before algorithm plummets

into the main loop, in line 12 the current solutions are sorted

based on ranking concepts. Then, the first ranking solutions

are kept in Pareto-Set repository in line 13. As mentioned

Eggs(components) cmp1 cmp2 cmp7 cmp8 cmp4 cmp6 cmp9 cmp3 cmp5 cmp10

Fog Nodes n1 n2 n3

cmp1 cmp2 cmp3 cmp4 cmp5 cmp6 cmp7 cmp8 cmp9 cmp10
Nest 1 1 3 2 3 2 1 1 2 3

Fig. 8 An example for deployment encoding and associated Nest

373Complex & Intelligent Systems (2022) 8:361–392

1 3

earlier, in line 15, the Algorithm 8 is called to update solu-

tions in inferior nests; afterwards, the second stage is started

where the solutions pertained to superior nests are to be

updated. If the new changes dominate the old version, the

old version is substituted by the new generated solution in

superior nests. This change is done by calling Algorithm 9

in line 16. In line 17, Algorithm 4 is called to check and

correct infeasible solutions. Then, the associated Data Struc-

ture is updated in line 18. In line 19, the fitness values of

all updated solutions are calculated by calling Algorithm 5;

then, the non-dominated solutions and crowding distance are

calculated by calling Algorithms 6 and 7 respectively. The

current solution is then sorted by their rank values. The tem-

porary solutions are made by merging the current solutions

and the last Pareto-Set values. The temporary solutions are

sorted based on rank values. From the first ranking to the

last are copied to the current solutions variable by consider-

ing crowding distance values if needed. In addition, the first

rank is directly copied in Pareto-Set variable. After the last

iteration is done. The final values in Pareto-Set containing the

first ranking solutions of the last operation is return as final

non-dominated solutions.

MOCSA

374 Complex & Intelligent Systems (2022) 8:361–392

1 3

Preprocessing

In this stage, the preprocessing is performed to extract

desired Mega Nodes. Algorithm 2 selects different Mega

Nodes from input fog network. The Mega Node character-

istics was clarified earlier which is abstracted to clique in

graph theory. It returns all cliques with K-nodes. Mega Node

extraction brings some merits; firstly the search space reduc-

tion for finding optimal deployment plan; secondly, provid-

ing common sensors and software associated to Mega Node

for requested components. In Algorithm 2, in the while-loop

between lines 3 through 11, firstly all nodes which are con-

nected are extracted; each pair of connected nodes is placed

in a row in Mega_Nodes array. In lines 13 through 20, in

the for-loop, each fog node i is compared with each row in

Mega_Nodes array that does not containing node i. If node

i is connected with all nodes in that row, then the node i is

added to that row. In each iteration, the repeated row is omit-

ted. The main loop is iterated until the last array of Mega_

Nodes which contains the set of Mega Nodes is delivered.

After Mega Nodes extraction, some Mega Nodes are

selected by Algorithm 3 in regards to meeting of constraints

in Eqs. (18–21) in the stated problem. In this algorithm, if

latency and bandwidth are provisioned by the Mega Node

in the current row, then, Latency_BW_status variable is set

to true. In addition to, if hardware, software, and sensors

can be provided by the current Mega Node, the amount of

HW_Status, SW_Status, and S_Status are set to true. If a

current Mega Node can fulfill all required resources, it is

added to selected Mega Node list.

375Complex & Intelligent Systems (2022) 8:361–392

1 3

The termination criterion of Algorithm 2 is the num-

ber of desired clique size (K). In the other words, the main

loop is iterated K times. Since the effective statements of

Algorithm 2 are in the while-loop, its time complexity is O

(K∙N2) where K < N. Also, Algorithm 3’s time complexity

is O (N + M) because the main work is done in the for-loop

between lines 1 through 9.

Initialization step

Similar to other meta-heuristic algorithms, the CSA

starts with initialization phase in which line 5 of Algo-

rithm 1 performs this. It randomly generates individuals

from search space. To reduce MOCSA’s time complex-

ity, the value domain of eggs are confined to the proposed

encoding approach. Since some solutions may violate

problem constraints during the individual productions, the

Check&Correct algorithm is designed which Algorithm 4

shows. Indeed, Algorithm 4 is presented to exploit maxi-

mum benefit from produced population for utilizing them

in optimal solutions.

376 Complex & Intelligent Systems (2022) 8:361–392

1 3

fitness functions in regards to problem’s objective func-

tions. In this paper, fitness function is adjusted based on

total power consumption and overall latency which are in

Eqs. (16) and (17). The proposed fitness function is depicted

in Algorithm 5.

Time complexity of Algorithm 4 is O (N∙PopSize)

because two nested for-loop are the most effective

statements.

Fitness function

Generally, one of the most important things in evolution-

ary computation is to evaluate solutions. This is done by

377Complex & Intelligent Systems (2022) 8:361–392

1 3

It is clear-cut that its time complexity of Algorithm 5 is

O (PopSize).

Non-dominated sorting

In multi-objective optimization algorithms the goal is to

omit unfavorable solutions and to select superlative solu-

tions with special strategy in such a way that solutions in

lower levels are omitted at the same time the better solutions

are remained until the final solution is obtained step by step.

In the proposed MOCSA, we apply non-dominated sorting

algorithm to find Pareto front. This algorithm investigates

the state of current solutions in term of dominance concept

regarding to objective functions. In fact, it classifies solu-

tions in different Pareto levels so that all solutions in the

same ranking level cannot dominate each other whereas the

solutions in upper levels dominate solutions in downer level.

The favorable non-dominated solutions belong to the first

ranking level. Algorithm 6 finds non-dominated solutions.

378 Complex & Intelligent Systems (2022) 8:361–392

1 3

Since the effective statements of Algorithm 6 are in

nested For-loop, its time complexity is O (PopSize2).

Crowding distance

Finding efficient solutions strongly depends on the strategy

that the algorithm takes. The best strategy must be con-

ducted in such a way that explore search space efficiently.

More distribution in search space, more contingent to gain

better and logical solutions. Diverse solutions in larger dis-

trict are preferable against denser solutions in smaller region

the reason why we apply crowding distance algorithm to

investigate solutions in term of density in a district search

area. This way avoids to integrate solutions locally. Algo-

rithm 7 elaborates crowding distance procedure.

It is clear that the time complexity of Algorithm 7 is O

(PopSize).

Inferior nests update

In this process, the fraction of worse solutions by probabil-

ity Pa are detected and amended. This operation is similar

to mutation in GA [43–46]. Since our algorithm works in

multi-objective domain, the worst solutions are selected

from the worst ranking frontier; also, the crowding distance

is called where needed. The modification of worse solutions

are done by walking around approach. Algorithm 8 is dedi-

cated to do so. In line 4, the invalid solutions are amended.

Then, updated solutions as new solutions are returned.

379Complex & Intelligent Systems (2022) 8:361–392

1 3

Time complexity of Algorithm 8 is θ (Pa∙PopSize); there-

fore is O (PopSize) because of its only one for-loop and the

fact that Pa < 1.

Superior nests possibly updates

To produce next generation solutions, the elitism mecha-

nism is applied so the better solutions are transferred to the

next generation. The favorable trait of each meta-heuristic

algorithm is how to make balance between exploration and

exploitation in search space, but some of them fail to make a

balance; for instance, PSO suffers from earlier convergence

[24, 25] or simulated annealing (SA) suffers from not to be

strong in exploration phase [26–28]. Fortunately, our pro-

posed MOCSA makes a good adjustment between exploita-

tion and exploration. Once it exchanges a random solution

with the best so far if it is better, it tries in exploitation phase

such as in Algorithm 9. For exploration, it utilizes uniform

distribution in search space to explore search space glob-

ally such as in Algorithm 8. A prominent part of CSA is to

utilize Levy Flight for both local and global searching; it

uses random walk which is characterized by probabilistically

instantaneous jumping in search space [47]. To do so, by

utilizing Levy Flight approach [44], the new generation indi-

viduals are produced in line 2; if each new generated indi-

vidual dominates the previous generation individual then the

old generation is substituted by new one. It is well depicted

in lines 4–6 of Algorithm 9. As the obtained values in new

solutions are continuous, these values are amended commen-

surate with the problem conditions in line 3 of Algorithm 9.

Table 3 Different scenarios of

simulation
Scenarios # 1 2 3 4 5 6 7 8

Fog nodes # 10 15 20 25 40 55 70 100

Appcmp # 20 25 30 40 60 75 100 150

Table 4 Fog nodes resources

FN# 1 2 3 4 5

CPU(GHz) 1.02 1.15 1.38 1.46 1.06

RAM(GB) 1.3 1.6 1.2 1.4 1.3

CPU_Thr 0.98 0.93 0.96 0.94 0.92

RAM_Thr 1.00 0.99 0.91 0.92 0.98

P_min 94 82 99 81 91

P_max 133 132 133 147 142

Sensor 1.2 1.2 1.2 2 0

Software 0 1.2 2 0 1.2

P_tr 0.2 0.2 0.2 0.1 0.1

Table 5 Bandwidth between fog nodes

FN# 1 2 3 4 5

1 1 0.98 0.80 0.89 0.97

2 0.84 1 0.82 0.94 0.92

3 0.93 0.94 1 0.97 0

4 0.88 0.92 0.91 1 1.00

5 0.92 0.99 0 0.90 1

Table 6 Latency between fog nodes

FN# 1 2 3 4 5

1 0 0.17 0.19 0.10 0.10

2 0.12 0 0.10 0.11 0.18

3 0.18 0.14 0 0.12 1

4 0.16 0.19 0.14 0 0.14

5 0.11 0.14 1 0.16 0

Table 7 Resource requested for application components

Appcmp# 1 2 3 4 5

CPU 0.15 0.19 0.24 0.26 0.29

RAM 0.2 0.2 0.1 0.2 0.1

Sensors 1 0 2 0 2

Software 0 1 0 1.2 1

Table 8 Bandwidth requested for application components

Appcmp# 1 2 3 4 5

1 1 0 0 0 0

2 0 1 0.33 0 0.32

3 0 0 1 0.31 0.20

4 0 0 0 1 0.39

5 0 0 0 0 1

Table 9 Latency requested for application components

Appcmp# 1 2 3 4 5

1 0 1 1 1 1

2 0 0 0.20 1 0.28

3 0 0 0 0.24 0.21

4 0 0 0 0 0.20

5 0 0 0 0 0

380 Complex & Intelligent Systems (2022) 8:361–392

1 3

Ta
b

le
 1

0

 S
et

ti
n
g
 p

ar
am

et
er

s
o
f

d
iff

er
en

t
al

g
o
ri

th
m

s
in

 s
im

u
la

ti
o
n

P
a,

 d
is

co
v
er

y
 r

at
e

o
f

al
ie

n
 e

g
g
s/

so
lu

ti
o
n
s;

 C
2
,

S
w

ar
m

 c
o
n
fi

d
en

ce
 f

ac
to

r;
 A

lp
h
a,

 g
ri

d
 i

n
fl

at
io

n
 p

ar
am

et
er

;
A

L
,

lo
u
d
n
es

s
p
ar

am
et

er
 u

p
d
at

e
in

 I
te

ra
ti

o
n
s;

 B
et

a,
 l

le
ad

er
 s

el
ec

ti
o
n
 p

re
ss

u
re

 p
ar

am
et

er
;

r,

p
u
ls

e
em

is
si

o
n
 r

at
e

p
ar

am
et

er
 u

p
d
at

e
in

 I
te

ra
ti

o
n
s;

 G
am

m
a,

 e
x
tr

a
re

p
o
si

to
ry

 m
em

b
er

 s
el

ec
ti

o
n
 p

re
ss

u
re

;
al

p
h
a1

,
co

n
st

an
t

u
se

d
 t

o
 u

p
d
at

e
A

L
;

ar
ch

iv
e

si
ze

,
re

p
o
si

to
ry

 s
iz

e;
 g

am
m

a1
,

co
n
st

an
t

u
se

d
 t

o
 u

p
d
at

e
 r

;
n
G

ri
d
,

n
u
m

b
er

 o
f

g
ri

d
s

p
er

 e
ac

h
 d

im
en

si
o
n
;

m
in

f,

fr
eq

u
en

cy
 u

se
d
 t

o
 v

el
o
ci

ty
 u

p
d
at

e;
 m

ax
v
el

,
m

ax
m

iu
m

 v
el

o
ci

ty
 i

n
 p

er
ce

n
ta

g
e(

se
ar

ch
 s

p
ac

e
p
er

ce
n
ta

g
e)

;
m

ax
f,

 f
re

q
u
en

cy

u
se

d
 t

o
 v

el
o
ci

ty
 u

p
d
at

e;
 u

_
m

u
t,

 u
n
if

o
rm

 m
u
ta

ti
o
n
 p

er
ce

n
ta

g
e;

 p
C

ro
ss

o
v
er

,
cr

o
ss

o
v
er

 p
er

ce
n
ta

g
e;

 W
,
in

er
ti

a
w

ei
g
h
t;

 p
M

u
ta

ti
o
n
,
m

u
ta

ti
o
n
 p

er
ce

n
ta

g
e;

 C
1
,
In

d
iv

id
u
al

 c
o
n
fi

d
en

ce
 f

ac
to

r

S
p
ec

ifi
c

p
ar

am
et

er
s

N
u
m

b
er

 o
f

o
b
je

ct
iv

e
P

o
p
u
la

ti
o
n
 s

iz
e

M
ax

 i
te

ra
ti

o
n
s

M
O

C
S

A
P

a:
0
.2

5
2

1
0
0

1
0
0

M
O

G
W

O
A

rc
h
iv

e
si

ze
1
0
0

A
lp

h
a

0
.1

n
G

ri
d

1
0

B
et

a
4

G
am

m
a

2

M
O

P
S

O
n
G

ri
d

2
0

W
0
.4

m
ax

v
el

5
C

1
2

u
_
m

u
t

0
.5

C
2

2

M
O

B
A

A
L

0
.9

m
in

f
0

r
0
.9

m
ax

f
1

A
lp

h
a1

0
.9

G
am

m
a1

0
.9

N
S

G
A

-I
I

p
C

ro
ss

o
v
er

0
.7

p
M

u
ta

ti
o
n

0
.4

381Complex & Intelligent Systems (2022) 8:361–392

1 3

Then, the new obtained solution is added to the list of next

generation solutions.

different fog nodes. Furthermore, the Pareto front relevant

to each algorithm are compared. Also, final deployment that

MOCSA gives is dawn.

Note that, Mirjalili et al. [33] in year 2016 added two

new modules to canonical GWO algorithm to make multi-

objective version of GWO algorithm. The first is Archive

module that is used to save non-dominated solutions so far

and the second is for leader wolf to select alpha, beta, and

delta wolves; this is used for updating position of omega

wolves in the course of optimization. The aforementioned

features are utilized to keep current solutions and gradually

update them toward final Pareto front. In this line, Coello

et al. [30] proposed MOPSO which utilizes history record

for saving the best solution experienced by an particle and

save it for non-dominated solutions of previous rounds. This

mechanism works similar to elitism of evolutionary compu-

tation. It also use a global repository so that each particle

keeps experience during its flight. This repository is used

for leader selection to guide other particles in search space.

Accordingly, each particle can select different leaders. The

MOPSO works based on generating different hypercube

which divide search space in several sections [30]. One of

the most successful meta-heuristic algorithm is bat optimiza-

tion algorithm (BOA) which was firstly introduced by Yang

[48] in 2010. Afterwards, in 2011, he proposed multi-objec-

tive bat optimization algorithm by incorporating dominance

concepts to solve multi-objective optimization problems

[32]. One of the famous and applicable multi-objective opti-

mizer which is based on genetic algorithm is NSGA-II that

was firstly introduced by Deb et al. [29] in 2002. NSGA-II

generates population then calls fast non-dominated sorting

algorithm to place solutions in different ranks. All solutions

In line 2, Algorithm 9 produces a number y as a random

nest number from Levy distribution based on Eq. (25).

where the variable u is a uniform variable in [0...1] inter-

val and the parameter � is obtained by Eq. (26).

where the parameter G is the generation number [44].

After that, line 3 updates the obtained solutions according

to boundary of problem domain. Time complexity of Algo-

rithm 9 is O(PopSize) because of its only for-loop.

Simulation and evaluation

To assess the effectiveness of proposed MOCSA algorithm

in solving multi-objective optimization problem of compo-

nents deployment on fog nodes, experiments are defined,

executed and evaluated. To reach concrete results different

scenarios are conducted. Also, the performance of proposed

MOCSA is compared with four prominent and successful

multi-objective optimization algorithms, namely, MOGWO

[33], MOPSO [30], MOBA [32] and NSGA-II [29]. In this

comparison, the evaluation metrics are total power consump-

tion and overall latency which are relevant to stated prob-

lem’s objective functions. As mentioned earlier, the total

power consumption is sum of processing power consumption

owing to resource utilization and power consumption owing

to data transfer between fog nodes via communication links.

In addition to, the overall latency is sum of latency obtained

from communication components which are placed on

(25)y = (1 − u)
−

1

�

(26)� = G
1∕6

For Each Solution [i] in Solutions do

382 Complex & Intelligent Systems (2022) 8:361–392

1 3

in the same rank cannot dominate each other, but they can

dominate the solutions placed in lower ranks. By utilizing

canonical crossover and mutation, the new generated solu-

tions may dominate the solutions associated to previous

solutions. In this case, the dominated solutions are omitted.

This procedure is repeated until the termination criteria is

met. Finally, the non-dominated solution of the first rank is

returned.

Experimental settings

To evaluate the proposed approach, different scenarios are

conducted in which the number of requested components

and fog nodes increase gradually. Table 3 elaborates sce-

narios in details. Note that, the scenarios (5–8) are defined

for scalability testing of comparative algorithms where the

size of inputs are significantly increased. All experiments are

executed on a dual core Intel Corei3 380 M platform with

2.53 GHZ clock rate, four logical processors, and 8 GB as

main memory.

Since fog computing is ad-hoc and there is not abun-

dant datasets in literature, we produce dataset by uniform

distribution fashion such as in Tables 4, 5, 6, 7, 8 and 9. In

addition to, the fog is completely heterogeneous in terms

of resources and their speed the reason why we consider

fluctuations in produced dataset. Tables 4, 5 and 6 gives

underlying fog computing specifications for an example with

5 fog nodes. In this regards, Table 4 shows fog nodes speci-

fications in terms of CPU clock rate, main memory and their

threshold, minimum and maximum power consumption (idle

vs full-loaded), kind of supported sensors and software, and

power consumption of data transfer. In this table, the zero

value indicates lack of support. The value 1 and 2 indicates

the type of sensors. Tables 5 and 6 show bandwidth and

latency between direct communications of fog nodes. The

values was normalized in [0...1] interval. In Table 5, the

value zero means that there is not any connection between

nodes whereas the value one indicates the nodes are the

same; this concept is reverse in Table 6.

In this regards, Tables 7, 8, and 9 draw an example of

resources requested for applications containing 5 different

components. Table 7 is used for CPU, RAM, kind of sen-

sors, and software requests for components. Table 8 is used

for bandwidth requested for each pair of components. Also,

Fig. 9 Performance comparison of different algorithms in scenario with 20 components on 10 fog nodes

383Complex & Intelligent Systems (2022) 8:361–392

1 3

Table 9 is utilized for the least latency tolerable between

each pair of components.

For simulations and comparisons, parameter settings

of algorithms MOCSA, MOGWO, MOPSO, MOBA, and

NSGA-II are brought in Table 10.

Experimental results

In this section, the comparison between proposed MOCSA

and other algorithms are based on Pareto front, two objective

functions values, and elapsed time. Also, we utilize another

versions of MOGWO algorithms known as MOGWO-I. In

the second version, two operators crossover and mutation

of genetic algorithm are applied for exploring the search

space. In addition to, optimal deployment plan is drawn and

the hosting node of application components is drawn in red

color.

First scenario: 10 fog nodes and 20 application components

Figure 9 demonstrates performance comparison of differ-

ent algorithms in a scenario with 20 requested components

to be placed on 10 underlying fog nodes. Figure 9a draws

Pareto frontiers derived from different algorithms. As this

figure shows, MOCSA outperforms against others. Mega

Node which MOCSA extracts is depicted in Fig. 9b; it shows

the optimal deployment plan and the selected fog nodes are

1, 4, 5, 9, and 10. In addition to, Fig. 9c and d depict com-

parison of different algorithms’ performance in terms of the

first objective (total power consumption based on Eq. (16))

and the second objective (overall latency based on Eq. (17)).

Table 11 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

second place after MOPSO that is the fastest between all,

but the quality of non-dominated solutions of MOCSA are

better than others.

Second scenario: 15 fog nodes and 25 application

components

Figure 10 demonstrates performance comparison of different

algorithms in a scenario with 25 requested components to be

placed on 15 underlying fog nodes. Figure 10a draws Pareto

frontiers derived from different algorithms. As this figure

shows, MOCSA outperforms against others. Mega Node

which MOCSA extracts is depicted in Fig. 10b; it shows the

optimal deployment plan and the selected fog nodes are 3,

5, 9, 10, and 13. In addition to, Fig. 10c and d depict com-

parison of different algorithms’ performance in terms of the

first objective (total power consumption based on Eq. (16))

and the second objective (overall latency based on Eq. (17)).

Table 12 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

second place after MOPSO that is the fastest between all,

but the quality of non-dominated solutions of MOCSA are

better than others. In term of execution time, the proposed

MOCSA competes marginally with NSGA-II that is in the

third place.

Third scenario: 20 fog nodes and 30 application

components

Figure 11 demonstrates performance comparison of differ-

ent algorithms in a scenario with 30 requested components

to be placed on 20 underlying fog nodes. Figure 11a draws

Pareto frontiers derived from different algorithms. As this

figure shows, MOCSA outperforms against others. Mega

Node which MOCSA extracts is depicted in Fig. 11b; it

shows the optimal deployment plan and the selected fog

nodes are 6, 7, 11, 16, and 17. In addition to, Fig. 11c and d

depict comparison of different algorithms’ performance in

terms of the first objective (total power consumption based

on Eq. (16)) and the second objective (overall latency based

on Eq. (17)).

Table 13 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

third place after MOPSO and NSGA-II that are the fastest

and the second fastest between all, but the quality of non-

dominated solutions of MOCSA are better than others.

Fourth scenario: 25 fog nodes and 40 application

components

Figure 12 demonstrates performance comparison of differ-

ent algorithms in a scenario with 40 requested components

to be placed on 25 underlying fog nodes. Figure 12a draws

Pareto frontiers derived from different algorithms. As this

figure shows, MOCSA outperforms against others. Mega

Node which MOCSA extracts is depicted in Fig. 12b; it

shows the optimal deployment plan and the selected fog

nodes are 1, 4, 7, 9, 11, 16 and 21. In addition to, Fig. 12c

and d depict comparison of different algorithms’ perfor-

mance in terms of the first objective (total power consump-

tion based on Eq. (16)) and the second objective (overall

latency based on Eq. (17)).

Table 14 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

third place after NSGA-II and MOPSO that is the fastest and

second fastest between all, but the quality of non-dominated

solutions of MOCSA are better than others.

Table 11 Performance comparison of algorithms in term of elapsed

time

MOCSA 238.41 s MOGWO 266.4 s MOBA 548.98 s

MOPSO 210.2 s MOGWO-I 985.56 s NSGA-II 276.07 s

384 Complex & Intelligent Systems (2022) 8:361–392

1 3

Fifth scenario: 40 fog nodes and 60 application components

Figure 13 demonstrates performance comparison of different

algorithms in a scenario with 60 requested components to be

placed on 40 underlying fog nodes. Figure 13a draws Pareto

frontiers derived from different algorithms. As this figure

shows, MOCSA outperforms against others. Mega Node

which MOCSA extracts is depicted in Fig. 13b; it shows

the optimal deployment plan and the selected fog nodes are

1, 2, 3, 7, 9, 12, 14, 15, 16, 19, 24, 28, 31, 33 and 37. In

addition to, Fig. 13c and d depict comparison of different

algorithms’ performance in terms of the first objective (total

power consumption based on Eq. (16)) and the second objec-

tive (overall latency based on Eq. (17)).

Table 15 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

Fig. 10 Performance comparison of different algorithms in scenario with 25 components on 15 fog nodes

Table 12 Performance comparison of algorithms in term of elapsed

time

MOCSA 269.77 s MOGWO 293.16 s MOBA 301.02 s

MOPSO 241.55 s MOGWO-I 1156.3 s NSGA-II 270.01 s

385Complex & Intelligent Systems (2022) 8:361–392

1 3

second place after MOPSO that is the fastest between all, but

the quality of non-dominated solutions of MOCSA are better

than others. In term of execution time, the proposed MOCSA

competes marginally with NSGA-II that is in the third place.

Sixth scenario: 55 fog nodes and 75 application

components

Figure 14 demonstrates performance comparison of different

algorithms in a scenario with 75 requested components to be

placed on 55 underlying fog nodes. Figure 14a draws Pareto

frontiers derived from different algorithms. As this figure

shows, MOCSA outperforms against others. Mega Node

which MOCSA extracts is depicted in Fig. 14b; it shows the

optimal deployment plan and the selected fog nodes are 3,

6, 8, 9, 22, 24, 28, 29, 31, 32, 39, 43, 45 and 55. In addition

to, Fig. 14c and d depict comparison of different algorithms’

performance in terms of the first objective (total power con-

sumption based on Eq. (16)) and the second objective (over-

all latency based on Eq. (17)).

Table 16 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

second place after NSGA-II that is the fastest between all,

but the quality of non-dominated solutions of MOCSA are

better than others. In term of execution time, the proposed

MOCSA competes marginally with MOPSO that is in the

third place.

Seventh scenario: 70 fog nodes and 100 application

components

Figure 15 demonstrates performance comparison of differ-

ent algorithms in a scenario with 100 requested components

Fig. 11 Performance comparison of different algorithms in scenario with 30 components on 20 fog nodes

Table 13 Performance comparison of algorithms in term of elapsed

time

MOCSA 298.03 s MOGWO 332.02 s MOBA 342.39 s

MOPSO 275.62 s MOGWO-I 1264.3 s NSGA-II 290.87 s

386 Complex & Intelligent Systems (2022) 8:361–392

1 3

to be placed on 70 underlying fog nodes. Figure 15a draws

Pareto frontiers derived from different algorithms. As this

figure shows, MOCSA outperforms against others. Mega

Node which MOCSA extracts is depicted in Fig. 15b; it

shows the optimal deployment plan and the selected fog

nodes are 8, 10, 13, 17, 18, 19, 20, 24, 30, 35, 38, 39, 40, 42,

45, 49, 51, 52, 53, 58, 64 and 66. In addition to, Fig. 15c and

d depict comparison of different algorithms’ performance in

terms of the first objective (total power consumption based

on Eq. (16)) and the second objective (overall latency based

on Eq. (17)).

Table 17 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

second place after NSGA-II that is the fastest between all,

but the quality of non-dominated solutions of MOCSA are

better than others. In term of execution time, the proposed

MOCSA competes marginally with MOPSO that is in the

third place.

Eighth scenario: 100 fog nodes and 150 application

components

Figure 16 demonstrates performance comparison of different

algorithms in a scenario with 150 requested components to

be placed on 100 underlying fog nodes. Figure 16a draws

Fig. 12 Performance comparison of different algorithms in scenario with 40 components on 25 fog nodes

Table 14 Performance comparison of algorithms in term of elapsed

time

MOCSA 446.99 s MOGWO 463.06 s MOBA 469.16 s

MOPSO 401.48 s MOGWO-I 1804.02 s NSGA-II 379.46 s

387Complex & Intelligent Systems (2022) 8:361–392

1 3

Pareto frontiers derived from different algorithms. As this

figure shows, MOCSA outperforms against others. Mega

Node which MOCSA extracts is depicted in Fig. 16b; it

shows the optimal deployment plan and the selected fog

nodes are 1, 9, 16, 17, 19, 21, 24, 28, 39, 40, 51, 53, 56,

57, 59, 60, 62, 63, 65, 72, 73, 78, 84, 86, 88, 89 and 93. In

addition to, Fig. 16c and d depict comparison of different

algorithms’ performance in terms of the first objective (total

power consumption based on Eq. (16)) and the second objec-

tive (overall latency based on Eq. (17)).

Table 18 compares algorithms’ performance in term of

elapsed time. This Table shows that MOCSA falls in the

second place after NSGA-II that is the fastest between all,

but the quality of non-dominated solutions of MOCSA are

better than others. In term of execution time, the proposed

MOCSA competes marginally with MOBA that is in the

third place.

For the sake of data analysis statistically, the proposed

MOCSA outperforms 43%, 28%, 41%, 30% and 32%

improvement against MOGWO, MOGWO-I, MOPSO,

MOBA and NSGA-II in term of average reduction in power

consumption; also, in the minimum value gained by solu-

tions, the proposed MOCSA outperforms 26%, 36%, 23%,

39% and 43% improvement against MOGWO, MOGWO-

I, MOPSO, MOBA and NSGA-II in term of minimum

Fig. 13 Performance comparison of different algorithms in scenario with 60 components on 40 fog nodes

Table 15 Performance comparison of algorithms in term of elapsed

time

MOCSA 666.82 s MOGWO 760.19 s MOBA 743.96 s

MOPSO 659.77 s MOGWO-I 3401.5 s NSGA-II 676.16 s

388 Complex & Intelligent Systems (2022) 8:361–392

1 3

value of power consumption. In addition to, the proposed

MOCSA outperforms 42%, 29%, 46%, 13% and 5% improve-

ment against MOGWO, MOGWO-I, MOPSO, MOBA and

NSGA-II in term of average reduction in overall latency;

also, in the minimum value gained by solutions, the pro-

posed MOCSA outperforms 40%, 33%, 37%, 17% and 6%

improvement against MOGWO, MOGWO-I, MOPSO,

MOBA and NSGA-II in term of minimum value of overall

latency.

Time complexity

Now that, time complexity of all sub algorithms have been

determined, the time complexity of Algorithm 1 is now

calculated. The preprocessing takes K∙N
2+M + N which

belongs to O(M + K∙N2). Also, the main loop iterates Max-

Iteration times. For the main loop, we have MaxIteration

×(N∙PopSize + PopSize2). If we consider N < PopSize,

Algorithm 1’s time complexity is O(M + K.N2 + Max-

Iteration∙PopSize2) which is relatively acceptable time

complexity.

Fig. 14 Performance comparison of different algorithms in scenario with 75 components on 55 fog nodes

Table 16 Performance comparison of algorithms in term of elapsed

time

MOCSA 835.23 s MOGWO 1024.2 s MOBA 1072.8 s

MOPSO 867.71 s MOGWO-I 3690.06 s NSGA-II 770.96 s

389Complex & Intelligent Systems (2022) 8:361–392

1 3

Conclusion and future direction

In this paper, an algorithm for the deployment of IoT appli-

cation components on fog nodes has been presented to meet

reliable deployment for user requests. To address this issue,

this deployment problem was modeled to a multi-objective

optimization problem with total power consumption and

overall latency perspectives. To solve this combinatorial

optimization problem, a multi-objective optimization algo-

rithm based on cuckoo search meta-heuristic algorithm

known MOCSA was extended. To reach concrete results,

different scenarios were conducted and the effectiveness

of proposed MOCSA was compared with well-reputed

meta-heuristic algorithms MOGWO, MOPSO, MOBA,

and NSGA-II in fair experimental conditions. The results

obtained from simulations prove the significant superiority

of proposed algorithm in terms of average overall latency

and average total power consumption against other state-

of-the-arts in objective functions. The merit of the current

paper is to deliver users reliable services along with meeting

objective functions. Also, the simulation proved the pro-

posed MOCSA is potentially scalable. The limitation of the

current work is to know the resource request in advance.

For future work, we intend to present a dynamic model for

mobile IoT applications in chain of fog computing nodes

with QoS and economic perspectives to reach equilibrium

in desired objectives.

Fig. 15 Performance comparison of different algorithms in scenario with 100 components on 70 fog nodes

Table 17 Performance comparison of algorithms in term of elapsed

time

MOCSA 1139.4 s MOGWO 1769.6 s MOBA 1299.9 s

MOPSO 1236.2 s MOGWO-I 4552.2 s NSGA-II 1082.1 s

390 Complex & Intelligent Systems (2022) 8:361–392

1 3

Declarations

Conflic of interest There is not any conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Foukalas F (2020) Cognitive IoT platform for fog computing

industrial applications. Comput Electr Eng 87:1–13. https:// doi.

org/ 10. 1016/j. compe leceng. 2020. 106770

 2. OpenFog. An OpenFog Architecture Overview (2017) https://

www. iicon sorti um. org/ pdf/ OpenF og_ Refer ence_ Archi tectu re_2_

09_ 17. pdf. Accessed Feb 2017

 3. Azimi SH, Pahl C, Hosseini-Shirvani M (2020) Particle swarm

optimization for performance management in multi-cluster IoT

edge architectures. Int Cloud Comput Conf CLOSER. 2020:328–

337. https:// doi. org/ 10. 5220/ 00093 91203 280337

 4. Hong HJ, Tsai PH, Hsu CH (2016) Dynamic module deployment

in a fog computing platform. In: 18th Asia-Pacific network opera-

tions and management symposium (APNOMS), pp 1–6. https://

doi. org/ 10. 1109/ APNOMS. 2016. 77372 02

 5. Taneja M, Davy A (2017) Resource-aware placement of IoT

application modules in fog-cloud computing paradigm. In: Proc.

of the IFIP/IEEE symposium on integrated network and service

Table 18 Performance comparison of algorithms in term of elapsed

time

MOCSA 2199 s MOGWO 2392.4 s MOBA 2294.5 s

MOPSO 2434 s MOGWO-I 7104.7 s NSGA-II 2038s

Fig. 16 Performance comparison of different algorithms in scenario with 150 components on 100 fog nodes

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.compeleceng.2020.106770
https://doi.org/10.1016/j.compeleceng.2020.106770
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://doi.org/10.5220/0009391203280337
https://doi.org/10.1109/APNOMS.2016.7737202
https://doi.org/10.1109/APNOMS.2016.7737202

391Complex & Intelligent Systems (2022) 8:361–392

1 3

management, IM ’15, IEEE, pp 1222–1228. https:// doi. org/ 10.

23919/ INM. 2017. 79874 64

 6. Brogi A, Forti A (2017) QoS-aware deployment of IoT appli-

cations through the fog. IEEE Internet Things J 4:1185–1192.

https:// doi. org/ 10. 1109/ JIOT. 2017. 27014 08

 7. Li F, Vogler M, Claeßens M, Dustdar S (2013) Towards automated

IoT application deployment by a cloud-based approach. In: 6th

international conference on service-oriented computing and appli-

cations, IEEE, pp 61–68. https:// doi. org/ 10. 1109/ SOCA. 2013. 12

 8. Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware

application module management for fog computing environments.

ACM Trans Internet Technol 2018:1–21. https:// doi. org/ 10. 1145/

31865 92

 9. Vögler M, Schleicher JM, Inzinger C, Dustdar S (2015) DIANE—

Dynamic IoT Application Deployment. In: IEEE international

conference on mobile services, pp 298–305. https:// doi. org/ 10.

1109/ MobSe rv. 2015. 49

 10. Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwalder B

(2016) Incremental deployment and migration of geo-distributed

situation awareness applications in the fog. In: DEBS, pp 258–

269. https:// doi. org/ 10. 1145/ 29332 67. 29333 17

 11. Chen BL, Huang SC, Luo YC, Chung YC, Chou J (2017) A

dynamic module deployment framework for M2M platforms. In:

IEEE 7th international symposium on cloud and service computing

(SC2). IEEE, pp 194–200. https:// doi. org/ 10. 1109/ SC2. 2017. 37

 12. Yangui S, Ravindran P, Bibani O, Glitho R. H, Hadj-Alouane

NB, Morrow MJ, Polakos PA (2016) A platform as-a-service for

hybrid cloud/fog environments. In: 2016 IEEE international sym-

posium on local and metropolitan area networks (LANMAN), pp

1–7. https:// doi. org/ 10. 1109/ LANMAN. 2016. 75488 53

 13. Babu R, Bhattacharyya B (2019) Strategic placements of PMUs

for power network observability considering redundancy measure-

ment. Measurement 134:606–623. https:// doi. org/ 10. 1016/j. measu

rement. 2018. 11. 001

 14. Babu R, Bhattacharyya B (2018) An approach for optimal place-

ment of phasor measurement unit for power network observability

considering various contingencies. Iran J Sci Technol Trans Electr

Eng 42(2):161–183. https:// doi. org/ 10. 1007/ s40998- 018- 0063-7

 15. Babu R, Bhattacharyya B (2016) Optimal allocation of phasor

measurement unit for full observability of the connected power

network. Int J Electr Power Energy Syst 79:89–97. https:// doi. org/

10. 1016/j. ijepes. 2016. 01. 011

 16. Babu R, Bhattacharyya B (2017) Weak bus-oriented installa-

tion of phasor measurement unit for power network observabil-

ity. Int J Emerg Electr Power Syst 18:5. https:// doi. org/ 10. 1515/

ijeeps- 2017- 0073

 17. Babu R, Bhattacharyya B (2020) Optimal placement of PMU for

complete observability of the interconnected power network con-

sidering zero-injection bus. Int J Appl Power Eng 9(2):135–146.

https:// doi. org/ 10. 11591/ ijape. v9. i2. pp135- 146

 18. Hosseini Shirvani M (2018) Web service composition in multi-

cloud environment: a bi-objective genetic optimization algorithm.

In: 2018 IEEE (SMC) international conference on innovations

in intelligent systems and applications. https:// doi. org/ 10. 1109/

INISTA. 2018. 84662 67

 19. Hosseini Shirvani M, Gorji AB (2020) Optimization of automatic

web services composition using genetic algorithm. Int J Cloud

Comput 9(4):397–411. https:// doi. org/ 10. 1504/ IJCC. 2020. 112313

 20. Hosseini-Shirvani M (2018) A new shuffled genetic-based task

scheduling algorithm in heterogeneous distributed systems. J Adv

Comput Res 2018:19–36

 21. Hosseinzadeh S, Hosseini SM (2015) Optimizing energy con-

sumption in clouds by using genetic algorithm. J Multidiscipl Eng

Sci Technol 2(6):1431–1434

 22. Razavi F, Zabihi F, Hosseini SM (2016) Multi-layer perceptron

neural network training based on improved of stud GA. J Adv

Comput Res 7(3):1–14

 23. Javadian Kootanaee A, Poor Aghajan A, Hosseini SM (2021) A

hybrid model based on machine learning and genetic algorithm

for detecting fraud in financial statements. J Optim Ind Eng

14(2):180–201. https:// doi. org/ 10. 22094/ joie. 2020. 18774 55. 1685

 24. Hosseini-Shirvani M (2020) Bi-objective web service composition

problem in multi-cloud environment: a bi-objective time-varying

particle swarm optimisation algorithm. J Exp Theor Artif Intell

2020:1–24. https:// doi. org/ 10. 1080/ 09528 13X. 2020. 17256 52

 25. Hosseini-Shirvani M (2019) A hybrid meta-heuristic algorithm

for scientific workflow scheduling in heterogeneous distributed

computing systems. Eng Appl Artif Intell 2019:90. https:// doi.

org/ 10. 1016/j. engap pai. 2020. 103501

 26. Saeedi P, Hosseini SM (2021) An improved thermodynamic simu-

lated annealing-based approach for resource-skewness-aware and

power-efficient virtual machine consolidation in cloud datacent-

ers. Soft Comput. https:// doi. org/ 10. 1007/ s00500- 020- 05523-1

 27. Noorian Talooki R, Hosseini Shirvani M, Motameni H (2021) A

Hybrid Meta-heuristic scheduler algorithm for optimization of

workflow scheduling in cloud heterogeneous computing environ-

ment. J Eng Design Technol Emerald Publ (In Press)

 28. Tanha M, Hosseini Shirvani M, Rahmani AM (2020) GATSA: a

hybrid meta-heuristic task scheduling algorithm based on genetic

and thermodynamic simulated annealing algorithms in cloud com-

puting environment. Neural Comput Appl Springer Publ (In Press)

 29. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-

ist multi objective genetic algorithm: Nsga-II. IEEE Trans Evol

Comput 6(2):182–197. https:// doi. org/ 10. 1109/ 4235. 996017

 30. Coello CAC, Lechuga MS (2002) MOPSO: a proposal for mul-

tiple objective particle swarm optimization. In: Proceedings of

the 2002 congress on evolutionary computation (CEC’02). USA:

IEEE Publications. https:// doi. org/ 10. 1109/ CEC. 2002. 10043 88

 31. Hosseini-Shirvani M, Rahmani AM, Sahafi A (2018) An iterative

mathematical decision model for cloud migration: a cost and secu-

rity risk approach. Softw Pract Exp Homepage 48(3):449–485.

https:// doi. org/ 10. 1002/ spe. 2528

 32. Yang XS (2011) Bat algorithm for multiobjective optimization. Int

J Bio-Inspired Comput 3(5):267–274. https:// arxiv. org/ abs/ 1203.

6571v1

 33. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-

objective grey wolf optimizer: a novel algorithm for multi-cri-

terion optimization. J Expert Syst Appl Elsevier 47:106–119.

https:// doi. org/ 10. 1016/j. eswa. 2015. 10. 039

 34. Wang Z, Ong Y, Ishibuchi H (2019) On scalable multiobjective

test problems with hardly dominated boundaries. IEEE Trans Evol

Comput 23(2):217–231. https:// doi. org/ 10. 1109/ TEVC. 2018.

28442 86

 35. Wang Z, Ong Y, Sun J, Gupta A, Zhang Q (2019) A generator

for multiobjective test problems with difficult-to-approximate

pareto front boundaries. IEEE Trans Evol Comput 23(4):556–571.

https:// doi. org/ 10. 1109/ TEVC. 2018. 28724 53

 36. Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2016) Adap-

tive replacement strategies for MOEA/D. IEEE Trans Cybern

46(2):474–486. https:// doi. org/ 10. 1109/ TCYB. 2015. 24038 49

 37. Wang Z, Zhang Q, Li H, Shibuchi H, Jiao L (2017) On the use

of two reference points in decomposition based multiobjective

evolutionary algorithms. Swarm Evol Comput 34:89–102. https://

doi. org/ 10. 1016/j. swevo. 2017. 01. 002

 38. Ali LB, Helaoui M, Naanaa W (2019) Pareto-based soft arc con-

sistency for multi-objective valued CSPs. ICAART. 2019:294–305

 39. Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks:

asurvey. Comput Netw 47(4):445–487. https:// doi. org/ 10. 1016/j.

comnet. 2004. 12. 001

https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/SOCA.2013.12
https://doi.org/10.1145/3186592
https://doi.org/10.1145/3186592
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1109/SC2.2017.37
https://doi.org/10.1109/LANMAN.2016.7548853
https://doi.org/10.1016/j.measurement.2018.11.001
https://doi.org/10.1016/j.measurement.2018.11.001
https://doi.org/10.1007/s40998-018-0063-7
https://doi.org/10.1016/j.ijepes.2016.01.011
https://doi.org/10.1016/j.ijepes.2016.01.011
https://doi.org/10.1515/ijeeps-2017-0073
https://doi.org/10.1515/ijeeps-2017-0073
https://doi.org/10.11591/ijape.v9.i2.pp135-146
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1504/IJCC.2020.112313
https://doi.org/10.22094/joie.2020.1877455.1685
https://doi.org/10.1080/0952813X.2020.1725652
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1007/s00500-020-05523-1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CEC.2002.1004388
https://doi.org/10.1002/spe.2528
https://arxiv.org/abs/1203.6571v1
https://arxiv.org/abs/1203.6571v1
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1109/TEVC.2018.2844286
https://doi.org/10.1109/TEVC.2018.2844286
https://doi.org/10.1109/TEVC.2018.2872453
https://doi.org/10.1109/TCYB.2015.2403849
https://doi.org/10.1016/j.swevo.2017.01.002
https://doi.org/10.1016/j.swevo.2017.01.002
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001

392 Complex & Intelligent Systems (2022) 8:361–392

1 3

 40. Arcangeli JP, Boujbel R, Leriche S (2015) Automatic deployment

of distributed software systems: definitions and state of the art. J

Syst Softw 3:198–218. https:// doi. org/ 10. 1016/j. jss. 2015. 01. 040

 41. Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing:

a platform for internet of things and analytics. In: Big data and

internet of things: a roadmap for smart environments, Springer,

pp 169–186. https:// doi. org/ 10. 1007/ 978-3- 319- 05029-4_7

 42. Farzai S, Hosseini-Shirvani M, Rabbani M (2020) Multi-objective

communication-aware optimization for virtual machine placement

in cloud datacenters. Sustain Comput Inf Syst 2020:28. https:// doi.

org/ 10. 1016/j. suscom. 2020. 100374

 43. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Pro-

ceedings of world congress on nature & biologically inspired com-

puting, pp 210–214. https:// doi. org/ 10. 1109/ NABIC. 2009. 53936

90

 44. Sait SM, Bala A, El-Maleh AH (2016) Cuckoo search based

resource optimization of datacenters. Appl Intell 44:489–506.

https:// doi. org/ 10. 1007/ s10489- 015- 0710-x

 45. Tavana M, Shahdi-Pashaki S, Teymourian E, Santos-Arteaga FJ,

Komaki M (2017) A discrete cuckoo optimization algorithm for

consolidation in cloud computing. Comput Ind Eng 115:495–511.

https:// doi. org/ 10. 1016/j. cie. 2017. 12. 001

 46. Hosseini Shirvani M, Farzai S (2020) Optimal deployment of

IoT application components on hybrid fog2cloud infrastructure

for reduction of power consumption toward green computing by

cuckoo search algorithm. In: The first national conference of New

Development in Green Studies, Computations, Applications, and

Challenges, NGIS01

 47. Walton S, Hassan O, Morgan K, Brown MR (2011) Modified

cuckoo search: a new gradient free optimisation algorithm. Chaos

Solitons Fractals 44(9):710–718. https:// doi. org/ 10. 1016/j. chaos.

2011. 06. 004

 48. Yang XS (2010) A new metaheuristic bat-inspired algo-

rithm, in nature inspired cooperative strategies for optimiza-

tion. Stud Comput Intell 284:65–74. https:// doi. org/ 10. 1007/

978-3- 642- 12538-6_6

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2015.01.040
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1007/s10489-015-0710-x
https://doi.org/10.1016/j.cie.2017.12.001
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6

	Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure
	Abstract
	Introduction
	Related works
	Proposed framework and models
	System framework
	Fog model
	Application model
	Reliability model
	Deployment model

	Problem statement
	Overall latency
	Power consumption
	Problem formulation

	Proposed MOCSA algorithm for component deployment problem
	Problem encoding
	Proposed MOCSA
	Preprocessing
	Initialization step
	Fitness function
	Non-dominated sorting
	Crowding distance
	Inferior nests update
	Superior nests possibly updates

	Simulation and evaluation
	Experimental settings
	Experimental results
	First scenario: 10 fog nodes and 20 application components
	Second scenario: 15 fog nodes and 25 application components
	Third scenario: 20 fog nodes and 30 application components
	Fourth scenario: 25 fog nodes and 40 application components
	Fifth scenario: 40 fog nodes and 60 application components
	Sixth scenario: 55 fog nodes and 75 application components
	Seventh scenario: 70 fog nodes and 100 application components
	Eighth scenario: 100 fog nodes and 150 application components

	Time complexity

	Conclusion and future direction
	References

