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Background

Production planning and scheduling problems arise in many production manufacturing 

systems. Scheduling problems have been investigated for several decades and various 

dispatching rules are proposed to optimize scheduling problems. Up to present, many 

different principles are presented to select and discover effective ways from a number 

of candidate dispatching rules (Geiger et al. 2006; Tay and Ho 2008; Pickardt et al. 2010; 

Mouelhi-Chibani and Pierreval 2010; Heger et al. 2016). Geiger et al. (2006) employed 

a fast learning model with automatically selecting dispatching rules for single machine 

environments. Tay and Ho (2008) used genetic programming to combine and construct 

dispatching rules for multi-objective flexible job-shop problems. Pickardt et  al. (2010) 

developed a coupling genetic programming to evolve and produce dispatching rules 

under varied conditions. Heger et al. (2016) proposed a way to dynamically determine 

parameter settings of dispatching rules on the previous state. Mouelhi-Chibani and 
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Pierreval (2010) adopted a trained neural networks (NN) to dynamically determine the 

dispatching rules in real-time flexible manufacturing systems. Some other techniques 

or approaches, such as shifting bottleneck (Wenqi and Aihua 2004), branch and bound 

(Della Croce et  al. 2002; Artigues and Feillet 2008) were also applied to solve simple 

scheduling problems in the early researches.

FJSP is more close to the realistic situation and frequently used in flexible manufactur-

ing systems. During the past decades, many researchers have a fast-growing interest on 

FJSP and amount of written works have been published. However, no satisfactory algo-

rithm presently is available for solving the problem to optimality in expected time. In 

recent years, most researchers have recognized that probabilistic search method is an 

attractive alternative to solve this constrained optimization problem. Genetic Algorithm 

(GA) had emerged as one of the most important method to solve discrete optimization 

problems and many variants of GA were developed to solve FJSP in the published lit-

eratures (Cwiek and Nalepa 2014; Li and Chen 2014; Moghadam et al. 2014; Wang et al. 

2014; Zhang et al. 2011). A fast GA with a combination of active schedule constructive 

crossover (ASCX) and generalized order crossover (GOX) was proposed to solve FJSP 

by Cwiek and Nalepa (2014). In addition, high-low fit selection scheme was developed 

to enhance the search ability. Li and Chen (2014) presented an improved GA with two 

level coding, working sequence coding and machine distribution coding. Crossover and 

mutation operators were well-designed and neighborhood structure was defined to 

minimize makespan for FJSP. Aiming at makespan of FJSP, Moghadam et al. (2014) pre-

sented GA to create active schedule, which used an Operation order-based Global Selec-

tion (OGS) to generate high-quality initial population and introduced crossover operator 

with precedence preserving order-based crossover (POX) and uniform crossover. �en 

intelligent mutation operator was introduced to GA. To minimize makespan criterion of 

FJSP, a hybrid GA with modified coding scheme was presented by Wang et al. (2014). In 

the hybrid GA, a novel machine assignment strategy was proposed in the initial phase 

and an improvement strategy was performed when current best solution had not been 

improved. To minimize the makespan, well-designed representation, global selection 

and local selection for high-quality initial population, crossover and mutation operators 

in GA were all developed (Zhang et al. 2011).

Tabu Search (TS) and Particle Swarm Optimization (PSO) had also been investi-

gated to optimize the FJSP (Shao et al. 2013; Jia and Hu 2014; Kamble et al. 2015). Path-

relinking TS with neighborhood search and back-jump tracking was presented by Jia 

and Hu (2014). In details, path-relinking technique to generate improved solutions and 

dimension-oriented intensification search to find better solutions around extreme solu-

tions were introduced. Kamble et al. (2015) presented a hybrid multi-objective PSO and 

simulated annealing (SA) algorithm to solve five-objective FJSP. Rescheduling strategy 

was applied to overcome the machine breakdown and then Pareto front and crowding 

distance were introduced to handle five-objective problems. Identifying an approxima-

tion of the Pareto front of FJSP, Shao et al. (2013) developed a hybrid discrete PSO and 

SA and a novel displacement strategy was embedded to the proposed algorithm. Also, 

Pareto ranking and crowding distance method were adopted to deal with multi-objective 

problems.
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Other optimization algorithms, such as firefly algorithm (FA) (Karthikeyan et  al. 

2014), harmony search algorithm (HS) (Yuan et  al. 2013; Gao et  al. 2014), biogeogra-

phy-based optimization (BBO) (Rahmati and Zandieh 2012), differential evolution algo-

rithm (DE) (Balaraju et  al. 2014), evolutionary algorithm (EA) (Chiang and Lin 2013) 

and immune algorithm (IA) (Xue et  al. 2014) have been used to solve FJSP in recent 

years. By defining the presentation of attractiveness, the distance and movement of FA, 

a hybrid discrete FA incorporating local search with neighborhood structures was pre-

sented by Karthikeyan et al. (2014) to minimize the makespan, the critical workload and 

the total workload. In the Yuan’s work (2013), a discrete hybrid harmony search (HHS) 

embedding a local search procedure, which provided a neighborhood structure based 

on common critical operations to enhance the local search, was developed to optimize 

the makespan. Pareto-based grouping discrete harmony search algorithm (PGDHS) 

was proposed to optimize the makespan and the mean of earliness and tardiness (Gao 

et al. 2014). Several new heuristics scheme were firstly designed to the initialization of 

harmony memory. In addition, multiple strategies and local search were proposed to 

improve the performance of this algorithm.

�is paper proposes a well-designed MOPSO algorithm to optimize three-objective 

FJSP (the makespan, the total workload and the critical machine workload). Firstly, the 

AL and DR methods from other works are applied to initialize the population. �en an 

extended position update formula with two-vector discrete operators is designed and 

the discrete operator f2 is applied to share the information of personal-best positions and 

global-best position. �en disturbance operator f3 is to explore other space. In details, f2 

is applied to cross the current position with the personal-best position with a probability, 

or the current position with the global-best position with the other probability. Secondly, 

personal-best archives and global-best archive updated by predefined non-dominated 

archive update strategy are developed to obtain high-quality and high-diversity posi-

tions, and the personal-best position is selected from the corresponding personal-best 

archive and the global-best position is selected from the global-best archive. Finally, var-

iable neighborhood search is introduced to exploit the global-best archive.

�e organization of the rest is as follows: “Problem formulation” section briefly 

describes the problem formulation of FJSP. In “�e MOPSO algorithm” section, a brief 

introduction of basic PSO is given, and then the details of MOPSO algorithm are pre-

sented. �e simulation in comparison with other algorithms and parameter analysis are 

shown in “�e simulation experiments” section. Finally, “Conclusions” section concludes 

this paper.

Problem formulation

Flexible job‑shop scheduling problem

For FJSP, each operation can be assigned to one machine from a set of available 

machines and then sequenced under precedence constraint. �ere are a set of n jobs 

J = {J1, J2, …, Jk, …, Jn} to be processed on a set of m machines, M = {M1, M2, …, Mk,…, Mm}. 

Each job consists of ni operations, Oi = {Oi1 . . . ,Oi2, . . . ,Oij , . . .Oini}, where Oij and ni 

respectively denote the jth operation of job i and the number of operations for job i. �e 

machine processing the operation Oij is denoted as Mk from a given available machines 

called Mij, where Mij denote the set of available machines for the operation Oij and 
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Mij ⊂ M. Partial flexibility and total flexibility are two kinds of FJSP. �e former means 

that the available machines Mij processing on the operation Oij are a subset of M, and the 

latter means that the available machines Mij processing on the operation Oij includes all 

machines of M. Also, pijk denotes the executing time of operation Oij on the machine Mk.

Hypotheses are listed as follows: (1) �ey are all independent jobs and machines. (2) 

Setting up times of machines and move times between operations are negligible. (3) A 

machine can only execute one operation at a given time. (4) For the same job, only one 

operation is processing at the same time. (5) �ere are no precedence constraints among 

different jobs. �e task is to determine an assignment and a sequence of operations to 

minimize several scheduling criteria. In this paper, three objectives of scheduling criteria 

are as follows:

1. CM: Makespan or maximal completion time of machines.

2. WT: Total workload of machines, which is the total working time of all machines.

3. WM: Critical machine workload, which is the biggest workload among the machines.

Encoding and decoding

Encoding a scheduling as a two-vector representation, which includes operation 

sequence vector and machine assignment vector, is an effective way to represent the 

decision of FJSP. In details, operation sequence vector is a decision of all operations’ 

order, and machine assignment vector is a decision of the assigned machines of all 

operations. Direct and indirect encoding scheme are two types of encoding methods 

for operation sequence representation. Operation-based representation is an effective 

indirect encoding method for operation sequence vector, which can absolutely meet 

the constraints and is able to encode a feasible schedule (Gen et  al. 1994). �us, the 

operation-based encoding scheme is adopted to represent operation sequence vec-

tor. In this encoding scheme, the length of each vector equals to the total number of 

all operations. �e number denotes the corresponding job and the kth occurrence of 

the number refers to the kth operation of this job. For the machine assignment vector, 

the numbers represent the machines assigned to the operations with the ascending job 

number successively.

Take three-job, three-machine instance for an example. As illustrated in Fig.  1, the 

operation sequence vector [2 1 1 3 2 1 2 3] represents the operation sequence [O21, O11,  

O12, O31, O22, O13, O23, O32]. �en the machine assignment vector [1 3 2 1 3 1 3 2] rep-

resents the operations and their assigned machines: (O11,  M1), (O12,  M3), (O13,  M2), 

CM = max
1≤k≤m

{Ck}

WT =

n∑

i=1

ni∑

j=1

m∑

k=1

pijkxijk

WM = max
1≤k≤m

n∑

i=1

ni∑

j=1

pijkxijk .
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(O21, M1), (O22, M3), (O23, M1), (O31, M3), (O32, M2). �e processing time can be organ-

ized in Table  1, where rows correspond to operations and columns correspond to 

machines. According to Table  1, we can obtain the processing times of the example, 

which is [5 2 1 1 4 5 3 4].

A semi-active schedule often occurs in decoding a schedule and results in the increas-

ing of makespan. An active schedule can avoid the weakness. Local left shift and global 

left shift are designed to decode a schedule to a active one (Li et al. 2010). In this paper, a 

left-shift function proposed by Li et al. (2010) is applied to decode a semi-active schedule 

into an active schedule. After applying the left-shift function to the semi-active schedule, 

the schedule can be decoded as an active schedule.

The MOPSO algorithm

In this section, we developed an effective MOPSO algorithm and the details of the pro-

posed algorithm is described as follows: “Initialization” section describes population 

initialization and “�e details of MOPSO algorithm” section presents the extended posi-

tion update formula in discrete PSO. �en variable neighborhood search is developed 

in “Variable neighborhood search” section. Furthermore, non-dominated archive update 

strategy of personal-best archives and global-best archive, and the selection method of 

the personal-best position and the global-best position are introduced in “Personal-best 

positions and global-best position” section. Finally, the stop criterion and the flowchart 

of the proposed algorithm are described in “Stop criterion” section.

2

Job2

Operation sequence vector

1 1 3 2 1 2 3

Job1 Job1 Job3 Job2 Job1 Job2 Job3

O21 O11 O12 O31 O22 O13 O23 O32

1

Machine assignment vector

3 2 1 3 1 3 2

M1 M3 M2 M1 M3 M1 M3 M2

Job1 Job2 Job3

a b

Fig. 1 The two-vector representation a operation sequence vector, b machine assignment vector

Table 1 Processing times for three-job, three-machine instance

Processing time

M1 M2 M3

J1 O11 5 3 –

O12 – 1 2

O13 3 1 –

J2 O21 1 – 4

O22 – 5 4

O23 5 – 6

J3 O31 – 6 3

O32 5 4 5
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Initialization

Appropriate initial methods can provide enough diversity and high-quality individuals 

to the population. For FJSP, the initialization includes initializing machine assignment 

and initializing operation sequence. �e hybridization of assignment rules (AL) and dis-

patching rules (DR) from other researchers are proved to be extremely efficient initial-

izing methods for the FJSP (Kacem et al. 2002a; Bagheri et al. 2010; Defersha and Chen 

2010; Li et al. 2010). To obtain more promising individuals, the initial population in our 

study is generated by three AL methods (20 % by GPT, 20 % by LPT, and 60 % by the ran-

dom rule) proposed by Kacem et al. (2002a) and DR method (Random rule) proposed by 

Pezzella et al. (2008).

The details of MOPSO algorithm

Discrete PSO

Inspired by fish and birds’ behavior, particle swarm optimizer is developed by Kennedy 

and Eberhart. As N individuals search in d dimensions space, individual i has a position 

xi = (xi1, xi2, . . . , xid) and a velocity vi = (vi1, vi2, . . . , vid). �e personal-best position of 

the ith individual is pi = (pi1, pi2, . . . , pid) and the global-best position of the population 

is pg = (pg1, pg2, . . . , pgd). In the search process, the individual tries to update the veloc-

ity and the position using the current velocity, personal-best position and global-best 

position. �erefore, the velocity vi and the position xi of individual i can be manipulated 

by Eqs. (1) and (2).

where c1, c2 are the coefficient of cognitive and social knowledge. ω denotes inertia fac-

tor. r1, r2 are real numbers in (0, 1). t denotes the current generation.

A discrete version of particle swarm optimizer needs to be developed to solve flex-

ible job shop scheduling problem, which is a specific optimization problem with discrete 

variables. Various discrete operators are developed to deal with discrete variables and 

it is also a significant problem to obtain appropriate discrete form of particle swarm 

optimizer. Discrete operators are convenient to handle the discrete variables, and some 

discrete operators are designed and incorporated into particle swarm optimizer. �e 

position update equation with discrete operators is as follows:

where ω, c1, and c2 are three probabilities, which represents the impact of current posi-

tion, personal-best position and global-best position. ⊗ represents the right operator of 

⊗ will be implemented while the probability in the left of ⊗ is satisfied and + represents 

that left term of + is finished and the right term of + starts. Two discrete operator, f1 

and f2, are well-designed to deal with discrete variables xi. In detail, f2 includes improved 

precedence operation crossover (IPOX) (Zhang et al. 2005) and multipoint preservative 

crossover (MPX) (Zhang et al. 2007). Additionally, c2 equals to c1, which indicates that 

(1)vt+1
i

= ωvt
i
+ c1r1(p

t

i
− xt

i
) + c2r2(p

t

g − xt
i
)

(2)x
t+1

i
= x

t

i
+ v

t+1

i

(3)xt+1
i = ω ⊗ f1(x

t
i ) + c1 ⊗ f2(x

t
i ,p

t
i ) + c2 ⊗ f2(x

t
i ,p

t
g)
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the condition rand ≤1−c1 is satisfied. Detail implementation of f1 and f2 is given in “�e 

details of f1, f2 and f3” section. f3 is then embedded to search more space and is also pro-

vided in “�e details of f1, f2 and f3” section. As above description, the pseudo-code of 

the Eq. (3) is as follows: 

The details of f1, f2 and f3

As the discrete operator f2 is not applied to all individuals, the function of f1 is keeping 

the individuals unchanged with the probability ω and otherwise, perturbation operator 

f3 is applied to the individuals. �en f2 is used to obtain useful information from the 

personal-best positions with the probability c1 and global-best position with the prob-

ability c2.

Discrete operator f2 �e operator f2 is implemented on the operation sequence vector 

and the machine assignment vector successively. IPOX is implemented on the operation 

sequence vector and MPX is implemented on the machine assignment vector.

For example, F1 and F2 are two parents; S1 and S2 are their children. �e machine 

assignment vectors remain the same, and the procedure of f2 (IPOX) on operation 

sequence vector is as follows:

Step 1: Select the operation sequence vectors of the parents F1 and F2, and all the jobs 

are randomly divided into two set J1 and J2.

Step 2: Copy the elements of F1 that are included in J1 to S1 in the same position and 

copy the elements of F2 that are included in J1 to S2 in the same position.

Step 3: Copy the elements of F2 that are included in J2 to S1 in the same order and copy 

the elements of F1 that are included in J2 to S2 in the same order.
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�e operation sequence vectors remain the same, and the procedure of f2 on the 

machine assignment vectors (MPX) is as follows:

Step 1: Select the machine assignment vectors of the parents F1 and F2.

Step 2: Generate a decision vector H with random integers 0 and 1, which has the same 

length with the machine assignment vector.

Step 3: Find the places which are equal to 1 in H, and then copy the machine assign-

ment number in these places of F1 and F2 to S2 and S1.

Step 4: Copy machine numbers of the rest places in F1 and F2 to S1 and S2.

�e IPOX of f2 works as in Fig. 2(a), and the MPX of f2 works as in Fig. 2(b).

Perturbation operator f3 In order to avoid premature convergence, the perturbation 

operator f3 is adopted. Earliest completion machine (ECM) is an efficient method to 

assign an operation to a machine (Lin 2015). It can complete the operation with the ear-

liest completion time but it needs expensive time consumption. Consequently, we apply 

the ECM rule with a small probability c3. �e ECM rule (f3) works as follows: Calcu-

late complete time of each operation in all machines by the order in operation sequence 

vector, and then find the machine with shortest time and assign the operation to the 

machine.

Variable neighborhood search

Disjunctive graph can also represent a feasible schedule. In the disjunctive graph, the 

longest path in the disjunctive graph is the critical path and the critical operations are 

these operations on the critical path. �e maximal sequence of joint public critical 

operations (which are belong to all the critical paths) processed on the same machine is 

defined as public critical block. Only changing the critical paths can reduce the makes-

pan and neighborhoods based on public critical block theory can significantly reduce 

the search scope. �erefore, three neighborhood structures based on public critical 

block are defined in variable neighborhood search. Two neighborhoods of machine 

moves (NH1 and NH2) are generated on the critical operation and one neighborhood of 

2F1 1 2 2 3 1 1 3

2 1 2 2 3 1 1 3

2 1 1 2 3 1 3 2

S1

F2

J1={1,3}

2 3 3 1 2 3 1 2F1

1 3 3 2 3 3 1 2S1

1 2 3 2 3 3 1 3F2

1 0 0 1 1 0 1 0H

a b

Fig. 2 The discrete operator f2 on operation sequence and machine assignment. a IPOX for the operation 

sequence, b MPX for the machine assignment
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operation moves (NH3) is generated on public critical block. �e details of three neigh-

borhoods are as follows:

NH1 Find these machines Ms with the maximal makespan and then randomly select a 

machine Mk from Ms. Randomly select an public critical operation Oij on the machine 

Mk. From the candidate machine set Mij, randomly select another machine M’k different 

from the current one Mk for the selected operation Oij. �en randomly select an insert 

point, which meets precedence constraints of the same job, from the chosen machine 

M’k and insert the operation in this point.

NH2 Randomly select an public critical operation Oij with more than one candidate 

machines and sort the candidate machines of Oij by the processing time in ascending 

order. �en randomly select another machine M’k, which is different from the current 

one Mk, from the front half candidate machines. �en assign the machine M’k to the 

operation Oij.

NH3 Choose a public critical block π randomly, and then randomly select an operation 

Oi
π of the block π, which is different from the first operation or the last operation of the 

block π. If the size of π is equal to 3, swap the first operation or the last operation of the 

block π with the operation Oi
π as they are not belong to the same job. If the size of π is 

bigger than 3, insert the first operation or the last operation of the block π into a random 

selected position in π. �e procedure of NH3 is illustrated in Fig. 3.

Public critical block

Size<=3

Public critical block

Size>3

First operation Last operation

Swap operation

First operation Last operation

Public critical block

Size>3

First operation Last operation

Selected position

Selected position

Fig. 3 The procedure of NH3
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�e pseudo-code of variable neighborhood search is given in Algorithm 1.

 

where K is the number of the neighborhood types and K equals to 3. s″ ≻ s indicates 

that s″ dominates s.

�e pseudo-code of local search is given in Algorithm 2. 

where NS is the searching size of the neighborhoods and NS is set to 20 empirically.

Personal‑best positions and global‑best position

The personal‑best archives and global‑best archive

In this section, each individual has a personal-best archive to preserve non-dominated 

individuals’ positions obtained by its history search and the global-best archive is 

used to preserve non-dominated individuals’ positions obtained by the population. To 

obtain high-quality and high-diversity solutions, a selective strategy of non-dominated 
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individuals’ positions should be developed to update the global-best archive and the 

personal-best archive. Many selection mechanisms, such as NSGA-II (Deb et al. 2002), 

MOEA/D (Li and Zhang 2009), and SPEA2 (Zitzler et al. 2002) have already been used 

to sort the non-dominated individuals. Weighted sum approach can combine all the 

objectives into a single objective to represent relative superiority of individuals, and this 

method can change the impacts of each criterion via adjusting the weights to solve the 

multi-objective problems. In our study, a novel weighted sum approach is presented as a 

criterion to update the personal-best archives and global-best archive.

�e update procedure is as follows: For particle i, suppose the maximal size of its 

personal-best archive is Np. Add the personal-best archive and particle i to form a new 

archive Ω, and then select Np non-dominated particles from Ω by non-dominated 

archive updating strategy. �e global-best archive is updated as follows: Suppose the 

maximal size of global-best archive is Na. Add the current global-best archive and the 

non-dominated particles of the current population to form a new archive Ω’, and then 

select Na non-dominated particles from Ω’ by non-dominated archive update strategy. 

Here Np, Na is empirically set to 5 and 15. �e non-dominated archive update strategy is 

implemented as follows:

Non‑dominated archive update strategy Randomly generate three numbers w1, w2, w3 in 

[0 1] and the weights are able to add some random impacts on the objectives. �en three 

coefficients (here is the 10, 1, 10−1), which represents the real impacts of three objectives, 

are multiplied by these weights. Suppose the archive is Ω and its limited size is Na. �e 

pseudo-code of the non-dominated archive update strategy integrating weighted sum 

approach is as follows: 
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After personal-best archives and global-best archive are updated by the non-domi-

nated archive update strategy, the personal-best position is randomly selected from its 

personal-best archive and the global-best position is randomly selected from the global-

best archive. �e selection strategy of the personal-best position and the global-best 

position as well as the updating procedure of population is illustrated in Fig. 4.

Stop criterion

Stop criterion: the predefined number of generations is reached. From the above 

description, the flowchart of the proposed algorithm is shown in Fig. 5.

Global-best archive

First personal-best archive

First individual

Second personal-best archive      personal-best archiveith

Second individual individual

          personal-best archiveNth

individual

New individual

ith

 personal-best archiveith

individualith individualith

1rand c<

N

Y

a

b

Nth

2f

New individual

2f

New individual

2f

New individual

2f

New individual

2f

New individual

2f

Fig. 4 The selection of personal-best position and the global-best position and the function of f2 operator. a 

f2 operator on each personal-best archive. b Procedure of f2 operator
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The simulation experiments

Parameter settings and results

Four Kacem instances and ten Brdata instances (Brandimarte 1993; Kacem et al. 2002b) 

are used to evaluate the performance of our algorithm and several published algorithms 

are applied to compared with the proposed algorithm. �e proposed algorithm is imple-

mented in Matlab 7.1 on Lenovo PC with 4G RAM and 3.4G Intel (R) Core(TM) i3-3240 

CPU. In order to obtain reliable results, our algorithm is run ten times on the same 

instance. �e parameters are chosen experimentally to get a better satisfactory solution. 

�e population size N is set as 100. �e maximal generation number Itermax is set as 300. 

ω is set as 0.98. c1 and c2 are set as 0.6, 0.4. c3 is set as 0.02.

Test on the Kacem instances

Firstly, four Kacem instances ranging from 4 jobs  ×  5 machines to 15 jobs  ×  10 

machines, which are frequently tested on recently published literatures, are used to eval-

uate the validity and performance. �e compared algorithms are the HTSA presented by 

Li et al. (2010), the AIA presented by Bagheri et al. (2010), the Xing algorithm by Xing 

et al. (2010), the MOGA by Wang et al. (2010), the P-DABC algorithm presented by Li 

et al. (2011a), the SEA presented by Chiang and Lin (2013). Table 2 lists non-dominated 

solutions obtained by the proposed algorithm and several recently published algorithms 

for four Kacem instances. For the 4 jobs × 5 machines instance, the 8 jobs × 8 machines 

instance and the 10 jobs ×  10 machines instance, all the solutions obtained by seven 

algorithms are non-dominated solutions. For the 15 jobs ×  10 machines instance, the 

solutions obtained by the HTSA, Xing algorithm and MOPSO algorithm are the same 

and dominate some solutions obtained by AIA, MOGA and P-DABC.

Fig. 5 The flowchart of MOPSO
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Table 3 lists the number of the non-dominated solutions obtained by seven algorithms 

and Fig. 6a shows the comparison of the data in Table 3. From Table 3 and Fig. 6a, it is 

clear to see that the proposed algorithm obtains more non-dominated solutions than 

HTSA, AIA, Xing algorithm and P-DABC algorithm for all four instances. For the 4 

jobs  ×  5 machines instance, SEA obtains one more non-dominated solutions than 

MOPSO algorithm but the paper lists no details of the non-dominated solutions, so it 

is lack of data for a further objective appraisal. For the 8 jobs ×  8 machines instance, 

only P-DABC and MOPSO algorithm find four non-dominated solutions. For the 15 

jobs × 10 machines instance, MOGA obtains three non-dominated solutions but two of 

them are dominated by the solutions of MOPSO algorithm. And only the HTSA, Xing 

algorithm and MOPSO algorithm find both non-dominated solutions (11, 91, 11) and 

(11 93 10). For all four Kacem instances, all non-dominated solutions are obtained by 

MOPSO algorithm and no one is dominated by the compared algorithm. �erefore, 

MOPSO algorithm has better comprehensive performance than the compared algo-

rithms. �e Gantt charts of four Kacem instances obtained by MOPSO algorithm are 

plotted in Fig. 6b–e.

Table 2 Results of the four Kacem instances

Kacem (m × n) 4 × 5 8 × 8 10 × 10 15 × 10

Objective CM WT WM CM WT WM CM WT WM CM WT WM

HTSA 11 32 10 14 77 12 7 43 5 11 91 11

12 32 8 15 75 12 7 42 6 11 93 10

AIA N/A 14 77 12 7 43 5 11 93 11

Xing 12 32 8 14 77 12 7 42 6 11 91 11

N/A 15 76 12 8 42 5 11 93 10

MOGA 11 32 10 15 81 11 8 42 5 11 91 11

12 32 8 15 75 12 7 42 6 12 95 10

11 34 9 16 73 13 8 41 7 11 98 10

P-DABC 11 32 10 14 77 12 8 41 7 12 91 11

12 32 8 15 75 12 7 43 5 11 93 11

13 33 7 16 73 13 8 42 5 N/A

N/A N/A N/A N/A

SEA N/A 14 77 12 N/A N/A

N/A 15 75 12 N/A N/A

N/A 16 73 13 N/A N/A

N/A 16 77 11 N/A N/A

MOPSO 11 32 10 16 73 13 8 41 7 11 91 11

13 33 7 14 77 12 8 42 5 11 93 10

12 32 8 16 77 11 7 43 5 N/A

N/A 15 75 12 7 42 6 N/A

Table 3 The number of non-dominated solutions for four Kacem instances

Kacem (m × n) HTSA AIA Xing MOGA P‑DABC SEA MOPSO

4 × 5 2 N/A 1 3 3 4 3

8 × 8 2 1 2 3 3 4 4

10 × 10 2 1 2 3 3 4 4

15 × 10 2 1 2 3 2 2 2
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Test on the Brdata instances

�e second category of 10 instances is from Brandimarte (Brdata instances) rang-

ing from 10 jobs × 6 machines to 20 jobs × 15 machines and they are generated by a 

uniform distribution between given limits. Xing’s algorithm (Xing et al. 2009), MOGA 

(Wang et al. 2010), HTSA (Li et al. 2010), HSFLA (Li et al. 2012) and AIA (Bagheri et al. 
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Fig. 6 The Gantt chart of the solution of Kacem instances. a The number of non-dominated solu-

tions for four Kacem instances, b 4 jobs 5 machines (CM = 11, WT = 32, WM = 10) c 8 jobs 8 machines 

(CM = 16, WT = 73, WM = 13), d 10 jobs 10 machines (CM = 16, WT = 73, WM = 13), e 15 jobs 10 machines
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2010) are used to compare with MOPSO algorithm. �e data of compared algorithm are 

from the published paper (Li et al. 2010, 2012).

Table 4 lists the experimental results of non-dominated solutions with minimal makes-

pan obtained by these algorithms. It is marked in italic type if the solution is dominated 

by other solutions. For MK02, MK05, MK06 and MK07 instances, the non-dominated 

solutions obtained by Xing’s algorithm are dominated by that obtained by MOPSO 

algorithm. For MK01 and MK03 instances, the non-dominated solutions obtained by 

Table 4 Results of the ten Brdata instances

Name Xing MOGA HTSA HSFLA AIA MOPSO

MK01

CM 42 40 40 40 40 40

WT 162 169 167 165 171 167

WM 42 36 36 37 36 36

MK02

CM 28 26 26 26 26 26

WT 155 151 151 152 154 151

WM 28 26 26 26 26 26

MK03

CM 204 204 204 204 204 204

WT 852 855 852 852 1207 852

WM 204 199 204 204 204 204

MK04

CM 68 66 61 62 60 61

WT 352 345 366 364 403 382

WM 67 63 61 61 60 60

MK05

CM 177 173 172 173 173 173

WT 702 683 687 685 686 683

WM 177 173 172 173 173 173

MK06

CM 75 62 65 64 63 62

WT 431 424 398 403 470 424

WM 67 55 62 55 56 55

MK07

CM 150 139 140 141 140 139

WT 717 693 695 696 695 693

WM 150 139 140 141 140 139

MK08

CM 523 523 523 523 523 523

WT 2524 2524 2524 2524 2524 2524

WM 523 515 523 523 523 523

MK09

CM 311 311 310 311 312 310

WT 2374 2290 2294 2275 2591 2514

WM 299 299 301 299 306 299

MK10

CM 227 214 214 215 214 214

WT 1989 2082 2053 1957 2121 2082

WM 221 204 210 198 206 204
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MOGA are dominated by that obtained by MOPSO algorithm. For MK07 instances, 

the non-dominated solutions obtained by HTSA are dominated by that obtained by 

MOPSO algorithm. For MK02, MK05 and MK07 instances, the non-dominated solu-

tions obtained by HSFLA are dominated by that obtained by MOPSO algorithm. For 

MK01, MK02, MK03, MK05, MK06, MK07, MK09, and MK10 instances, the non-domi-

nated solutions obtained by AIA are dominated by that obtained by MOPSO algorithm. 

�e only non-dominated solution of MK08 instance obtained by MOPSO algorithm is 

dominated by MOGA. From Table 4, we can clearly see that MOPSO algorithm obtains 

more high-quality solutions for ten Brdata instances.

Table  5 lists the best makespan (denoted as CM), the average computational time 

(denoted as Av(CPU)), the average best makespan (denoted as Av(CM)), the stand-

ard deviation (denoted as Std(CM)) obtained by MOPSO algorithm and some results 

obtained by SEA (Chiang and Lin 2013) and TSPCB (Li et al. 2011b). �e improvements 

contrasted to SEA and TSPCB (respectively denoted as imp1 and imp2%) are calculated 

as follows:

where CM
com and CM

pro are the best makespan obtained by compared algorithm and 

obtained by our proposed algorithm respectively. imp% is the percentage of the improve-

ment to the compared algorithm.

From the data of imp1% in Table  5, we can see that CM obtained by MOPSO algo-

rithm has an improvement on MK06, MK09 and MK10 contrasted to that obtained by 

SEA, and no CM is worse than that obtained by SEA. From the data of imp2%, MOPSO 

algorithm have better results on MK04, MK06 and MK07 than that obtained by TSPCB, 

and only for MK05, MOPSO algorithm obtains worse result than TSPCB. From Table 5, 

the values of Av(CM) for all Brdata instances are close to CM and almost all the values 

of Std(CM)are less than 1. �erefore, we can conclude that MOPSO algorithm also has 

a stable searching ability. However, the MOPSO algorithm has more time-consuming 

than TSPCB. �at maybe depends on different simulation environment and simulation 

imp% =

Ccom
M − C

pro
M

C
pro
M

× 100%

Table 5 Results of the ten Brdata instances

Name SEA TSPCB MOPSO

CM CM Av(CPU) CM Imp1 % Imp2 % Av(CM) Std(CM) Av(CPU)

MK01 40 40 2.8 40 0 0 40.00 0 10.22

MK02 26 26 19.31 26 0 0 26.40 0.52 30.35

MK03 204 204 0.89 204 0 0 204.00 0 20.07

MK04 61 62 40.82 61 0 +1.61 62.35 0.47 58.22

MK05 173 172 20.23 173 0 −0.58 173.75 0.81 27.04

MK06 65 65 27.18 62 +4.62 +4.62 62.34 0.36 75.22

MK07 140 140 35.29 139 0 +0.71 139.30 0.46 52.51

MK08 523 523 4.65 523 0 0 523.75 0.68 45.20

MK09 311 310 70.38 310 +0.32 0 312.60 1.53 104.42

MK10 255 214 89.83 214 +16.08 0 214.55 0.65 156.73
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language to some extent because TSPCB is implemented on Pentium IV 1.6 GHz proces-

sor in C++. �e Gantt chart of one best solution obtained by the MOPSO algorithm for 

MK01 is shown in Fig. 7 and the approximate Pareto front of MK03 and MK04 obtained 

by MOPSO algorithm is shown in Fig. 8. 

As PSO can memorize each particle’s experience and the population’s experience, PSO 

for multi-objective problem can track and memorize non-dominated solutions encoun-

tered by each particle (self experience) and the population (social experience), and a col-

laborative guiding way of self experience and social experience can balance exploration 

and exploitation and contribute to prevent premature. In our paper, the advantage of 

MOPSO is having many cognitive memories (no other algorithms have such memo-

ries) and a social memory to keep the diversity of non-dominated solutions and balance 

local search and global search. �en it is convenient for social memory to do a further 

research. �is search mechanism can effectively avoid the premature and improve the 
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solutions. It is verified by that the proposed algorithm obtains high-quality and more 

better solutions for most of Kacem instances and Brdata instances.

Parameter sensitivity analysis

In this section, we should analyze the sensitivity of parameters. MK02 is applied to assess 

the performance of MOPSO with different parameter combinations. Four levels of the 

parameters N, ω, (c1, c2) and c3 are considered and experiments are designed by using the 

Taguchi method. �e range of the parameters and the value of each factor level are pre-

sented in Table 6. �e designed experiments of an orthogonal array are presented in Table 7. 

Each designed experiment runs 5 times independently. �e maximal iteration num-

ber is 100. Av(CM) denotes the average makespan of five runs. According to the results 

of Av(CM) in Table 7, the average Av(CM) of each factor level is presented in Table 8. In 

Table 8, ‘Delta’ denotes the maximal average Av(CM) minus the minimal average Av(CM) 

for each parameter and reflects the significance of each parameter. According to the 

Table 8, the trend of each factor level is illustrated in Fig. 9a–d and the effect on perfor-

mance of each parameter is analyzed by Fig. 9. For comparisons of ‘Delta’, the parameters 

(c1, c2) rank first, and the parameter c3 ranks second. �erefore, the parameters (c1, c2) 

are the most significant factor on the performance of our algorithm. 

Table 6 The factor level of parameters

Parameters Value range Factor level

1 2 3 4

N 50–200 50 100 150 200

ω 0.90–0.98 0.9 0.94 0.96 0.98

(c1, c2) 0.2–0.8 (0.2, 0.8) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2)

c3 0.001 0.001 0.01 0.05 0.1

Table 7 The orthogonal table of designed experiments

Experiment number Factor level Av(CM)

N ω (c1, c2) c3

1 1 1 3 4 28.8

2 1 2 4 3 29.4

3 1 3 2 1 28.2

4 1 4 1 2 27.8

5 2 1 2 4 29.2

6 2 2 3 1 28.8

7 2 3 4 2 29.0

8 2 4 1 3 28.8

9 3 1 1 1 28.4

10 3 2 2 2 28.8

11 3 3 3 3 28.8

12 3 4 4 4 28.6

13 4 1 3 2 27.6

14 4 2 1 4 28.6

15 4 3 4 1 29.0

16 4 4 2 3 28.8
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Conclusions

In this paper, a multi-objective FJSP with three criteria is investigated to meet the 

requirements in manufacturing system and MOPSO algorithm is developed to address 

this problem. In MOPSO algorithm, a discrete version of PSO employing special dis-

crete operators is proposed, and personal-best archives and global-best archive, which 

is updated by non-dominated archive update strategy and is respectively used to select 

personal-best positions and global-best position, are developed to preserve non-dom-

inated positions. Cognitive memories and social memory can keep the diversity of 

non-dominated solutions and balance local search and global search. Additionally, vari-

able neighborhood search integrating three neighborhoods on the global-best archive is 

applied to improve the exploiting capability. MOPSO algorithm is evaluated on Kacem 

instances and Brdata instances, and compared with some published algorithms. Compu-

tational experiments demonstrate that the MOPSO algorithm have a better comprehen-

sive performance than other algorithms to solve multi-objective FJSP.

Table 8 The Delta of each parameter

Factor N ω (c1, c2) c3

1 28.55 28.50 28.40 28.60

2 28.95 28.90 28.75 28.30

3 28.65 28.75 28.50 28.65

4 28.50 28.50 29.00 28.80

Delta 0.45 0.40 0.60 0.5
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Research work should be continued in the future and it includes the followings: Firstly, 

the theory of multi-objective optimization should be developed to support the study 

of multi-objective FJSP. Secondly, the FJSP model also should be developed or rebuilt 

to meet the dynamic and varied environment and requirements. Finally, more efficient 

algorithm or strategy should be studied for solving the difficult FJSP problem.
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