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Abstract  

This paper proposes the multi-objective variant of the recently-introduced fitness dependent 

optimizer (FDO). The algorithm is called a Multi-objective Fitness Dependent Optimizer (MOFDO) 

and is equipped with all five types of knowledge (situational, normative, topographical, domain, and 

historical knowledge) as in FDO. MOFDO is tested on two standard benchmarks for the performance-

proof purpose: classical ZDT test functions, which is a widespread test suite that takes its name from 

its authors Zitzler, Deb, and Thiele, and on IEEE Congress of Evolutionary Computation benchmark 

(CEC-2019) multi-modal multi-objective functions. MOFDO results are compared to the latest 

variant of multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic 

algorithm third improvement (NSGA-III), and multi-objective dragonfly algorithm (MODA). The 

comparative study shows the superiority of MOFDO in most cases and comparative results in other 

cases. Moreover, MOFDO is used for optimizing real-world engineering problems (e.g., welded beam 

design problems). It is observed that the proposed algorithm successfully provides a wide variety of 

well-distributed feasible solutions, which enable the decision-makers to have more applicable-

comfort choices to consider. 

Keywords: Artificial Intelligence, Swarm Intelligence, Fitness Dependent Optimizer, Multi-

objective Optimization Algorithm, Welded beam design. 

1. Introduction 

Multi-objective optimization problems (MOPs) are in the area of multiple criteria decision-

making; the area is also known as multi-objective programming, multi-criteria optimization, or Pareto 

optimization. Precisely, this area deals with mathematical optimization problems with two or more, 

often conflicting, objectives.  Research on MOPs became widely popular in 2002 [1]. It is worth 

mentioning that various real-world applications fall under this area, such as engineering design, 

energy, economics, logistics, and health science.  Since many real-world problems are MOPs, multi-

objective evolutionary algorithms (MOEAs) are used to solve them. Generally speaking, MOEAs 

include three branches: dominance-based, decomposition-based, and indicator-based evolutionary 

algorithms (IBEAs) [2] [3] [4]. 
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The first branch of MOEAs includes a non-dominated sorting genetic algorithm (NSGA-II) [5], 

multi-objective particle swarm optimization (MOPSO) [6], and strength Pareto evolutionary 

algorithm 2 (SPEA2) [7]. These algorithms are considered posterior optimization algorithms, 

meaning that they maintain the multi-objective formulation of a multi-objective optimization problem 

and estimate the Pareto optimal solutions.  On the other hand, MOEAs based on decomposition come 

in the second branch [8]. Such algorithms, use different weights to create different decompositions 

of the objectives of a multi-objective problem to estimate the Pareto optimal solutions. 

The NSGA-II starts with a randomly generated population. As per fitness, it uses a fast-

nondominated sorting technique to sort the overall population, and then the children’s generation is 

produced by crossover and mutation. To enhance the diversity level among the solutions, a special 

crowding distance operator is also applied for later improvement [5]. Moreover, NSGA-II was 

improved to solve many-objective problems (having four or more objectives) known as NSGA-III 

[9]. Another popular algorithm with lower computational complexity than NSGA-III is MOPSO [6], 

which uses an archive grid-based approach to keep diversity among the solutions. In the last decade, 

many new MOEAs have been reported in the literature; multi-objective cat swarm optimization [10], 

multi-objective CLONAL algorithm, which is inspired by the clonal selection theory of acquired 

immunity [11], multi-objective moth flame optimization [12], multi-objective ant lion optimizer [13], 

multi-objective grey-wolf optimization [14], multi-objective dragonfly algorithm [15], and multi-

objective whale algorithm [16]. Having said that, Some MOEAs have been used for production 

scheduling [17], optimal truss design [18], and resource allocation in cognitive radio networks [19]. 

Furthermore, some other MOEAs were employed to classify the normal and aggressive behavior of 

3D human beings [11]. 

Finally, the IBEAs have received much popularity due to their strong theoretical support and 

background [3], IBEAs measure both diversity and convergence of non-dominated solutions in 

objective space, which are desirable in the context of multi-objective evolutionary optimization [20] 

[2]. Since IBEAs indicator functions automatically recover the diversity issue among their population 

solutions, they do not need any diversity maintenance mechanism. The first hypervolume indicator-

based EAs known as ”hypervolume by slicing objectives (HSO)” was introduced by  [21], also local 

search and hybrid evolutionary algorithms for Pareto optimization were proposed by [22]. As a result, 

many IBEAs were developed by using different procedures, such as preferences-based information 

and different local search optimizers, and many others [23] [24] [25] [26]. One obvious disadvantage 

of IBEA is that it requires additional time for calculating hypervolumes while dealing with many 

objectives’ problems, this issue has been addressed in several types of research, they proposed an 

enhancement of IBEAs, such as a faster algorithm for calculating hypervolume [27] [28] [29] [30]. 

To solve MOPs correctly, two factors need to be considered. Firstly, the accuracy of estimated Pareto 

optimal solutions. Secondly, the diversity of estimated Pareto optimal solutions. Multi-objective 

meta-heuristics need to address these two, often conflicting, factors. They typically start with a 

random population of solutions and improve them until the satisfaction of an end condition. The 

accuracy of the initial population increases over time [31] while some solutions will be favored over 

others due to them being “close” to the solutions already found in the objective space. 

Many efforts were made regarding the local and global guide selection, such as using the adaptive 

grid to select the global guide and introducing an extra repository to store the non-dominated particles 

in MOPSO [6]. In another attempt, the global focus is selected using crowding distance in crowding 

distance MOPSO [32]. In [33], Mostaghim and Teich determined the local guide based on the sigma 

method, while Pulido and Coello [34] used a clustering technique for the same purpose. On the other 

hand, a genetic operator and special domination principle have been employed in terms of population 
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diversity to improve the Pareto front variety.  Zitzler proposed the elitism mechanism that uses 

crossover and mutation on individuals that have been selected from the combination of population 

and repository [35], while Laumanns proposed Ɛ-box dominance to combine diversity and 

convergence [36]. In [37] and then [31]  a simulated binary crossover (SBX) is used. Additionally, in 

Pareto entropy MOPSO, a cell distance-based individual density is used to select the global guide 

[38]. Moreover, a hybrid grey wolf optimizer uses to increase the efficiency of complex industrial 

system designs [39]. Furthermore, [40] developed a modified genetic algorithm (MGA), and they 

used it for the ship routing and scheduling model. Another modification of GA has been used by [41] 

for utilizing a reduced-order model for preliminary reactor design optimization. Recently, a new 

multi-objective learner performance-based behavior algorithm (MOLPB) was used to solve a four-

bar truss design problem, pressure vessel design, coil compression spring design problem, speed 

reducer design problem, and car side impact design problem [42]. 

According to [43], a cultural algorithm is formed of five types of knowledge: situational, 

normative, topographical, domain, and historical knowledge, These file types are explained briefly in 

the following list: 

1. Situational knowledge is a set of objects useful for the experience interpretation of all individuals 

in a certain population. In other words, situational knowledge guides individuals to move toward 

exemplars (best local or best global guides). 

2. Normative knowledge: includes a set of promising ranges of decision variables. It offers strategies 

for individual adjustments. More precisely, it leads individuals to dive into a good range. 

3. Topographical knowledge: it splits the completely feasible search landscape into cells. Each of 

these cells represents a different spatial characteristic; also, each cell selects the best individual in 

its specific ranges. Keeping the idea simple, topographical knowledge leads individuals toward the 

best cell. 

4. Domain knowledge: it records information about the problem domain to guide the whole search; 

it is considered useful during the search process. 

5. Historical knowledge: it records the key events in the search process by keeping track of significant 

individuals' history. Key events might be a big move in the search space or sometimes comes in 

the form of notable changes in the search landscape. Individuals are using historical knowledge to 

select a preferable direction. 

 

Various research has been conducted in the field of nature-inspired metaheuristic algorithms; 

additionally, many efficient algorithms have been proposed in the literature. Alternatively, there is 

always room for new algorithms, as long as the proposed algorithm provides better or comparative 

performances, as explained by [44] in their work titled “No Free Lunch Theorems for Optimization” 

in 1997. Thus, there is no single global algorithm that can provide the optimum solution for every 

optimization problem. Furthermore, this work represents a multi-objective mode of the currently 

existing single-objective algorithm called FDO [45]. One major limitation of many MOEAs is that 

they tend to fall into local optimum in high-dimensional space easily and have a low convergence 

rate in the iterative process [46], in MOFDO, the fitness weight and weight factor parameters were 

used to increase both coverage and convergence of the algorithm (more on this is discussed in section 

2.2), also storing previous good decision for later reuse will convergence speed as well. For these 

reasons, a new algorithm called MOFDO is proposed in this work. This algorithm is inspired by the 

swarming behavior of bees during the reproductive process when they search for new hives. The 

proposed algorithms have nothing in common with the artificial bee colony (ABC) algorithm (except 

both algorithms are inspired by bee behavior, and both are nature-inspired meta-heuristic algorithms).  
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Regarding this paper's major contributions, a new novel multi-objective mode of the novel single-

objective FDO algorithm is proposed. One of the major contributions of this work is developing 

MOEA, which has a linear time and space complexity (more on this is discussed in section 2.4). 

Moreover, besides having an archive for saving the Pareto front solutions, a polynomial mutation 

mechanism is employed as a variation operator. Furthermore, extra storage has been used for saving 

the previous paces for the potential reuse in the next iterations; this will improve the algorithm 

performance Additionally, Hypercube grids are used in the implementation to help select the local 

and global guide individuals. 

The rest of this paper is organized as follows: Section 2, explains the methodology of theoretical 

calculations, also the definitions for the Pareto sets, Pareto optimality set, and Pareto front set. 

Moreover, the MOFDO is proposed and mathematically explained in detail. Then in Section 3, results 

and discussion are discussed. In Section 4, MOFDO is employed to solve a real-world engineering 

problem (welded beam design problem). Finally, the conclusions are outlined in Section 5.  

 

2. Methodology 

In this section, some of the preliminaries and essential definitions of multi-objective optimization 

are covered. MOFDO algorithm is mathematically and programmatically presented in detail. The 

level of detail is constructed in a way that other researchers can easily replicate our work. 

2.1. Pareto Optimal Solutions Set 

Mathematically speaking, MOPs can be represented as follows, with no loss of generality: 

minimize:  �⃗�(�⃗�) = {𝑓1( �⃗�), 𝑓2( �⃗�), … , 𝑓𝑛( �⃗�)}                                    (1) 

subject to:       

  𝑔𝑖(�⃗�)  ≤ 0,            𝑖 = 1,2, … ,𝑚 

  ℎ𝑖(�⃗�)  = 0,            𝑖 = 1,2, … , 𝑝 

where: 𝑛 is several objectives, 𝑔 and ℎ are constraints, 𝑚 is inequality constraint and 𝑝 is equality 

constraint [47].  

This type of problem cannot be optimized normally with the traditional single-objective algorithm, 

not just because of its multi-objective nature but also because of conflicting objectives in the same 

optimization problem, which means there is no single optimum solution. Instead, there is a set of 

optimal solutions known as the Pareto optimality solutions set, representing the best trad-offs between 

objectives. For readability purposes, Pareto optimality will be discussed briefly in this sub-section. 

Pareto optimality solutions can be explained using the following definitions [48]: 

• Def. #1: for vectors (solution)  �⃗� and �⃗⃗� in optimization problem 𝐾𝑡. For 𝑖 = 1, 2, … ,𝑚,   �⃗� ≤ �⃗⃗�  if 

the objectives of vector �⃗�  smaller or equal to the objectives of vector  �⃗⃗�  and at least there is 𝑎𝑖⃗⃗⃗⃗   

<𝑏𝑖⃗⃗⃗ ⃗. 

• Def. #2:  if    �⃗� ≤ �⃗⃗�   then: �⃗� dominates �⃗⃗�, and denoted by  �⃗�  ≺ �⃗⃗�. 

• Def. #3: two solutions might not dominate each other if Def. #1 is not applied, in this case, 

solutions  �⃗�  and �⃗⃗� are non-dominated concerning each other, and denoted as �⃗�  ⊀ �⃗⃗� is the set of 

all nondominated known as the Pareto optimal solution set 𝑃𝑠, and defined as equation (2):  
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𝑃𝑠 ≔ {�⃗�  , 𝑏 ∈ 𝐴|∃𝐹(𝑎) ≻ 𝐹(𝑏)}                                                                    (2) 

 

• Def #4:  The set holding equivalent object values of Pareto optimal solutions in 𝑃𝑠, is known as 

Pareto optimal front 𝑃𝑓, and defined as equation (3): 

 

𝑃𝑓 ≔ {𝐹(�⃗�  )|�⃗�  ∈|𝑃𝑠}                                                                                         (3) 

2.2. Multi-Objective Fitness Dependent Optimizer  

Multi-objective fitness dependent optimizer (MOFDO) is based on our recent work, a single 

objective fitness dependent optimizer FDO [45].  FDO is a metaheuristic algorithm, the bee swarming 

reproductive process, and their collective decision-making has inspired this algorithm.  FDO updates 

the individual position by adding 𝑝𝑎𝑐𝑒 to the current position as shown in equation (4); the same 

mechanism is also applied in MOFDO. However, to calculate the 𝑝𝑎𝑐𝑒, the conditions presented in 

Equations (5, 6, and 7) need to be considered, and these conditions depend on the fitness weight (𝑓𝑤) 

value. 𝑓𝑤 can be calculated using the problem cost function values according to Equation (8). It is 

worth mentioning that the 𝑝𝑎𝑐𝑒 represents both domain and historical knowledge in MOFDO. 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 +  𝑝𝑎𝑐𝑒                                                                                                                    (4) 

where i represents the current individual number, t represents the current iteration, x is the 

individual itself, and 𝑝𝑎𝑐𝑒 is the movement rate and direction. Recalling that the 𝑝𝑎𝑐𝑒 value mostly 

relies on the 𝑓𝑤. However, the direction of 𝑝𝑎𝑐𝑒 (value sign) entirely depends on a random 

mechanism.  

{
 
 

 
 𝑓𝑤 =  1 𝑜𝑟 𝑓𝑤 = 0  𝑜𝑟 ∑ 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠𝑜

𝑛

𝑜=1

= 0,    𝑝𝑎𝑐𝑒 =  𝑥𝑖,𝑡 ∗ 𝑟                                                (5)

 𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1  {
𝑟 < 0,𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡− 𝑥𝑖,𝑡

∗ ) ∗ 𝑓𝑤 ∗ (−1)                                                 (6)

 𝑟 ≥ 0,     𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡− 𝑥𝑖,𝑡
∗ ) ∗ 𝑓𝑤                                                         (7)

} 
}
 
 

 
 

 

Equations (5, 6, and 7) contain two different conditions. Firstly, if 𝑓𝑤 is equal to zero, or, if 𝑓𝑤 is 

equal to one, or if ∑ 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠𝑜
𝑛
𝑜=1 = 0, then the 𝑝𝑎𝑐𝑒 should be calculated as Equation (5). 

Secondly, if 𝑓𝑤 value comes in between zero and one, then the random number r is generated in the 

[-1, 1] range, if r is a negative number, then Equation (6) will be used; otherwise, Equation (7) will 

be used for calculating the 𝑝𝑎𝑐𝑒. 𝑓𝑤 Can be computed using Equation (8): 

𝑓𝑤 = |
∑ 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑜

∗𝑛
𝑜=1

 ∑ 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠𝑜
𝑛
𝑜=1  

| –  𝑤𝑓                                                                                                       (8) 

where ∑ 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑜
∗𝑛

𝑜=1  is a sum of the cost function of the global best individual, n is the number of 

objectives, and 𝑜 =  {1, 2, … , n}, the  ∑ 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠𝑜
𝑛
𝑜=1  is the sum of the current individual's cost 

function, again n is the number of objectives, and  𝑜 =  {1, 2, … , n}.  Finally, 𝑤𝑓 in Equation (8) is a 

weight factor, and its value is either 0 or 1. One may notice that, when 𝑤𝑓 = 0, it does not affect the 

equation and can be ignored. Interested readers are referred to [45] for more details about single-

objective FDO. 

Although the algorithm structure is the same as a single objective FDO to some extent, there are 

several additional improvements in MOFDO as follows: 

1-  An archive (repository) is used for holding Pareto front solutions during optimization, as it has 

been widely used in the literature for this purpose [5].  
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2- Before adding the nondominated solution to the archive, a polynomial mutation is applied to Pareto 

front solutions. The polynomial mutation has been employed in MOEAs as a variation operator 

[49], and it is defined as Equation (9) [50]: 

 

 

 

  (9)                                      

 

 

 

 

 

where 𝑆𝑁𝑖 is a new solution, 𝑆𝑖(𝑥𝑗) is a current solution, β𝑚𝑎𝑥(𝑥𝑗) is the maximum perturbation 

acceptable between the original and mutated solution, NP is the population size, q is a positive real 

number, 𝜐 is a uniformly distributed random number in the [0, 1] range, l is a lower boundary of 

the decision variable x, u is an upper boundary of decision variable x, and n number of decision 

variables (problem dimensions). 

 

3- In MOPs, the fittest solution cannot simply be chosen as a global guide (normative knowledge), 

as this might be the case in single-objective optimization since there is more than one objective. 

Usually, these objectives conflict with each other. Therefore, selecting a global guide needs a more 

careful decision. In this work, the global guide individual is denoted by 𝑥 
∗, a global-best 

nondominated solution selected from the least populated region by artificial scout bees the same 

as to [51] work on MOPSO. For this purpose, a mechanism called archive controller is used to 

divide the archive into multiple equally sized grids (sub-hyper-spheres in multi-dimension 

problems) [15], in this work, these have been called hypercube grids, which represent a 

topographical knowledge usage in MOFDO. The hypercube grid mechanism allows the algorithm 

to determine the least populated area simply by counting the number of solutions in each grid. The 

global best solution will be selected from the least populated area, see Figure (1).  

 

 

 

 

 

𝑆𝑖 = (𝑥1,𝑥2, … , 𝑥𝑛) 

𝑆𝑁𝑖(𝑥𝑗) = 𝑆𝑖(𝑥𝑗) +  α. β𝑚𝑎𝑥(𝑥𝑗), 𝑖 = 1,2, … ,𝑁𝑃 , 𝑗 = 1,2, … 𝑛 

α = {
(2𝜐)

1
(𝑞+1) − 1, 𝜐 < 0.5

1 − (2(1 − 𝜐))
1

(𝑞+1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

β𝑚𝑎𝑥(𝑥𝑗) = 𝑀𝑎𝑥[𝑆𝑖(𝑥𝑗) − 𝑙𝑗 , 𝑢𝑗 − 𝑆𝑖(𝑥𝑗)], 𝑖 = 1,2, … , 𝑁𝑃, 𝑗 = 1,2, … 𝑛  
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The reason behind selecting the global guide from the least populated area is to maintain a good 

diversity in the obtained Pareto front solutions. As a result, decision-makers will have more diverse 

choices (solutions) to consider. Nevertheless, the archive has a limited size. When a new non-

dominated solution is found, and the archive is already reached its maximum capacity, the archive 

controller removes the worst solution from the most populated grid. Hence, the newly discovered 

solution can fit in, as long as the new solution is better than the archive's worst solution.  

 

4- Regarding selecting the personal guide (situation knowledge), the same hypercube grid mechanism 

has been used for dividing the search landscape into equally sized cells, then inside each cell, the 

best personal solution is selected as a local guide. 

 

2.3. Multi-Objective Fitness Dependent Optimizer Working Mechanisms 

The MOFDO starts by randomly distributing the search individuals over the search space as 

presented in the pseudocode Figure (2), and more explanations are given in the flowchart Figure (3). 

Then, an archive with a specific size is created, and hypercube grids are generated. From here, the 

main algorithm loop will start in Line (4), which mainly depends on a specific number of iterations 

or until a certain condition is met. In line (5), for each search, individual (artificial scout bee) 

operations from Lines (6 to 27) will be repeated according to the number of individuals. The 

mentioned operations include: finding the global best search agent, finding 𝑓𝑤 using equation (8), 

Lines (10 to 12) applying conditions from Equations (5, 6, and 7) to calculate 𝑝𝑎𝑐𝑒then afterward, 

Line (13) calculating a new search agent position using equation (4). When the new search agent is 

discovered, the algorithm always checks whether the new result (cost function) dominates the old 

result or not (14). If it is, then the new position will be accepted, and the 𝑝𝑎𝑐𝑒 will be stored for 

potential reuse in the future, as shown in Line (15). However, if it is not, if previously saved 𝑝𝑎𝑐𝑒 

available, it will be used instead of the new one, hoping to generate a better result unless the search 

agent maintains the current position (see Lines (17 to 22). The polynomial mutation will apply to get 

more variant solutions in Line (24) and then check whether the solution can fit inside the archive or 

not in Lines (25 and 26). Hypercube grid indices are always updated according to the search landscape 

changes in Line (27).  

Figure 1. shows Pareto solution, Pareto front, and hypercube grids which is provide helps in selecting global 

and local guide 
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Figure 2.  MOFDO Pseudocode 
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Figure 3.  flowchart shows how MOFDO works programmatically 

 



10 

 

2.4. Multi-Objective Fitness Dependent Optimizer Algorithm Time and Space Complexity 

Generally, computational complexity is mainly concerned with the time and space required to 

solve a given problem, Regarding MOFDO mathematical complexity, it has an O(p*n + p*CF) linear 

time complexity in each iteration, where p is the population size, n is the dimension of the problem, 

and CF is the cost of the objective function. Whereas, it has an O(p*CF +p*pace) space complexity 

for all iterations, where the pace is the best previous paces stored. Thus, MOFDO time complexity is 

proportional to the number of iterations. However, its space complexity will be the same during 

iterations. 

Nonetheless, MOFDO has a simple objective value calculations calculation mechanism, it has only 

(a random number and fitness weight) to be calculated for each agent, whereas, in MOPSO for 

calculating each solution, there are global best, agent best, and search factors C1 and C2, and random 

numbers (R1 and R2 parameters) to be calculated [33]. Also, in the MODA, there are five different 

parameter weights to be calculated (attraction, distraction, separation, alignment, cohesion, and some 

random values), and most of these parameters have accumulative nature (summation and 

multiplication), and their values depend on all other agents’ value, resulting in even more complex 

calculations [14]. Finally, according to Currya and Daglia, NSGA-III has a mathematical complexity 

of O(ng * no * np 
2), where no is the number of objectives, np is the population size, and ng is the number of 

generations, ng can have any complexity from constant to nP depending upon the stopping criteria used 

[52]. From here, it can be seen that NSGA-III has an order of n2 complexity, which is more complex 

than  MOFD linear complexity. 

 

3.  Results and Discussion 

For testing MOFDO algorithm performance, two different types of multi-objective test functions 

were selected: Classical ZDT benchmarks [35] and 2019 CEC Multi-modal multi-objective 

benchmarks [53]. The MOFDO results are compared to the results of the latest state of the art of 

MOPSO, NSGA-III, and modern multi-objective dragonfly algorithm (MODA) [15]. 

 

3.1. Classical ZDT Benchmark Results. 

This benchmark includes five well-known challenging test functions from ZDT1 to ZDT5. Their 

mathematical definition is presented in Table (7) (See Appendix), the MOFDO results are compared 

to three well-known algorithms: MOPSO, MODA, and NSGA-III. The results are shown in Table 

(1), each algorithm is allowed to run for 500 iterations, each equipped with initial 100 search 

individuals and an archive size of 100, the parameter settings for each algorithm are as described in 

their original papers [15] [53] [5]. However, the parameter settings for MOFDO are:   

 

Polynomial Mutation Rate = 5.  

Number of Grids per Dimension = 7.  

Best Bee Selection Factor = 2. 

Delete Factor =2. 

Inflation Rate =1.   

The inverse generational distance (IGD) as shown in equation (10), is a measurement, which uses 

a true Pareto front of the problem as a reference, then compares each of its elements concerning the 

𝑃𝑓 produced by the algorithm as described by [54].  

 

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
  

 (10) 
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where 𝑑𝑖  is the Euclidean distance between the closest obtained Pareto optimal solutions and the 

ith true Pareto optimal solution in the reference set, and 𝑛 is the number of true Pareto optimal 

solutions, it should be clear that a value of IGD = 0 indicates that all the elements generated are in 

the true Pareto front of the problem. The IGD results of 30 independent runs are collected for each 

algorithm, then the average (mean), standard deviation STD, best, and worst IGD are calculated, see 

Table (1).   

TABLE (1) 

Classical ZDT Benchmark results 

Functions Algorithms IGD AVG. IGD STD. IGD Best IGD Worst 

ZDT 1 

MOFDO 0.06758 0.030911 0.0018 2.61533 

MODA 0.07653 0.012071 0.0420 0.59398 

MOPSO 0.07843 0.008848 0.0446 1.14508 

NSGA-III 0.52599 0.509184 0.0134 3.69236 

ZDT 2 

MOFDO 0.03511 0.00404 0.0207 0.0515 

MODA 0.00292 0.00026 0.0002 0.0116 

MOPSO 0.03243 0.00093 0.0212 0.0682 

NSGA-III 0.13972 0.02626 0.1148 0.1834 

ZDT 3 

MOFDO 0.06676 0.023913 0.0014 2.2206 

MODA 0.07653 0.014411 0.0401 0.8267 

MOPSO 0.07758 0.005755 0.0427 1.0355 

NSGA-III 0.19474 0.080043 0.1935 0.1962 

ZDT4 

MOFDO 0.68020 0.352945 0.2679 1.6776 

MODA 64.9628 2.847807 51.742 500.93 

MOPSO 0.46175 0.047785 0.2515 5.1602 

NSGA-III 0.73731 0.307518 0.7360 0.7387 

ZDT5 

MOFDO 0.35853 0.161795 0.1221 1.9125 

MODA 0.11349 0.018270 0.0142 2.3938 

MOPSO 0.26862 0.136598 0.0468 2.1894 

NSGA-III 0.66397 0.235754 0.66273 0.66545 

 

TABLE (2) 

The ranking table shows algorithms performances in Table (1) 

Functions MOFDO 

Rank 

MODA 

Rank 

MOPSO 

Rank 

NSGA-III 

Rank 

ZDT1 1 2 3 4 

ZDT2 3 1 2 4 
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ZDT3 1 2 3 4 

ZDT4 2 4 1 3 

ZDT5 3 1 2 4 

Total Ranking 10 10 11 19 

 

Figure 4. show how MOFDO solved the ZDT3 test function from an initially random solution toward 

Pareto front optimality. 

Here ranking tables are used to show the rank of each algorithm, see Tables (2 and 4), for example, 

MOFDO came at the first position in ZDT1, then its rank is equal to 1, MOFDO came at third position 

in ZDT2, then its rank is equal to 3  and so on, the total rank represents the summation of all acquired 

ranks by certain algorithm, the ranking table is a simple way to show the superiority of certain 

 
                      *  Pareto front     

o  Pareto solution 

  

(a) MOFDO in iteration 4, found 23 𝑃𝑓𝑠  (b) MOFDO  in iteration 19, found 90 𝑃𝑓𝑠 

  

(c) MOFDO iteration in 93, found 174 𝑃𝑓𝑠 (d) MOFDO in iteration 200, found 400 𝑃𝑓𝑠 
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algorithm among the group of competed algorithms. Also, the ranking tables were used in the 

Friedman test for all test functions, which shows whether the results are statistically significant or not 

(see Section 3.3). 

As can be seen in the ranking-table Table (2), MOFDO outperforms MOPSO and NSGA-III in 

most cases; yet, it provides comparative results compared to MODA.  MOFDO and MODA achieve 

a total ranking of 10. Figure (4) shows the ZDT3 solution landscape as an example of MOFDO 

performance, Figure 4(a) shows how initially randomly distributed solutions which only 23 𝑃𝑓𝑠 is 

located, then throughout iterations, MOFDO successfully increased the number of well-distributed 𝑃𝑓 

solutions as shown in Figures 4(b, c, and d). 

3.2.CEC 2019 Multi-Modal Multi-Objective Benchmarks 

 

A  set of 12 CEC-2019 multi-modal multi-Objective (MMO) 2019 benchmarks are selected as 

described by [55], and their mathematical definition is shown in Table (8) (See Appendix).  The 

reason behind selecting this benchmark is, that these test functions are represented a more difficult 

challenge than the ZDT benchmark for MOFDO; they have different characteristics, such as problems 

with different shapes of PSs and PFs, with the coexistence of local and global PSs, also having a 

scalable number of PSs, decision variables, and objectives. MOFDO results compared to MOPSO, 

MODA, and NSGA-III as shown in Table (3). The results are explained by the ranking system in 

Table (4), which shows the MOFDO ranked in first place with superior results in most cases; MODA 

comes in second place, then MOPSO and NSGA-III. 

 
TABLE (3) 

CEC 2019 MMF Benchmark results 

Functions Algorithms IGD AVG. IGD STD. IGD Best IGD Worst 

MMF1 

MOFDO 0.18401921 0.0454458 0.0882267 2.2406685 

MODA 0.87703300 0.5302916 0.3618665 9.6322659 

MOPSO 0.32173518 0.1108645 0.1419164 0.5425832 

NSGA-III 0.00351527 0.0005796 0.0022760 0.0049877 

MMF2 

MOFDO 0.09108902 0.0237087 0.0377645 0.9732300 

MODA 0.41152959 0.3041183 0.0883137 16.525584 

MOPSO 0.27264430 0.0606373 0.1906970 1.1093294 

NSGA-III N/A N/A N/A N/A 

MMF3 

MOFDO 0.09121177 0.0184429 0.0412612 1.0219979 

MODA 0.38999723 0.3195349 0.0720422 20.350064 

MOPSO 0.46594619 0.1566197 0.3377674 1.7063454 

NSGA-III 6.22408148 2.4773195 0.0523665 17.564674 

MMF4 

MOFDO 0.08195533 0.0340485 0.0453016 0.1879044 

MODA 0.00781723 0.0038766 0.0003086 0.0319178 

MOPSO 0.06806595 0.0056268 0.0437656 0.1621893 

NSGA-III 0.04784677 0.0102452 0.0054074 0.1314727 
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MMF5 

MOFDO 0.08166825 0.0203041 0.0410373 0.2872334 

MODA 0.20697935 0.1068910 0.1177007 0.2665746 

MOPSO 0.36516458 0.0818221 0.1431733 0.6443415 

NSGA-III 0.23876644 0.1195411 0.2370972 0.2405229 

MMF6 

MOFDO 0.06319825 0.0052717 0.0435369 0.3023473 

MODA 6.20722767 7.0529532 3.8844812 18.481523 

MOPSO 0.57534658 0.2975283 0.2154710 1.0872217 

NSGA-III 0.70090140 0.2650748 0.6990628 0.7024793 

MMF7 

MOFDO 0.14853951 0.0219769 0.0870897 0.2362694 

MODA 0.36139133 0.1036987 0.1322042 1.0331912 

MOPSO 0.33104321 0.0493751 0.1186243 0.4153237 

NSGA-III 0.40264339 0.1635305 0.4014061 0.404124 

MMF8 MOFDO 0.15550447 0.0869989 0.0343290 1.8046810 

MODA 0.08058735 0.2652865 0.0056401 10.189273 

MOPSO 0.14156195 0.1003047 0.0450518 2.6718013 

NSGA-III 0.01038634 0.0032172 0.0041821 0.0276770 

MMF9 MOFDO 0.47321267 0.1219659 0.3404164 1.7427477 

MODA 0.05060995 0.0274896 0.0051946 0.3219936 

MOPSO 1.33275589 0.1427530 0.7792982 2.0541908 

NSGA-III 0.96369603 0.3011030 0.0027674 0.2438216 

MMF10 MOFDO 0.44207841 0.1277887 0.3104489 1.1022388 

MODA 0.09017605 0.0385574 0.0039308 0.3893014 

MOPSO 1.00054897 0.1542964 0.7005662 1.4956293 

NSGA-III 3.89641261 4.6634273 0.0028740 4.4067242 

MMF11 MOFDO 0.09260275 0.0209854 0.0635536 0.2692325 

MODA 0.09291338 0.0515551 0.0042148 0.4962967 

MOPSO 1.30789085 0.1622864 0.6847497 2.2372910 

NSGA-III 1.18058557 0.7034533 0.0034136 4.2312541 

MMF12 MOFDO 0.08314653 0.0217281 0.0554114 0.2901663 

MODA 0.03661122 0.0119014 0.0035018 0.1841556 

MOPSO 0.13651933 0.0237385 0.0667090 0.3416214 

NSGA-III 0.35064339 0.1613096 0.3494061 0.352124 

 

TABLE (4) 

THE RANKING TABLE SHOWS ALGORITHMS PERFORMANCES IN TABLE (3) 
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To prove whether the results of Tables (1 and 3) are statistically significant or not, the Wilcoxon 

rank-sum test has been conducted to find the p-value between the MOFDO and other algorithms. As 

presented in Table (5), the majority of the results in Table (1) (ZDT benchmarks results) are 

statistically significant since the p-value is smaller than 0.05. 

 

Nonetheless, Table (6) also shows the level of significance of the results in Table (3) (CEC 2019 

benchmarks results), as clearly it can be seen, that the results are statistically significant in almost all 

cases, except three cases in MMF8 and MMF9. 

Functions MOFDO RANK MODA RANK MOPSO RANK NSGA-III RANK 

MMF1 2 4 3 1 

MMF2 1 3 2 4 

MMF3 1 2 3 4 

MMF4 4 1 2 3 

MMF5 1 2 3 4 

MMF6 1 4 3 2 

MMF7 1 2 3 4 

MMF8 4 2 3 1 

MMF9 2 1 4 3 

MMF10 2 1 3 4 

MMF11 1 2 4 3 

MMF12 2 1 3 4 

TOTAL RANKING 22 25 36 37 

TABLE (5) 

THE WILCOXON RANK-SUM TEST (P-VALUE) FOR ZDT BENCHMARKS 

Functions MOFDO Vs. MOPSO MOFDO Vs. MODA MOFDO Vs. NSGA-III 

ZDT1 0.069585315 0.144884804 1.06115E-05 

ZDT3 0.000828462 5.73525E-46 0.002956318 

ZDT3 0.01911876 0.06013187 1.35925E-11 

ZDT4 0.001385852 9.07401E-72 0.506664868 

ZDT5 0.023547289 2.40076E-11 2.39778E-07 

TABLE (6) 

THE WILCOXON RANK-SUM TEST (P-VALUE) FOR CEC 2019 BENCHMARKS 

Functions MOFDO Vs. MOPSO MOFDO Vs. MODA MOFDO Vs. NSGA-III 

MMF1 4.41881E-08 1.76049E-09 1.41173E-29 
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3.3. Friedman Test for the Results 

Friedman test has been used to show that the given results are statically significant, the Friedman 

test analyzes whether there are statistically significant differences between three or more dependent 

samples, it is the non-parametric counterpart of the analysis of variance with repeated measures [56], 

Friedman test has been used to show that the previous results in Tables (1 and 3) are statistically 

significant. 

In the Friedman test, there are two different hypotheses to accept, the null hypothesis is, that 

there are no significant differences between the dependent groups, and the alternative hypothesis is, 

that there is a significant difference between the dependent groups, the Friedman test does not use the 

true values but the ranks of the values. Friedman test can be calculated as Equation (11).  

𝑥𝑟
2 =

12

𝑛𝑘(𝑘+1)
∑𝑅2 − 3𝑛(𝑘 + 1)  (11) 

Where 𝑥𝑟
2 is a Chi-square, n is several test functions, k represents the number of groups (number 

of compared algorithms), and R is the square root of the total rank of each group, using the total rank 

from Tables ( 2 and 4) From here, to find the state decision rule, the degree of freedom is needed, 

which can be found as df = k -1= 4-1= 3,  according to Chi-square distribution table of alpha 

significance level, the decision rule state of df =3 is equal to 7.815  for a p-value < 0.5 [57]. 

The Friedman test calculation for Tables (2 and 4) together would be: 

Total Rank of R:  MOFDO =32 , MODA = 35, MOPSO = 47 and NSGA-III = 56 

n= 17 since there are 17 test functions results in both Tables (2 and 4), and k = 4 

𝑥𝑟
2 =

12

17 ∗ 4(4 + 1)
∑(322 + 352 + 472 + 562) − 3 ∗ 17(4 + 1) 

MMF2 5.48551E-22 3.45868E-07 N/A 

MMF3 7.46013E-19 3.72574E-06 1.23675E-19 

MMF4 0.031476101 3.98328E-17 2.22201E-06 

MMF5 6.57481E-26 4.20625E-08 2.01881E-09 

MMF6 2.64131E-13 1.27723E-05 4.39284E-19 

MMF7 5.34254E-26 8.11656E-16 1.14766E-11 

MMF8 0.567417814 0.147031583 3.58707E-12 

MMF9 8.12705E-33 5.09201E-26 5.83029E-07 

MMF10 5.57562E-22 7.29596E-21 5.74382E-06 

MMF11 2.44568E-44 0.975720942 1.36419E-10 

MMF12 9.63988E-13 1.07115E-14 1.31857E-12 
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𝑥𝑟
2 = 13.0235   and the p-value is .00459. 

According to the Friedman test, the null hypothesis is rejected, since the result is greater than the 

7.815  Chi-square distribution, which means the results are statistically significant at a p-value < 

0.5. 

Finally, as a performance proof, Figure (5) shows the MMF4 benchmark solution landscape as an 

example, Figure 5(a) shows the initial random distribution of only 31 𝑃𝑓𝑠 solutions, then throughout 

iterations, the number of well-distributed 𝑃𝑓 solutions are increased in Figures 5(b, c, and d). 

 

Figure 5.  MOFDO solved the MMF4 test function from an initially random solution toward Pareto 

front optimality. 

 

 
                        *  Pareto front     

o  Pareto solution 

  

(a) MOFDO in iteration 5, found 31 𝑃𝑓𝑠 (b) MOFDO in iteration 11, found 67 𝑃𝑓𝑠 

  

(c) MOFDO in iteration 30, found 150 𝑃𝑓𝑠 (d) MOFDO in iteration 167, found 200 𝑃𝑓𝑠 
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4. Engineering Design Application  

MOFDO is implemented in MATLAB codes; the algorithm is well structured, which allows for 

easy modifications and integration. It also enables researchers to easily understand how it works and 

how real-world applications can be solved with less effort. To demonstrate this, Welded beam design 

problem has been optimized with MOFDO, the problem definition and the results are discussed 

below. 

 

Figure 6.  The welded beam design problem 

The welded beam design problem is a very well-known real-world engineering design problem, it 

has been considered by other researchers previously as a test problem for various multi-

objective algorithms, such as [58] and [59]. As shown in Figure (6), this problem has four real-

parameter variables x = (h, l, t, b), where h is the thickness of the welds, l is the length of the welds, 

t is the height of the beam, and b is the width of the beam, the P in the Figure (6) represents the 

amount of load which applies on the beam.  This design problem has a bi-objective to be minimized 

Equation (12), knowing that the objectives are conflicting in nature, the first objective is to minimize 

the cost of fabrication (X-axis measure in currency ) and the second objective is to mitigate the end 

deflection of the welded beam (Y-axis measure in meters) as follows: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1(�⃗�) = 1.10471ℎ2𝑙 + 0.04811𝑡𝑏(14.0 + 𝑙), 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(�⃗�) =  
2.1952

𝑡3𝑏
,  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶   

𝑔1(�⃗�)  ≡ 13,600 − 𝑇(�⃗�)  ≥ 0,  

𝑔2(�⃗�)  ≡ 13,600 − 𝜎(�⃗�)  ≥ 0, 

𝑔3(�⃗�)  ≡ 𝑏 − ℎ  ≥ 0, 

𝑔4(�⃗�)  ≡ 𝑃𝑐(�⃗�) − 6000 ≥ 0, 

0.125 ≤ ℎ, 𝑏 ≤ 5.0 

0.1 ≤ 𝑙, 𝑡 ≤ 10.0 

(12) 
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As presented in Equation (12), this problem has four constraints to be considered. A violation of 

any of these constraints will make the design unacceptable. The first constraint is to make sure that 

the shear stress produced at the beam's support location is less than an allowable value, which is equal 

to 13,600 psi. The second constraint is to guarantee that the normal stress produced at the beam's 

support location is less than the acceptable yield strength of the material, which is equal to 30,000 

psi. The third constraint is to ensure that the beam's breadth is not less than the weld width from a 

practical perspective. Constraint number four ensures that the acceptable buckling load 𝑃𝑐(�⃗�) of the 

beam is larger than the applied load F = 6000 lbs. The shear stress 𝑇(�⃗�) and the buckling load 

𝜎(�⃗�) can be calculated as Equation (13 and 14) respectively: 

 
𝑇(�⃗�) =  √(𝑇′)2 + (𝑇′′)2 + (𝑙𝑇′𝑇′′)/ √0.25(𝑙2 + (ℎ + 𝑡)2) ,  

𝑇′ =
6000

√2 ℎ𝑙
 

𝑇′′ =
6000(14 + 0.5𝑙)√0.25(𝑙2 + (ℎ + 𝑡)2)

2 {0.707ℎ𝑙(
𝑙2

12 + 0.25 (ℎ + 𝑡)
2}

 

   

(13) 

 
𝜎(�⃗�)  =

504000

𝑡2𝑏
, 

𝑃𝑐(�⃗�) = 64746.022(1 − 0.0282346𝑡) 𝑡𝑏3 

(14) 

The welded beam design problem is optimized using MOFDO, the algorithm is applied to solve 

this engineering design problem for 100 iterations, using 100 search agents, and the 𝑃𝑓𝑠 is stored in 

100-sized archives. Figure (7) shows that the obtained 𝑃𝑓𝑠 are smoothly distributed between these two 

objectives (Cost and Deflection), and mostly laid on or located very close to the true 𝑃𝑓𝑠 known in 

the literature [60].  Also, MOFDO provides a wide variety of feasible solutions for the decision-

makers to choose from, this wide variety and smooth distribution of the obtained 𝑃𝑓𝑠  prove the 

maturity of the MOFDO in terms of the algorithm capability of tackling real-world engineering design 

problems effectively.   

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  MOFDO results on Welded Beam Design problems 



20 

 

Regarding MOFDO’s 𝑃𝑓𝑠  discovering rate, MOFDO starts from 17 𝑃𝑓𝑠  for the first iteration, and 

then dramatically reaches 100𝑃𝑓𝑠 in iteration 36 as presented in Figure (8). This shows how the 

algorithm efficiently improves multiple initial solutions toward optimality, then occasionally some 

𝑃𝑓𝑠  becomes a non-dominated solution. Hence, they are deleted from the archive; this can be seen 

from iterations 36 to 100 in Figure (8), the discovery rate of 𝑃𝑓𝑠 starts from a small number, then 

steadily increase till it reaches full archive size. This shows that MOFDO is constantly improving all 

solutions (dominated and non-dominated) throughout all iterations; this feature guarantees that 

MOFDO avoids local solutions and eventually reaches optimality [61]. 

 

 

Figure 8. Shows MOFDO Pfs discovering rate 

 

5. Conclusions  

A multi-objective model for a novel single-objective FDO is proposed, known as a multi-objective 

fitness dependent optimizer, which is inspired by the bee reproductive swarming process. During the 

implementation, MOFDO is being treated as a typical cultural algorithm, for this purpose: situational, 

normative, topographical, domain, and historical knowledge were employed. MOFDO is tested on 

two different sets of test functions, the first set is ZTD test functions, a classical benchmark used by 

many other researchers for testing MOEAs. The second set is a modern CEC 2019 multi-modal multi-

objective, which is considered to be a more challenging benchmark. The MOFDO results were 

compared to three other algorithms: the latest state of the art of MOPSO, NSGA-III, and MODA. The 

comparison showed that MOFDO outperformed other algorithms in most cases and provided 

comparative results in other cases. MOFDO was easily used for solving real-world problems. For 

example, the welded beam design problem was solved using MOFDO. It provided well-distributed 

solutions, which possibly enables decision-makers to have more variant options to consider. 

The CEC 2019 benchmark complexity represents a real challenge for MOEAs compared to the 

classical ZDT benchmark because it contains both local and global Pareto front. The algorithm must 

try to avoid trapping in the local Pareto front. However, arguably, in some applications, the local 
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optima are preferable, as global optima solutions may not always be applicable in real-world problems 

[55]. Moreover, having different decision variable space boundary for each dimension make the CEC 

2019 MMF even more difficult. The NSGA-III couldn’t produce a correct result for the MMF2 test 

function as presented in Table (2). Also, it has difficulties in some other test functions. On the other 

hand, MOFDO is constructed to make it easy to deal with these difficulties. Another major drawback 

of MOPSO is that it is easy to fall into local optimum in high-dimensional space and has a low 

convergence rate in the iterative process [46], in MOFDO, the 𝑓𝑤 and 𝑤𝑓 parameters were used to 

increase both coverage and convergence of the algorithm, also storing previous good decision for 

later reuse will convergence speed as well. 

Despite that, one of the major contributions of this work is developing MOEA, which has a linear 

time and space complexity, this means that both time and required space for the algorithm will 

increase linearly, which is suitable for the current computation architecture. Nonetheless, a 

polynomial mutation mechanism is employed as a variation operator with the use of an archive for 

saving the Pareto front solutions. Furthermore, extra storage has been used for saving the previous 

paces for the potential reuse in future iterations; this will lead to improvement in the algorithm 

performance Finally, Hypercube grids are used in the implementation to help select the local and 

global guide individuals. For future works, researchers might try to improve algorithm performance 

by adapting new parameters, enhancing the learning rate and communication range between 

individuals, or possibly integrating or hybridizing MOFOD with other MOEAs. Furthermore, there 

are other interesting multi-objective real-world engineering problems to be optimized by this 

algorithm, as have been mentioned in the introduction section, such as the four-bar truss design 

problem, pressure vessel design, the coil compression spring design problem, speed reducer design 

problem, and car side impact design problem. 
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6. Appendix  
TABLE 7 

ZDT BENCHMARK MATHEMATICAL DEFINITION 

Functions Mathematical definition 

ZDT1 

 

ZDT2 

 

 

ZDT3 
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ZDT4 

 

ZDT5 

 

 

 

TABLE 8 

CEC 2019 MULTI-MODAL MULTI-OBJECTIVE BENCHMARK MATHEMATICAL DEFINITION [55] 

Function Mathematical definition Range 

MMF1 

 
 

MMF2 

 

 

 

MMF3 
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MMF4 

 

 

MMF5 

 

 

 

MMF6 

 

 

MMF7 

 

 

MMF8 

 

 

MMF9 

 

 

MMF10 
 

 

 

MMF11 
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𝑛𝑝 is the total number of global and local PSs. 

MMF12 

 

 

𝑛𝑝 is the total number of global and local PSs. 

 

q is the number of discontinuous pieces in each PF (PS). 

 

 


