
This may be the author’s version of a work that was submitted/accepted

for publication in the following source:

Wu, Paul, Campbell, Duncan, & Merz, Torsten

(2011)

Multiobjective four-dimensional vehicle motion planning in large dynamic

environments.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-

ics, 41(3), pp. 621-634.

This file was downloaded from: https://eprints.qut.edu.au/40219/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a

Creative Commons Licence, you must assume that re-use is limited to personal use and

that permission from the copyright owner must be obtained for all other uses. If the docu-

ment is available under a Creative Commons License (or other specified license) then refer

to the Licence for details of permitted re-use. It is a condition of access that users recog-

nise and abide by the legal requirements associated with these rights. If you believe that

this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record

(i.e. published version) of the work. Author manuscript versions (as Sub-

mitted for peer review or as Accepted for publication after peer review) can

be identified by an absence of publisher branding and/or typeset appear-

ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/TSMCB.2010.2061225

https://eprints.qut.edu.au/view/person/Wu,_Paul.html
https://eprints.qut.edu.au/view/person/Campbell,_Duncan.html
https://eprints.qut.edu.au/40219/
https://doi.org/10.1109/TSMCB.2010.2061225

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 1

Multi-Objective 4D Vehicle Motion Planning in

Large Dynamic Environments
Paul P.-Y. Wu, Member, IEEE, Duncan Campbell, Member, IEEE, Torsten Merz, Member, IEEE

Abstract—This paper presents Multi-Step A* (MSA*), a search
algorithm based on A* for multi-objective 4D vehicle motion
planning (three spatial and one time dimension). The research
is principally motivated by the need for offline and online
motion planning for autonomous Unmanned Aerial Vehicles
(UAVs). For UAVs operating in large, dynamic and uncertain
4D environments, the motion plan consists of a sequence of
connected linear tracks (or trajectory segments). The track angle
and velocity are important parameters that are often restricted by
assumptions and grid geometry in conventional motion planners.
Many existing planners also fail to incorporate multiple decision
criteria and constraints such as wind, fuel, dynamic obstacles and
the rules of the air. It is shown that MSA* finds a cost optimal
solution using variable length, angle and velocity trajectory
segments. These segments are approximated with a grid based
cell sequence that provides an inherent tolerance to uncertainty.
Computational efficiency is achieved by using variable successor
operators to create a multi-resolution, memory efficient lattice
sampling structure. Simulation studies on the UAV flight planning
problem show that MSA* meets the time constraints of online
replanning and finds paths of equivalent cost but in a quarter of
the time (on average) of vector neighbourhood based A*.

Index Terms—path planning, heuristic algorithms, multi-
objective decision making, unmanned aerial vehicles.

I. INTRODUCTION

A
N important component in the operation of vehicles

in large, four dimensional (three spatial and one time

dimension) dynamic environments is motion planning. This in-

volves finding an optimal (least cost) or near-optimal sequence

of 4D states that connect the initial vehicle state to a desired

goal state [1]. For many applications, it is necessary to plan

offline (e.g. prepare a mission plan for regulatory approval)

and replan online when planning assumptions are invalidated

by in-mission changes. The research is principally motivated

by the operation of robotic vehicles, namely autonomous Un-

manned Aerial Vehicles (UAVs) and equivalently, Autonomous

Underwater Vehicles (AUVs).

UAVs and AUVs are characterised by: (i) operation in large,

outdoor environments, (ii) movement in three dimensions

(x, y, z), (iii) uncertain and dynamic operating environment,

The work was supported in part by the Australian Research Centre for
Aerospace Automation (ARCAA) and the Commonwealth Scientific and In-
dustrial Organisation (CSIRO) Information and Communication Technologies
(ICT) Centre top-up scholarship

Dr Paul Wu, is a researcher with ARCAA, Queensland University of
Technology (QUT), GPO Box 2434, Brisbane, 4000, Australia. (e-mail:
p.wu@qut.edu.au)

Associate Professor Duncan Campbell, is with the School of Engi-
neering Systems and ARCAA, QUT, Brisbane, 4000 Australia. (e-mail:
da.campbell@qut.edu.au)

Dr Torsten Merz is a senior research scientist with CSIRO, ICT Centre, PO
Box 883, Kenmore QLD 4069, Australia. (e-mail: torsten.merz@csiro.au)

(iv) presence of environmental forces that affect motion (winds

or currents), and (v) differential constraints on movement [2],

[3]. Because of (ii) and (iii), the planning space must be four

dimensional. Note that a dynamic environment refers not only

to moving obstacles, but also to changing weather conditions.

The proposed work mitigates the uncertainty inherent in a

dynamic environment through online replanning and incorpo-

ration of tolerances in the planning process. Online replanning

in this paper refers to the execution of a search (i.e. replan)

during a mission. It is assumed that the inputs to the planner

are constant during a replan, hence there is significant time

pressure on the replanning process.

The motion plan is constrained by vehicle dynamics (such as

maximum climb/ascent rate), environmental constraints (e.g.

static and dynamic obstacles and wind/current) and rules

of the air/sea. In addition, the planned path must satisfy

(and optimise for) multiple, possibly conflicting objectives

such as fuel efficiency and flight time. Due to the “curse

of dimensionality” [4], it is not computationally feasible to

plan in a high dimensional search space consisting of all the

aforementioned variables. It is common, instead, to plan the

path in the world space (x, y, z, t) [1] by aggregating the

decision variables into a single, non-binary cost term [4]. This

planning problem is a type of weighted region path planning

[5]. An optimal path search algorithm like A* [6] is needed

as the shortest path is not necessarily the least cost path.

One of the unique UAV/AUV characteristics listed above

is the presence of wind (or currents). These constrain vehicle

movements and affect travel time and fuel consumption. In

the presence of wind, it is especially important to have high

track angle resolution as low track angle resolution can result

in suboptimal paths that contain spurious turns [7], [8]. This is

a shortcoming of conventional search grids as the track angle

is in increments of 45◦.

Note that 4D motion planning as described here should

not be confused with trajectory planning, which finds a path

expressed in terms of the degrees of freedom of the vehicle and

velocity/angle rates [1]. Instead, a 4D motion plan comprises

a geo-referenced sequence of 3D waypoints and the desired

track velocities between them. In this paper, such tracks are

also equivalently referred to as trajectory segments.

This paper presents Multi-Step A* (MSA*), a method for

4D vehicle motion planning based on variable length, angle

and velocity trajectory segments. Section II reviews existing

path planning techniques. Based on A* [6], the proposed

method is presented in Section III and shown to be cost

optimal. To take advantage of variable trajectory segments,

a memory and time efficient multi-resolution lattice structure

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 2

is proposed in Section IV. A simulation study of MSA* for the

UAV flight planning task is discussed in Section V. Analysis

of the simulation results and a comparison of MSA* with

existing work is discussed in Section VI.

II. EXISTING WORK

Much of the recent work in vehicle planning has focused

on techniques in computational geometry using a grid [7]–

[16]. However, a shortcoming of many grid-based approaches

(e.g. [14], [16]) is that the resultant path is confined to track

angles that are multiples of 45◦. As a result, the path can be

sub-optimal and may contain spurious turns [7], [8]. A lack

of regular high resolution track angles also affects methods

based on Voronoi graphs (e.g. [11], [17]), methods that use

probabilistic sampling (e.g. [18], [19]), and generally methods

where path angles are not considered (e.g. [15], [20]). A review

of motion planning algorithms is provided below for methods

that address the requirements of vehicle motion planning vis

a vis the track angle problem, wind/current effects and multi-

objective optimisation.

A. Methods with High Resolution Track Angles

A number of grid based methods determine the track angle

in continuous space instead of sampling from predefined,

discrete track angles. However, geometry based methods in 2D

or 3D (or even 4D) space, such as Theta* [8] and A3D [15],

do not find the optimal path. Field D* [7] and 3D Field D*

[13] find the optimal path but both assume a priori knowledge

of cell costs (which are used to derive the track angle and

track cost). This approach is infeasible in a 4D search space

as the cost is dependent on the track angle. Nevertheless, it

is shown that a multi-resolution search space can be used to

mitigate the memory and time complexity of motion planning

[1], [7], [9], [13].

Pivtoraiko and Kelly [12] present an alternate method that

provides regular, high resolution track angles by defining a

successor operator (i.e. parent child cell relationships) that

has a predetermined number of successors at selected track

angles. Like Theta*, parent cells are not necessarily adjacent

to child cells, hence the notion of a vector neighbourhood [1].

However, the method is formulated for 2D vehicle planning

with no consideration for winds/currents.

The framed quad/octree [9] enables high resolution track

angles by placing sample nodes on the boundaries of each

quad/octree decomposed cell. However, transitions between

cells is again limited to increments of 45◦. Additionally,

neither [9] nor [12] consider wind effects.

A number of existing planners model wind effects using

weighted, polygonal (or polyhedral) shaped regions [21]–[24].

However, these methods do not consider multiple objectives

and are not suited for planning in a dynamic environment. This

is a similar shortcoming of AUV [14] and UAV [10] motion

planners that incorporate wind.

Finally, there are motion planners based on artificial evo-

lution (e.g. [10], [18], [19]) that plan in continuous space.

A shortcoming of evolutionary algorithms is the inability to

specify bounds on computation time or solution optimality

[25]. This can be problematic for online replanning (due to

real-time constraints), and for applications where determinism

is a regulatory requirement (e.g. DO178-B [26] for aviation

software).

B. Multi-Objective Planning Algorithms

None of the previously quoted methods explicitly address

the requirement of optimising for multiple decision objectives,

although many incorporate multiple path constraints (e.g.

water currents and vehicle dynamics in [14]). Examples of

explicit multi-objective planning algorithms can be found in

the study of HAZardous MATerials (HAZMAT) transportation

[27]. These algorithms combine a multi-objective decision

function (typically a weighted sum) with a graph search

algorithm (such as A* or Dijkstra’s algorithm) on a grid [27]–

[30] (refer to [31] for a description). This methodology is

also used by Gu [11] for a bi-objective (risk and fuel ob-

jectives) UAV motion planner. These multi-objective planning

algorithms (e.g. [11], [27]–[30]) almost universally adopt a

global planning approach where the track cost is calculated at

search time (much like a lazy probabilistic roadmap [1]).

An alternative approach to multi-objective path planning

is to use a multi-objective search algorithm like [17], [32].

However, these algorithms are computationally expensive and

in the case of [32], restricted to acyclic graphs; note that graphs

derived from grids are cyclic.

A similar, direct approach to multi-objective path planning

is logic based planning. Three candidate approaches include

the Hierarchical Task Network (HTN) [33], Temporal Ac-

tion Logic (TAL) [34] and MFSAT (Multi-Flip SATisfiability

solver - which evaluates non-adjacent neighbours in logic

space) [35]. An application of HTN to indoor robot navigation

is described in [36]. However, logic based motion planning is

generally computationally expensive and the resultant plan is

typically non-optimal [1], [33].

It can be seen that existing methods do not fully address

the multi-objective vehicle motion planning problem.

III. MULTI-STEP A* (MSA*)

The planning task is defined as finding a path P , through

a roadmap S, starting at node s0 and terminating at node sG.

Each node s ∈ S is located at the centre of a 4D rectangloid

cell defined in the world space W (x, y, z, t). Assuming a

regular grid sampling of the search space, each node s maps

uniquely to a cell in W . Thus, s refers simultaneously to both

the cell and the node located in the centre of each cell. The

global planning approach described in Section II is adopted

whereby tracks are evaluated online and the initial roadmap is

not explicitly represented (like with [20]). Instead, the roadmap

is defined implicitly through a successor (or neighbourhood)

operator Γ where for a given source (or parent) node s, Γ(s)
denotes a set of cell sequences γs′ ∈ Γ(s) which begin at s
and terminate at the successor (or child) node s′ ∈ S′.

Consider the modeling of a vector neighbourhood like [12]

where s′ does not necessarily lie adjacent to s. The successor

operator is assumed to denote a linear trajectory/track con-

necting the centre of cell s to the centre of cell s′ (refer to

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 3

���������		

�����

�����		

��		

��������

���������

�������

���� �����

����

��

��

�����

(a) (b)

Fig. 1. Successor operator illustration, (a) a single 2D trajectory segment and
the corresponding cell sequence, and (b) an example 2D successor operator
showing individual trajectory segments. Note that the trajectory segment
terminates in the centre of the successor cell, which is not necessarily adjacent
to the source cell.

Fig. 1). It is assumed that turns (possibly required between

tracks) have negligible impact on the overall path in terms of

travel time and fuel consumption. For each successor s′, the

trajectory intersects a sequence of cells between s and s′

γs′ = {sj+m−1 = s′‖sj = s, . . . , sj+m−2} (1)

where sj , . . . , sj+m−1 are a sequence of m cells and ‖ de-

notes a conditional dependence, i.e. sj+m−1‖sj , . . . , sj+m−2

is interpreted as cell sj+m−1 via a sequence of cells

sj , . . . , sj+m−2. In the ensuing sections, Γ is derived for a

three dimensional world (Γ3D ∈ Γ, Section III-A) and then

extended to four dimensions (Section III-B). This is possible

as the search dimensions are orthogonal.

A. Multi-Step 3D Successor Operator

As illustrated in Fig. 1a, it is possible to determine the

horizontal track angle θ and slope from the endpoints of

each trajectory segment. The vertical track angle φ and slope

can be similarly determined for a 3D trajectory segment. In

aviation, the horizontal and vertical track angles are referred

to as the ground track angle and flight path angle respectively.

Note that the vertical slope is given by the climb/descent

rate and the ground speed. The angles can then be used to

determine the cells that intersect the track using a variant of

Bresenham’s pixel algorithm [37]. Note, because the vehicle

controller has non-zero trajectory tracking error, it is necessary

to include cells whose edges/corners touch the trajectory line.

This prevents the possibility of the vehicle squeezing through

an infinitesimally small gap or “brushing past” an obstacle.

Doing so provides an intrinsic tolerance to navigational and

controller uncertainty as there is always a safety margin

between the trajectory segment and the boundaries of a cell.

Using Bresenham’s [37] line drawing concept, determina-

tion of a 3D cell sequence is based on the displacement

(nx, ny, nz) of the successor cell from the source in terms of

the number of cells in the x, y, and z dimensions respectively.

This sequence is invariant to the physical dimensions of each

cell but assumes regular cells. The 3D line equations are

y =
ny

nx
x, z = nz

nx
x if |nx| ≥ |ny|, |nx| ≥ |nz|

x = nx

ny
y, z = nz

ny
y if |nx| < |ny|, |ny| ≥ |nz|

x = nx

nz
z, y =

ny

nx
x if |nx| ≥ |ny|, |nx| < |nz|

y =
ny

nz
z, x = nx

ny
y if |nx| < |ny|, |ny| < |nz|

(2)

Note that, as is done in [37], line symmetry properties are

exploited to avoid slopes greater than one. The cells in the

sequence are determined by selecting and then applying the

appropriate equation in (2) for each successor (nx, ny, nz).
The equation is evaluated at the midpoints between cells,

i.e. 0.5, 1.5, . . . , n − 0.5 cell widths. If the midpoint lies

on an edge, cells that share that edge are included in the

cell sequence. If the midpoint intersects a corner point, all

cells that share that corner point are included. This produces

a cell sequence that has Manhattan stepping with non-zero

spacing between the trajectory segment and cell boundaries.

The horizontal and vertical track angles, θ and φ respectively,

can be calculated from the displacement as shown in (3) and

(4) respectively.

θ = arctan

(

nxδx

nyδy

)

(3)

φ = arctan

nzδz
√

(nxδx)
2
+ (nyδy)

2

 (4)

where δx, δy and δz correspond to the x, y and z dimensions

of each cell respectively. Note that as Γ is specified a priori,

there is no need to optimise the cell sequence generation

algorithm.

Consider the design of Γ3D. From (3) and (4), it can be

seen that arbitrary track angles are possible, however this can

result in successors that are displaced by a large cell distance

(nx, ny, nz) from s. For example, a horizontal track angle

resolution (i.e. maximum angular distance between sample

points) of 45◦ is achieved with a maximum cell displacement

of 1 (max (nx, ny) = 1 assuming square shaped cells). How-

ever, for a resolution of 26.6◦, a maximum cell displacement

of 2 is required (refer to Fig. 1b). It is possible to reduce

the physical track distance by increasing the grid resolution

(i.e. make each cell smaller), however this also increases the

computation time due to a larger search space. Thus, the design

of Γ3D is dependent on the available computation time, desired

track length and angle resolution for a specific application.

B. Extending the Successor Operator to 4D

Consider the extension of Γ3D to four dimensions where

each cell has dimensions (δx, δy, δz, δt); δt specifies a dura-

tion of time spent inside a 3D cell. The vector neighbourhood

concept extends to the time dimension in that s′ lies at a

discretised time level s′tl that is displaced from stl by ntl

time levels; ntl corresponds to the track traversal time.

The cost of traversal of a particular track (needed in many

search algorithms [1]) in vehicle motion planning is dependent

on the track velocity. Due to the presence of wind, it is not

possible to predefine a set cruise velocity for each successor in

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 4

the four dimensional successor operator Γ. However, given a

3D successor with displacement (nx, ny, nz), it is possible

to generate multiple 4D successors s′ with displacement

(nx, ny, nz, ntl) where ntl ∈ Ntl . The choice of successor

time level displacements Ntl is application specific as it is

dependent on track lengths, knowledge of expected wind

magnitudes and the minimum and maximum cruise velocity

of the vehicle. For a given Γ3D, the minimum and maximum

cruise velocities can be used to determine an initial estimate

of the lower and upper bounds respectively for Ntl using

(6) (assuming zero wind). Further refinement of Ntl can be

achieved through Monte Carlo simulation over expected wind

conditions by inspecting resultant cruise and track velocities

for a given choice of Ntl .

Note that for each successor, the cell sequence generated

using (2) can be extended to 4D by simply calculating the

time level displacement ns
tl

for each cell s on the sequence

ns
tl
= ntl

ns
x

nx
if |nx| ≥ |ny|, |nx| ≥ |nz|

ns
tl
= ntl

ns
y

ny
if |nx| < |ny|, |ny| ≥ |nz|

ns
tl
= ntl

ns
z

nz
otherwise

(5)

where ns is the displacement of cell s from the source node.

Note that in (5), the spatial dimension with the maximum

displacement is used to calculate the cell sequence quantised

time level displacements, as this gives the maximum sampling

resolution.

Given ntl , the vehicle cruise velocity can be derived from

the track length via the track velocity ~vt.

|~vt| =

√

(s′x − sx)2 + (s′y − sy)2 + (s′z − sz)2

ntlδt
(6)

This track velocity is itself a sum of the cruise and wind

velocity vectors

|~vt| cosφ

(

sin θ
cos θ

)

= |~vc| cosφ

(

sinα
cosα

)

+

(

vwx

vwy

)

(7)

where θ and φ are the horizontal and vertical track angles

respectively, ~vc is the cruise velocity (e.g. the airspeed of an

aircraft), ~vt the track velocity (e.g. the groundspeed of the

aircraft), α is the vehicle heading angle and (vwx
, vwy

) are the

horizontal wind magnitudes. All angles are measured from true

north in navigational tasks [38]. Note that (7) is formulated in

two dimensions instead of three as the horizontal component

of the track and track velocity is far greater than the vertical

for both UAVs [38] and AUVs [14]. The vertical component

of ~vc and wind are treated as constraints instead. By separating

the x and y components from (7) and then solving the resultant

simultaneous equations, it is possible to get an expression for

~vc given |~vt| and (vwx
, vwy

).

|~vc| =
√

|~vt|
2 − 2 |~vt| (vwy

cos θ + vwx
sin θ) + v2wx

+ v2wy

(8)

Note that we are not interested in the negative root which

corresponds to traversal in the opposite direction.

The preceding section describes in effect a formulation of

a vector neighbourhood (obtained using a successor operator)

1: for all s ∈ S do

2: g(s)←∞
3: end for

4: Queue← ∅
5: s← s0
6: Queue.Insert(s)
7: g(s)← 0
8: while s 6= sg do

9: s = Queue.Pop()
10: if s = sg then return

11: end if

12: S′ ← Succ (Γs(s))
13: for all s′ ∈ S′ do

14: ĝ(s′) = g(s) + c(s′‖γs′)
15: f̂(s′) = g(s′) + ĥ(s′, sg)
16: if ĝ(s′) < g(s′) then

17: g(s′)← ĝ(s′)
18: Queue.Insert(s′)
19: end if

20: end for

21: end while

Fig. 2. MSA* Pseudocode. Note that at line 12, Succ (Γs(s)) extracts the
set of successor nodes s′ ∈ S′ where s′ is the last cell in each cell sequence
γs′ ∈ Γs(s).

like the one in [12] but for (x, y, z, t). Unlike [12], the ensuing

sections describe a multi-step variant of A* [6] (Section III-C)

that enables the use of a variable successor operator Γs for

each node s. This variable operator enables the implementation

of multi-resolution search and also enables the imposition of

a structure on the search space. These are further discussed in

Section IV.

C. Search Algorithm

The pseudocode of the MSA* algorithm is listed in Fig.

2. Note that s0 and sg refer to the start and goal nodes

respectively. Like A*, nodes are placed on a priority queue

sorted according to the evaluation function f which is itself

the sum of the cost to come, g, and estimated cost to go, ĥ.

In Fig. 2, Queue.Insert refers to the addition of a node s′

to the queue such that f(s∗) ≤ f(s) ∀s ∈ Queue, where s∗

is the topmost element in Queue. Queue.Pop is the removal

of this topmost element.

The key distinction between MSA* and A* lies in the cost

function c. A* computes the cost (a scalar value) as a function

of the cells s and s′, whereas the MSA* cost is a function of

multiple cells as defined in the cell sequence (equation (1)).

g(s′) = g(s) + c(s′ = sj+m−1‖s = sj , . . . , sj+m−2) (9)

The cost c is calculated using a two step process. Firstly, the

decision variables xi (e.g. fuel, risk) are uniquely mapped or

calculated from the cell sequence such that xi = ρi(s, . . . , s
′)

where ρi is the mapping function. For example, the total risk

probability is the sum of the risk probability density value for

each cell on the cell sequence. Note that constraints can be

imposed by setting c = ∞ if a particular decision variable

exceeds a specified limit (e.g. maximum risk). Otherwise,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 5

a Multi-Criteria Decision Making (MCDM) cost function is

used to transform the decision variables into a single cost

term, c, where c is non-zero and monotonic (i.e. c > 0).

This second step could be a weighted sum aggregation (like

that used in [27]–[30]), or a fuzzy mapping (e.g. [31]). Using

a weighted sum approach, each decision variable is mapped

onto a commensurate scale on the interval [0, 1] using a value

function ui(xi). The final cost is c = w0u0(x0) + . . . +
wn−1un−1(xn−1) + δc where n is the number of decision

criteria and δc is a small positive value to ensure c > 0.

A comprehensive evaluation of the decision objectives and

decision variables for UAV flight planning is provided in [39]

(refer to Section V-A for a brief summary).

D. Cost Optimality of MSA*

It can be shown that MSA* will find the least cost path given

a predefined set of successor operators Γs for each node s ∈ S
and MCDM cost function c. As MSA* is derived from A* [6],

cost optimality can be shown in a similar manner as well.

Lemma 1: Consider any globally optimal path P ∗ =
(s0, . . . , sn). It can be shown that P ∗ is itself composed of

optimal paths.

Proof: The optimal path for a given node sik is a path

P ∗ = (s0, . . . , sik), such that for all possible paths P ∈ Π,

g(sik‖P
∗) < g(sik‖P). Recall that any path is made up of an

integer number of trajectory segments K and each segment is

represented by a cell sequence of length mj for segment j.

Thus, the index to a node (or cell) in P ∗ at the kth trajectory

segment is

ik = −k +

k−1
∑

j=0

mj (10)

For the case where k = K, the lemma is trivially true by

definition of P ∗
iK

as iK = n, P ∗
n = (s0, . . . , sn). Consider

the case for k = K − 1 trajectory segments, whose cell

sequence PiK−1
= (s0, s1, . . . , siK−1

) is a subset of the

optimal path P ∗. If PiK−1
is not a least cost path, then

there exists another path P ′
iK−1

= s0, s
′
1, . . . , s

′
iK−2

, siK−1

such that g(P ′
iK−1

) < g(PiK−1
). But, as the K − 1th cell

sequence siK−1
, . . . , siK is unchanged, then given (9), the cost

term c is unchanged. This implies that there exists a path

P ′
iK

= (s0, s
′
1, . . . , s

′
iK−2

, siK−1
, . . . , siK) such that g(PiK) <

g(P ∗
iK
), contradicting the definition of P ∗

iK
. Therefore, PiK−1

must also be an optimal path. By mathematical induction, any

optimal path P ∗ must itself be composed of optimal paths.

Theorem 1: If the heuristic is admissible [6], then MSA*

will find the optimal path if one exists. An admissible heuristic

ĥ is an estimate of the cost to go that is always less than the

actual cost to go, ĥ(sj , sg) ≤ h(sj , sg).
Proof: Consider an optimal path P ∗ = (s0, . . . , sg)

which contains K trajectory segments. On an optimal path,

g(sj) = g∗(sj) for all j = (0, 1, . . . , iK). From line 15,

because ĥ(sj , sg) ≤ h(sj , sg), therefore, f(sj) ≤ f∗(sj).
In the trivial case where K = 0 (i.e. s0 = sg), MSA*

discovers the solution in one iteration. During initialisation

(lines 1-7 in Fig. 2), s0 is placed on the queue with cost

g(s0) = g∗(s0) = 0. Upon expansion of s0, MSA* terminates.

Consider the case where K = 1, i.e. sg ∈ S′
0 where S′

0 =
Γs0(s0). Let S∗ denote the set of nodes on the queue that lie

on an optimal path. After one iteration (i.e. expansion of s0),

at least one of the successors s′0 is a member of S∗. Consider

the contrary where none of the nodes s′0 ∈ S′
0 lie on an optimal

path and/or are not on the queue. There are two possibilities,

one is that none of the successors are reachable (in which case

no path exists) or at least one of them lies on a least cost path.

Note that if a path exists, then an optimal path also exists.

For this latter case, given a node s′0, an optimal path

(s0, . . . , s
′
0) must exist that does not contain any nodes in S′

0

because by Lemma 1, an optimal path (s0, . . . , sn) comprises

optimal paths (s0, . . . , sn−1), (s0, . . . , sn−2), . . . and none of

the nodes in S′
0 lie on an optimal path (by assumption). This

is not possible, hence, at least one node s′0 must lie on an

optimal path in which case, by line 16, s′0 would be added

to the queue at the expansion of s0. Therefore, where a path

exists, S∗ 6= ∅ and sg ∈ S∗
0 for the scenario K = 1.

The preceding argument can be extended to show that up

until algorithm termination, S∗ 6= ∅. Let S′
k denote the set of

nodes generated by Γsik−1
∈S′

k−1
(Γsik−2

∈S′

k−2
(. . .Γs0(s0))) -

i.e. all nodes that can be reached in k trajectory segments.

From above, all nodes s : s ∈ S∗, s ∈ Sk (k = 1) are placed

on the queue after the first iteration. If optimal paths of length

k+ 1 exist, expansion of s : s ∈ S∗, s ∈ Sk must yield nodes

s′ : s′ ∈ S∗, s′ ∈ Sk+1. Otherwise, as before, there would

exist nodes s′ /∈ Sk that result in optimal paths of length k+1
trajectory segments which is not possible. Hence, S∗ 6= ∅.

Because Γs is a finite set for all s ∈ S and because trajectory

segments incur a non-zero and non-negative cost c, there are

only a finite number of nodes such that f(s) ≤ f∗(sg) =
f∗(s0). Therefore, as S∗ 6= ∅, the nodes on the optimal path

P ∗ = (s0, si1 , . . . , sik = sg) are expanded (in sequence) in a

finite number of iterations, terminating with the expansion of

sg .

It is not possible to terminate without finding the optimal

path if one exists. Consider the scenario where MSA* termi-

nates such that f(sg) = g(sg) > f∗(s0). But, by the analysis

above, there exists a node s ∈ S∗ just before termination such

that f(s) ≤ f∗(s0) < f(sg). Hence, s would be expanded

instead of sg , contradicting the assumption that MSA* would

have terminated. Therefore, MSA* will find an optimal path

(s0, . . . , sg) in finite time where such a path exists.

IV. MULTI-RESOLUTION LATTICE STRUCTURE

A class of variable successor operators is presented that can

be used to implement a lattice based multi-resolution search

space for the purposes of reducing computation time. The

use of variable successor operators Γs is made possible by

the MSA* search algorithm. As before, the three dimensional

lattice structure is presented first followed by a conceptual

extension to 4D. It is shown that lattice based MSA* reduces

the size of the search space without sacrificing track angle

resolution or soundness [40].

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 6

�
�

�

�

�

�

Fig. 3. General lattice structure, (x, y, z) dimensions shown.

(a) (b)

Fig. 4. Top (x-y) view of lattice showing trajectory segments for (a) lattice
position (0, 0), (b) (0, 2).

A. 3D Lattice

A 3D illustration of the lattice structure is presented in Fig.

3 with a 2D cut-away (x-y) view showing the source-successor

trajectory segments in Fig. 4. The lattice comprises a series

of planes parallel to the x-y, y-z and x-z Cartesian planes at

regular intervals of Λx, Λy and Λz (defined in terms of the

number of cells) in the x, y and z planes respectively.

The lattice design methodology is a three step process.

Firstly, a series of base 3D successor operators Γ0 are chosen,

one for each search space resolution. The choice of Γ0 takes

into account the required track angle resolution and track

length, both of which are related to the sampling density. Γ0

must be such that, in any plane x-y, x-z or y-z, all successors

lie on the border of a rectangle centred at the source node (as

in Fig. 4a).

Using Γ0, it is then possible to define the spacing between

planes in the lattice, Λx, Λy , Λz using

Λx = sup
γnx

{

γ ∈ Γ0 : γnx
≥ γny

, γnz

}

Λy = sup
γny

{

γ ∈ Γ0 : γny
≥ γnx

, γnz

}

Λz = sup
γnz

{

γ ∈ Γ0 : γnz
≥ γnx

, γny

}

(11)

where sup denotes the supremum operator (least upper bound).

Note that if the start or goal nodes do not lie on the lattice,

it is a simple matter to connect those nodes to one that is on

the lattice using a local search technique (refer to [1]).

Using this lattice structure, it is then possible to define

individual Γs operators for each node on the lattice. This is

shown for a 2D lattice for the sake of clarity in Fig. 4. Due

to the regularity of the lattice, nodes located at equivalent

positions on the lattice share the same successor operator Γ~p

for position ~p. Two positions are equivalent if and only if they

are separated by integer multiples of Λx, Λy and Λz cells. A

lattice position ~p can be uniquely defined based on the modulus

~p = (mod(x,Λx),mod(y,Λy),mod(z,Λz)) (12)

Referring to Fig. 3, the total number of unique lattice positions

np is

np = ΛxΛy + Λx(Λz − 1) + (Λy − 1)(Λz − 1) (13)

Consider the case where the source node is at lattice position

(0, 0, 0), i.e. at the intersection of lattice planes (Fig. 4a).

The trajectory segments are chosen to terminate at successors

that lie on the border of a rectangle centred on the source

node with dimensions of (2Λx, 2Λy, 2Λz) cells. Therefore,

Γ~p=(0,0,0) = Γ0. For cells located at different positions on the

lattice (refer to Fig. 4b), the successors are chosen to maximise

the number of identical successors to Γ(0,0,0). Additionally,

where possible, the successors are chosen to terminate at

lattice position (0, 0, 0). This ensures that the same track angle

can be maintained over consecutive trajectory segments to

avert unnecessary turns.

B. 3D Multi-Resolution Lattice

The purpose of multi-resolution sampling is to reduce the

total number of nodes and thus reduce computation time. In

many applications, it is possible to divide the search space

into regions of fine sampling resolution and regions of coarse

sampling resolution. In UAV flight planning for example, fine

sampling resolution is required at lower altitudes but a coarse

sampling resolution can be used for high altitude en-route

airspace. It is easy to implement multi-resolution search by

using multiple base successor operators Γi
0.

Consider the division of the search space into a series of

N rectangular prism shaped regions each of which has a

lattice resolution of (Λi
x,Λ

i
y,Λ

i
z), i = 1, 2, . . . , N and a base

successor operator Γi
0. Note that N is typically a small number

as it is necessary to check the bounds of each region at every

iteration. Each region must have dimensions that are a multiple

of Λi
x,Λ

i
y,Λ

i
z . This ensures that all trajectories must terminate

on and originate from a lattice plane separating the two regions

(refer to Fig. 5).

Furthermore, assume that for any two adjacent regions i
and j, Λi

x,Λ
i
y,Λ

i
z is an integer multiple of Λj

x,Λ
j
y,Λ

j
z . This

way, successors in Γi
0 are displaced at integer multiples of

those in Γj
0, which ensures that all horizontal track angles

(calculated using (3)) in region j also exist in region i (see

Fig. 5). Unfortunately, this is not the case for the vertical

track angle even though angles in the x-z and y-z planes are

replicated in region i. To avoid a large increase in the number

of successors, it is also possible to filter out successors in Γi
0

that are on track angles not represented in Γj
0.

The aforementioned multi-resolution lattice provides a

means for fine and coarse sampling corresponding to smaller

and larger values of Λ respectively. There is no reduction

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 7

Fig. 5. Multi-resolution lattice with Λx = Λy = 3 on the left and Λx =
Λy = 6 on the right. Selected trajectory segments are shown for the sake of
clarity.

in track angle resolution for coarsely sampled regions as

larger values of Λ enable higher track angle resolutions.

Additionally, each track is evaluated at the cell resolution using

cell sequences defined in Section III-A. This guarantees path

soundness [40, Ch. 25.6] by avoiding the problem of mixed

cells (which contains free space and obstacles [1]).

C. 4D Multi-Resolution Lattice

Extension of the previous 3D lattice to four dimensions

involves selection of a suitable set of values ntl ∈ Ntl for

each 3D successor in Γ~p using the methodology described in

Section III-B. The full 4D multi-resolution lattice structure

is implicitly defined through the variable successor operators

where, at each iteration of MSA* search, Γ~p is selected based

on (12) and the boundaries of each Γi
0 region. This approach

enables consistent track angle resolution across fine and coarse

resolution regions without sacrificing soundness.

In addition, the lattice structure reduces memory usage. The

underlying cell grid of MSA* contains NxNyNzNtl nodes

where Nx, Ny , Nz and Ntl are the total number of sample

points in the x, y, z and t dimensions respectively. The total

memory requirement (i.e. number of nodes) N for a lattice

can easily be derived by counting the number of nodes in the

x, y and z planes (refer to Fig. 3) and then subtracting overlap

regions.

N = Ntl (NyNzαx +NxNzαy +NxNyαz − αxαyNz

−αxαzNy − αyαzNx + αxαyαz) (14)

where αx =
⌊

Nx−1
Λx

+ 1
⌋

(and similarly for y and z) and

all division operations are integer divisions. Note that the

NyNzαx term in (14) counts the number of nodes in the x
plane for all x planes, where αx is the number of x planes

(similarly for y and z). The term −αxαyNz subtracts overlaps

between the x and y planes (similarly for overlaps between

the x and z, and y and z planes), and αxαyαz represents the

overlap between the αxαyNz , αxαzNy and αyαzNx terms.

V. EXPERIMENTAL ANALYSIS

This section discusses some of the practical aspects of

implementing the proposed algorithm including evaluation

of MSA* against an existing vector neighbour based search

algorithm (like [12]) in simulation. Such a comparison is used

to evaluate the computational efficiency of MSA*.

A. UAV Flight Planning Application

The UAV mission flight planning problem was chosen to

provide a practical context for evaluation of MSA*. This is

an important application as onboard mission flight planning

(especially online replanning) has been shown to be a key

enabler in the operation of UAVs in the National Airspace

System (NAS) [39]. The mission being undertaken is the

delivery of a medical package to a remote location using a

small UAV. This mission is operated under Visual Flight Rules

(VFR) using Australian Civil Aviation Regulations (CAR)

[41]. The medical delivery task is ideal for evaluating a 4D

search algorithm due to the presence of multiple decision

criteria, dynamic elements in the operating environment and

the significant effect of wind on a small UAV. The three major

decision objectives for the medical package delivery mission

are safety, the rules of the air and mission efficiency [39].

The safety objective is modeled with the aircraft separation

management, storm cell avoidance and population risk criteria.

For simulation purposes, the aircraft separation requirement

(5NM horizontal and 1000ft vertical) for en-route airspace

is adopted. The cylindrical shaped separation region is rep-

resented with an approximate, probabilistic model [39]. This

model is similarly used to describe storm cells. Finally, the

population risk criterion refers to the minimisation of the risk

presented to people and property on the ground in the event

of a crash. For the purposes of simulation, this risk value is

approximated with a Normalised Population Density (NPD)

value.

The flight plan must also conform to the rules of the air, such

as the cruising levels rule, low flying restrictions (minimum

altitude above ground level) and segregated airspace (avoiding

no-fly zones). For aircraft flying on headings from 0◦ to 179◦,

the permissible flight levels are at odd multiples of 1000ft plus

500ft Above Mean Sea Level (AMSL) (e.g. 1500ft, 3500ft,

5500ft AMSL). For headings between 180◦ and 359◦, the

cruise levels are at even multiples of 1000ft AMSL plus 500ft

(e.g. 2500, 4500, 6500ft AMSL). The cruising levels rule is

intended to minimise the risk of a head-on collision, and is

mandatory above 5000ft.

The flight plan also needs to optimise for the objectives

of the mission itself (i.e. the delivery task). These objectives

include the delivery time (i.e. the time of arrival at the goal

node) and fuel consumption. With a 4D search, it is possible to

not only find a path that minimises the delivery time, but also

to designate a specific delivery time or acceptable time window

(like with [16]). The flight time, along with the cruise velocity,

altitude and rate of climb are parameters used to optimise fuel

consumption.

These decision variables, in combination with the dynamic

constraints of the aircraft, are used to calculate the cost term c
in (9). Note that for the purposes of planning, it is assumed that

all situational awareness information (e.g. wind information

and information about other aircraft) is available. For further

details and candidate data sources for each decision variable,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 8

Fig. 6. Chosen Γ0 successor operator, showing source cell (centre) and
successor cells joined by trajectory segments. Λx = 3,Λy = 3,Λz = −∞,
Ntl = {2, 3, 4}min. Note that Λz = −∞ corresponds to a lattice where
there are no z-planes.

refer to [39]. Note that as the dynamic constraints are closely

linked with the chosen successor trajectory segments in Γ,

these are discussed together in the following subsection.

B. Experimental Setup

The primary purpose of this experimental analysis is to

compare the computational efficiency and solution path of

the proposed algorithm with that of existing algorithms. In

these comparisons, each test algorithm uses a different (set of)

successor operator(s) but the same cost function c (a weighted

sum of utility values) and heuristic function h.

1) Test Algorithms: Two different variants of MSA* are

compared against a benchmark algorithm, Vector A* on 1000

randomly generated planning scenarios. Vector A* is a direct

extension of A* using a vector neighbourhood (like that used

in [12]). The successor operator is chosen to reflect the base

successor operator used in the other test algorithms and is

shown in Fig. 6. Using this successor operator, there are 360

successors for each source node. Vector A* is in effect a

special case of MSA* where Γs is constant throughout the

entire search space. Due to the popularity of A* and related

algorithms in robotics [42], Vector A* serves as an ideal

benchmark of calculation time and path cost for a deterministic

4D planning algorithm with selectable track angle resolution.

Two variants of MSA*, MSA*1 and MSA*2, are tested against

the benchmark. MSA*1 uses a single, fine resolution lattice

based on Γ0 as shown in Fig. 6. MSA*2, on the other hand,

uses a multi-resolution lattice where N = 2. A fine resolution

lattice (based on Γ0 in Fig. 6) is used for altitudes below

7000ft, and a coarse resolution lattice (Λx = 6,Λy = 6,Λz =
−∞, Ntl = {4, 6, 8}min) is used for altitudes above 7000ft.

All experiments were performed on a 3.3GHz Intel Core 2

Duo QX6850 CPU with 4GB of physical RAM running 32-bit

Microsoft Windows XP.

2) Dynamic Constraints: The dynamic constraints of the

aircraft were considered in the selection of Γ0 in Fig. 6. Often-

times, these dynamic constraints are modeled with a minimum

turn radius [1]. Assuming a maximum airspeed of 126 knots,

a bank angle of 30◦ and a force of one g (32.2ft/s2), the

worst case turn radius is approximately 0.4NM (refer to [38,

(3.9.10)]). As the turn radius is less than half the cell size, it is

possible to execute a 180◦ turn within the bounds of a single

cell. However, it is still desirable to minimise the turn angle

as it is difficult for the flight controller to execute such a turn

with accuracy under strong wind conditions. Turn angles are

further discussed in Section V-C.

For UAV operations, it is also necessary to incorporate

climb/descent rate constraints and a maximum airspeed con-

straint (a constant value). The maximum climb rate, however,

decreases with altitude and is zero at the aircraft ceiling

[38]. At sea level, the maximum climb rate for a small UAV

is limited to approximately 1000ft/min [43]. This matches

the maximum climb rate achieved using Γ0 under no wind

conditions:

max
nz

(nzδz)

min
ntl

∈Ntl

(ntlδt)
= 1000ft/min (15)

3) Simulation World: The simulation worlds were gener-

ated randomly to enable a Monte-Carlo evaluation of the

test algorithms. Each simulation world comprises a terrain

map, no-fly zones, other aircraft, storm cells, wind map and

population density map (as a simple model of risk presented

to people and property on the ground). For each world,

a number of start and goal pairs were randomly chosen.

The mission area for each world was arbitrarily chosen

to be 50NM×50NM×15000ft×90min with a cell resolution

of 1NM×1NM×1000ft×1min (1NM=1852m, 1ft=0.3048m).

Note that the maximum distance of the search area approxi-

mately matches the maximum operating range of the RQ-7A

Shadow UAV [43].

An artificial terrain map is randomly generated through

summation of bivariate Gaussian functions with randomly

chosen parameters (A, b, c, σ, n). Population density is also

generated using this equation.

z (x, y) =

n
∑

i=0

Aie
−

(x−bi)
2
+(y−ci)

2

σ2
i (16)

Maps for the other decision variables can also be randomly

generated through random selection of parameter values. For

example, the parameters for a cylindrical aircraft separation

zone are position, velocity, standard deviation, radius and

height. The velocity is assumed to range between 50 knots

and a speed limit (for flight below 10000ft) of 250 knots [41].

The radius and height are specified in aviation regulations.

Similarly, storm cells are randomly generated with an average

radius of 13.5NM and height of 8NM [44, Fig. 5]. The rate

of movement of a storm cell is assumed to be between 10 to

40 knots for altitudes between 0 and 15000ft [44, Fig. 1]. A

method for modeling each of the remaining decision variables

is provided in [39].

Finally, a simple algorithm was used to generate wind maps

that mimic real world winds. Firstly, a number of seed nodes

are randomly generated at different positions (x, y); each seed

is characterised by a position ~pi, a direction φi and a vector

of wind magnitudes ~mz for each altitude level z. For each

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 9

Fig. 7. Example planning scenario showing no-fly zones and other aircraft at t = 120s. Note for aircraft and weather, the inner cylinder represents the
separation zone/storm cell extents (around the expected position) and the outer cylinder is the 2σ uncertainty boundary (which grows with time). Note also
that a red X marks the goal position.

node s = (x, y, z) in the world space, a weighting vector ~u is

calculated

ui = a0

∣

∣

∣

~di

∣

∣

∣+ a1

∣

∣

∣

6 ~di − φi

∣

∣

∣ (17)

where ~di = ~s− ~pi and a0, a1 are weights. The largest element

in ~u is then scaled by a∗; this gives the “winning seed”

more weighting. For a given node s, the wind magnitude

is fm(s) = ~u · ~mz . The wind magnitude for each altitude

level is randomly chosen based on average wind speeds (refer

to [39]). The direction fd is calculated in a similar manner,

fd(s) = ~u · ~φ+ σz where σz is a small, random perturbation

added to simulate wind shear.

C. Results

A Monte-Carlo simulation of the three tests algorithms is

performed on 1000 randomly generated planning scenarios.

The results of these simulations are presented below and

evaluated with respect to computation time and path cost. In

addition, the algorithms are also evaluated on three special

case tests scenarios. These were constructed to determine the

effect of local minima and to test the adaptability of the

planner to situations where the vertical wind velocity exceeds

aircraft performance.

An illustration of a typical multi-objective planning scenario

is provided in Fig. 7 (showing other aircraft and no-fly zones)

and Fig. 8 (risk map). The solution path using Vector A*,

MSA*1 and MSA*2 are also shown on each of these figures.

In Fig. 7, all three planners select a path that avoids an

aircraft on a converging course by descending and heading

in an easterly direction. Once a risk of collision is averted,

the paths continue in a shortest path fashion towards the goal

(marked by a red cross). There are deviations only to avoid

terrain (where the paths hop over a mountain in Fig. 7) and

route around high risk (population density) areas (Fig. 8). Note

that, as shown in Section III-D, each algorithm finds a path

that satisfies all given constraints whilst minimising the overall

path cost (which is a multi-objective cost function).

Fig. 8. Example planning scenario risk represented by a Normalised
Population Density (NPD) map.

1) Computation time: The mean and standard deviation for

the computation time (µt and σt respectively), along with

the minimum and maximum computation time, and the loop

count (µn and σn respectively) are presented in Table I for

each test algorithm. From the results, it can be deduced that a

lattice based successor operator can significantly reduce total

computation time and that further time savings can be achieved

with a multi-resolution lattice. A cumulative histogram of the

speed increase is provided in Fig. 9 along with a statistical

summary of the speed increase in Table II. For the test resolu-

tion level, Vector A*, MSA*1 and MSA*2 are all suitable for

onboard replanning as the computation time is well within the

minimum track traversal time of 2min. as specified in Ntl .

2) Total path cost: The mean µc and standard deviation

σc in the ratio of the path cost between MSA*1, MSA*2 and

Vector A* is presented in Table III. A cumulative histogram

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 10

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Speed IncreaseN
or

m
al

is
ed

 C
um

ul
at

iv
e

F
re

qu
en

cy Cumulative Frequency Plot of Speed Increase

MSA*1 to Vector A*
MSA*2 to Vector A*

Fig. 9. Normalised frequency histogram of speed increase of MSA*1 and
MSA*2 to Vector A*.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Cost Ratio

N
or

m
al

is
ed

 C
um

ul
at

iv
e

F
re

qu
en

cy

Cumulative Frequency Plot of Cost Ratio

MSA*1 to Vector A*
MSA*2 to Vector A*

Fig. 10. Cumulative histogram of relative path cost.

of the ratios is illustrated in Fig. 10. As the successor operator

Γ~p in MSA*1 is largely similar to Γ in Vector A*, it is

not surprising to find that both return paths of approximately

equivalent cost. Of particular note however, is the fact that, on

average, MSA*2 finds paths that are only 3.3% costlier than

Vector A*. Therefore, it can be seen that MSA* finds paths of

equivalent cost but with significantly less computation time.

It is observed that each of the three test algorithms return

a solution path that tends to follow the profile of a straight

TABLE I
COMPUTATION TIME AND LOOP COUNT

µt σt min max µn σn

MSA*2 4.46s 2.36s 0.31s 16.6s 65501 34250

MSA*1 9.23s 4.93s 0.53s 35.2s 161571 88386

Vector A* 19.25s 10.41s 0.81s 77.9s 289015 160575

TABLE II
SPEED INCREASE OVER VECTOR A*

Percentile (%)

≤0 ≤1 ≤25 ≤50 ≤75 ≤100 Mean

MSA*1 0.98 1.69 1.98 2.04 2.12 4.94 2.09

MSA*2 1.94 2.52 3.91 4.25 4.66 10.55 4.30

TABLE III
PATH COST RATIO

µc σc

MSA*1 to Vector A* 0.9891 0.0307

MSA*2 to Vector A* 1.0334 0.0376

Fig. 11. Double bug trap case.

line (shortest path). This is attributable to the minimisation

process of A* and the fact that all trajectory segments have

a non-zero and non-negative cost value. As a result, the turn

angles are typically small even without explicit optimisation of

turn angles. The mean turn angle (and standard deviation) for

Vector A*, MSA*1, MSA*2 is 11.7◦ (19.0◦), 12.7◦ (22.4◦)

and 16.4◦ (21.9◦) respectively.

D. Special Cases

It is widely acknowledged that A*, and best-first search

algorithms in general require significantly more computation

time in the presence of local minima [1]. This was tested for

the single and double bug trap case as recorded in Table IV; the

double bug trap case is illustrated in Fig. 11. It can be seen that

even though the absolute computation time is approximately

double to 2.5 times the mean obtained in the previous Monte

Carlo simulations, the relative computation time between

Vector A*, MSA*1 and MSA*2 remains approximately the

same as before.

A simulation scenario which mimics the presence of strong

up/downdrafts in mountainous regions (where the vertical

wind velocity can exceed the vehicle’s climb rate) is depicted

in Fig. 12. Even though a variety of wind conditions were sim-

ulated in the previous Monte Carlo experiment, this experiment

specifically studies the effect of wind by setting other decision

variables (e.g. no-fly zones, other aircraft, storm cells, risk) to

zero. As shown in Fig. 12, only MSA*2 successfully finds a

traversable path that satisfies aircraft climb constraints. The

chosen path climbs in a switchback pattern before ‘hopping

over’ the mountain. Recall that, as the aircraft’s maximum

TABLE IV
COMPUTATION TIME

Single Bug Trap Double Bug Trap

Time Loop Count Time Loop Count

MSA*2 9.59s 201197 9.17s 194981

MSA*1 23.45s 515657 22.61s 503871

Vector A* 51.14s 922544 50.65s 926276

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 11

Fig. 12. Mountain wind simulation. The solution is found in 5.14s.

climb rate decreases with altitude, it is necessary to climb

to 13500ft to accommodate loss of altitude in the downdrafts

region. The reason that MSA*2 successfully finds a path while

Vector A* and MSA*1 fail is because of the higher climb and

descent rate required by the fine resolution successor operator.

The same vertical distance is covered in a shorter time using

the fine resolution operator (e.g. 1000ft in 2, 3 or 4min.)

compared to the coarse resolution operator (e.g. 1000ft in 4,

6 or 8min.).

VI. DISCUSSION

This section reviews the proposed algorithm with respect to

existing work in light of the practical simulation results and

theoretical findings.

A. Online Replanning

The primary objective of the simulation experiments pre-

sented in Section V is to determine whether the algorithm is

fast enough for online replanning. Online replanning is needed

to mitigate the uncertainty and unpredictably of an outdoor

operating environment. Consider the practical implementation

of a planner (such as MSA*) on a UAV. A replan is triggered

when the environment changes or when the vehicle deviates

beyond tolerance bounds on the originally planned path. It is

assumed that a predictor module provides the planner (e.g.

MSA*) with a start node such that the time required to reach

the start node (from the current state) is a conservative estimate

of the planning time. Thus, the planner completes planning

(whilst the UAV is flying under reactive local control) prior to

reaching the predicted start node – if this is not the case, the

process is repeated. In practice, if the planning time is short

relative to the dynamics of the mission (i.e. any changes to the

predicted operating environment are within tolerance bounds

during planning), this would not introduce instability into the

overall control and planning loop.

An indicator of the available planning time can be derived

from the minimum track traversal time as the motion plan is

made up of discrete trajectory segments (i.e. tracks). For the

successor operator selected in Fig. 6, the mean planning time

for MSA*2, MSA*1 and Vector A* (of 4.46s, 9.23s and 19.25s

respectively) was found to be much smaller than the minimum

track traversal time (2min). All three tests algorithms were

also shown to be capable of finding a path within the time

constraints of online replanning for environments containing

deep local minima and narrow escape passages (as per Fig.

11).

In these experiments, it was found that the proposed al-

gorithm offered an approximately two-fold reduction in com-

putation time. Further reductions were obtained by using a

multi-resolution lattice. This increased speed is significant

when planning over a larger search space or on a more diffi-

cult search space. For a 100NM×100NM×15000ft×180min.

search space, a similar Monte Carlo experiment found that

MSA*2 is still able to meet the requirements for online

replanning with a mean planning time of 48.25s and standard

deviation of 20.62s (which is less than the minimum track

traversal time of 2min.). However, Vector A* does not as it

takes approximately four times the computation time. Simi-

larly, when presented with local minima, which are known

to be difficult to solve for best first search algorithms like

A*, the computational efficiency of MSA* over Vector A* is

significant in meeting online replanning constraints [1].

The previous discussion of algorithm computation time

assumes that in each case, we plan from scratch. This ap-

proach of always discarding previous planning information

was adopted because, in applications such as UAV package

delivery, online changes can occur anywhere in the search

map and affect large swaths of the search space. If a large

number of nodes are changed and/or changes occur close to the

goal node, replanning algorithms like D* and D* Lite are less

efficient than one that plans from scratch [42]. The presence

of fast moving aircraft and storm cells for example can

affect large areas of the search space that are not necessarily

localised around the vehicle’s current position. Hence, it is

more efficient to plan from scratch each time.

Due to the time critical nature of online replanning, it

is preferable to use a fast and near-optimal planner rather

than an optimal planner which may be too slow. Under these

conditions, MSA*2 is the best candidate for online replanning

out of the three test algorithms.

B. Lattice Structure

The computational efficiency of MSA* compared to Vector

A* can be attributed to a smaller, lattice structure based

search space compared to a full 4D grid. With the exception

of the successor operator and cell sequence based sampling,

Vector A* is virtually identical to MSA*. Using (14), a plot

of the number of nodes for a search space of dimensions

50×50×15×90 given different values of Λ assuming Λx = Λy

is shown in Fig. 13. Note that the memory required in a full

grid corresponds to the case where Λx = 1, or Λy = 1, or

Λz = 1.

From Fig. 13, it is evident that larger values of Λ produce

a lattice structure with fewer sample nodes. However, the

corresponding successor operator Γs has potentially more

successors per node with greater track angle resolution and

greater track length. As a result, fewer search iterations are

required but each iteration incurs more computation time. For

example, it is possible to evaluate 17400 nodes per second

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 12

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5x 10
6

N
um

be
r

of
 N

od
es

Λ
x
 = Λ

y

Λ
z
 =1

Λ
z
 =2

Λ
z
 =3

Λ
z
 =4

Λ
z
 =5

Λ
z
 = −∞

Grid

Fig. 13. Number of nodes in the search space for different values of Λ.
Note that Λz = −∞ corresponds to the constrained vertical track angle case
described in Section IV-A.

(on average) using MSA*1 whereas only 14750 nodes per

second are possible (on average) using MSA*2. It can be

seen that the variable successor operator Γs is a crucial,

application-specific design parameter that influences the path

cost, the traversability of the path and computation time. For

the demonstration UAV application, it has been shown that

the selected fine resolution and especially the multi-resolution

successor operators are effective at delivering a solution of

comparable cost with significant savings in computation time.

The use of a coarse resolution successor operator Γs for high

altitudes in MSA*2 is especially suited to UAV planning

because of the scarcity of obstacles and reduced climb rate

at high altitudes (refer to Section V-D).

The lattice structure presented here is similar to the framed

quad/octree presented by [9]. A key improvement in terms

of 3D sampling is that the proposed lattice comprises sample

planes that are one cell wide (Fig. 4) whereas that used in

framed octree is two cells wide ([9, Fig. 4]). This results in

fewer nodes in the search space and hence reduced memory

and computation time requirements. Additionally, the track

angle in a framed octree is constrained to intervals of 45◦ when

transitioning between quadtree nodes. Finally, the proposed

method guarantees path soundness by sampling each trajectory

segment at the same high resolution cell size thus avoiding the

problem of mixed cells when using cell decomposition based

methods (such as quad/octree based methods like [9]).

C. Uncertainty

MSA* returns a path comprising a sequence of cells which

form a corridor in 4D space around the planned trajectory.

This differs from existing vector neighbour based methods

like [12] which do not explicitly associate cells or a volume

of space with each trajectory segment. Such a cell sequence

provides an inherent tolerance to uncertainty. This approach

avoids the intractability of directly incorporating uncertainty

into the search space (using methods such as Markov Decision

Processes) for a large, high dimensional search space [1].

The level of tolerance can be determined by finding the

minimum perpendicular distance d between the track and the

cell boundaries for each cell on the trajectory segment. This

is shown in Fig. 14 where
−−→
AB is the trajectory segment and

Fig. 14. Illustration of a cell in the cell sequence for a given trajectory
segment AB.

−−→
DC is the perpendicular distance to an exterior corner of a

cell on the sequence γs′ . An exterior corner is one that is not

completely enclosed by adjacent cells. The angle θ can be

determined by the dot product of vector AB and AC,

−−→
AB ·

−→
AC =

∣

∣

∣

−−→
AB

∣

∣

∣

∣

∣

∣

−→
AC

∣

∣

∣ cosθ (18)

In △ADC, as 6 ADC = 90◦ (by definition), then AD =
AC cos θ. The position of D can then be determined using a

simple vector line equation and AD

D = ~A+

−−→
AB
∣

∣

∣

−−→
AB

∣

∣

∣

∣

∣

∣

−→
AC

∣

∣

∣ cos θ (19)

Because the cell sequence generated using (2) only includes

cells that intersect the track, if D does not lie within the

cell, then that particular corner is ignored. Otherwise, the

perpendicular distance DC is

∣

∣

∣

−−→
DC

∣

∣

∣ =
∣

∣

∣

−→
AC

∣

∣

∣ sin θ (20)

The value of d is determined by taking the minimum DC
value for all corners of all cells in γs′ . Note that θ = 0
implies that the trajectory intersects a cell edge/corner in

which case all adjacent cells were already included in the cell

sequence. Hence, this implies a non-exterior cell corner. For

the successor operator depicted in Fig. 6 and a 3D cell size

of 1NM×1NM×1000ft, the minimum 3D tolerance is 166ft,

and the minimum horizontal (x-y) tolerance is 0.14NM. Note

that all transition manoeuvres (i.e. turns) needed to transition

between tracks are assumed to be of negligible cost compared

to the tracks themselves. These manoeuvres are assumed to

stay well within the boundaries of the cell sequence.

It is possible to modify the cell sequence returned by the

method described in Section III-A to enforce a minimum

tolerance constraint (3D or horizontal only). For each exterior

corner of each cell that does not satisfy the distance constraint,

it is a simple matter to include all cells adjacent to that corner

to increase the minimum tolerance. This procedure is repeated

until all exterior corner points satisfy the minimum tolerance.

The time level of each added cell can be determined in the

same manner as in (5).

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 13

VII. CONCLUSION

This paper presented MSA*, a method for motion planning

using a variable successor operator that finds least cost paths.

A variable successor operator enables variable track length,

angle and velocity trajectory segments that are modeled using

a computer graphics inspired cell sequence. This provides

an inherent tolerance to uncertainty based on the minimum

distance between the track and cell sequence boundaries.

Additionally, a variable successor operator enables the im-

position of a multi-resolution lattice structure on the search

space which drastically reduces the number of search nodes

and search time. Extensive simulations for a UAV flight plan-

ning task reveal that multi-resolution MSA* is approximately

four times faster (on average) than vector neighbourhood based

A* (Vector A*) but returns paths of approximately the same

cost (average path cost ratio of 1.033). Even with a uniform,

fine resolution lattice, MSA* is still twice as fast as Vector A*

with an average path cost ratio of 0.99. It is shown that MSA*

is suited to online replanning with an average computation

time (4.46s for multi-resolution MSA*) that is a fraction of

the minimum track traversal time (2min.).

Future work primarily revolves around the implementation

and real world testing of the proposed algorithm in a closed

loop intelligent control system. Such an implementation in-

cludes the predictor and scheduling elements discussed in

Section VI-A and a study of the stability of the overall system.

Additional avenues for study include the use of heuristic

inflation (such as with anytime replanning A* [42]) and multi-

objective heuristics to further reduce computation time.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to

Dr Oliver Obst for his insightful feedback on the paper.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. New York: Cambridge University
Press, 2006.

[2] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman,
P. L. Sabin, J. W. Ballard, and A. M. Chiodi, “Seaglider: a long-
range autonomous underwater vehicle for oceanographic research,” IEEE

Journal of Oceanic Engineering, vol. 26, no. 4, pp. 424–436, 2001.

[3] S. S. Wegener, S. S. Schoenung, J. Totah, D. Sullivan, J. Frank,
F. Enomoto, C. Frost, and C. Theodore, “UAV autonomous operations
for airborne science missions,” in AIAA 3rd “Unmanned Unlimited”

Technical Conference, Workshop and Exhibit, Chicago, Illinois, 2004.

[4] W. B. Powell, Approximate dynamic programming. New Jersey: Wiley-
Interscience, 2008.

[5] J. S. Mitchell and C. H. Papadimitriou, “Weighted region problem.
finding shortest paths through a weighted planar subdivision,” Journal

of the Association for Computing Machinery, vol. 38, no. 1, pp. 18–73,
1991.

[6] P. Hart, N. Nilsson, and B. Rafael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Systems Science

and Cybernetics, vol. 4, pp. 100–107, 1968.

[7] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: the Field D* algorithm,” Journal of Field Robotics, vol. 23,
no. 2, pp. 79–101, 2006.

[8] A. Nash, K. Daniel, S. Koenig, and A. Felner, “Theta*: Any-angle path
planning on grids,” in AAAI Conf. on Artificial Intelligence, 22-26 July
2007.

[9] A. Yahja, S. Singh, and A. Stentz, “An efficient on-line path planner
for mobile robots operating in vast environments,” Robotics and Au-

tonomous Systems, vol. 33, no. 2&3, 2000.

[10] J. Rubio and S. Kragelund, “The trans-pacific crossing: long range
adaptive path planning for UAVs through variable wind fields,” in 22nd

Digital Avionics Systems Conference, vol. 2, 2003, pp. 8.B.4–81–12
vol.2.

[11] D.-W. Gu, W. Kamal, and I. Postlethwaite, “A UAV waypoint generator,”
20-22 Sep 2004.

[12] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning con-
trol sets for constrained motion planning in discrete state spaces,” in
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2005, pp. 3231–
3237.

[13] J. Carsten, D. Ferguson, and A. Stentz, “3D Field D*: Improved
path planning and replanning in three dimensions,” in IEEE Int. Conf.

Intelligent Robots and Systems, 2006, pp. 3381–3386.
[14] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane, “Path

planning for autonomous underwater vehicles,” IEEE Trans. Robotics,
vol. 23, no. 2, pp. 331–341, 2007.

[15] Y. Kim, D.-W. Gu, and I. Postlethwaite, “Real-time path planning with
limited information for autonomous unmanned air vehicles,” Automatica,
vol. 44, no. 3, pp. 696–712, 2008.

[16] P. Tompkins, A. T. Stentz, and W. R. L. Whittaker, “Mission-level path
planning for rover exploration,” in 8th Conf. on Intelligent Autonomous

Systems (IAS-8), March 2004.
[17] K. Fujimura, “Path planning with multiple objectives,” IEEE Robotics

& Automation Magazine, vol. 3, no. 1, pp. 33–38, 1996.
[18] D. Rathbun, S. Kragelund, A. Pongpunwattana, and B. Capozzi, “An

evolution based path planning algorithm for autonomous motion of
a UAV through uncertain environments,” in Proceedings 21st Digital

Avionics Systems Conference, vol. 2, 2002, pp. 8D2–1–8D2–12 vol.2.
[19] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras,

“Evolutionary algorithm based offline/online path planner for UAV
navigation,” IEEE Trans. Systems, Man, and Cybernetics, Part B, vol. 33,
no. 6, pp. 898–912, 2003.

[20] M. S. Branicky, S. M. LaValle, K. Olson, and Y. Libo, “Quasi-
randomized path planning,” in IEEE Int. Conf. Robotics and Automation

(ICRA), vol. 2, 2001, pp. 1481–1487 vol.2.
[21] J. Reif and Z. Sun, “Movement planning in the presence of flows,”

Algorithmica, vol. 39, no. 2, pp. 127–153, June 2004.
[22] Z. Sun and J. Reif, “On robotic optimal path planning in polygonal

regions with pseudo-euclidean metrics,” IEEE Trans. Systems, Man, and

Cybernetics, Part B, vol. 37, no. 4, pp. 925–936, Aug. 2007.
[23] N. A. Papadakis and A. N. Perakis, “Deterministic minimal time vessel

routing,” Operations Research, vol. 38, no. 3, pp. 426–438, 1990.
[24] J. Sellen, “Direction weighted shortest path planning,” IEEE Int. Conf.

Robotics and Automation, vol. 2, pp. 1970–1975 vol.2, May 1995.
[25] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. San Francisco, CA: Morgan Kaufmann, 1995.
[26] RTCA, “Software considerations in airborne systems and equipment

certification,” 1992.
[27] G. F. List, P. B. Mirchandani, M. A. Turnquist, and K. G. Zografos,

“Modeling and analysis for hazardous materials transportation - risk
analysis, routing scheduling and facility location,” Transportation Sci-

ence, vol. 25, no. 2, pp. 100–114, 1991.
[28] P. B. Mirchandani and H. Soroush, “Optimal paths in probabilistic

networks: A case with temporary preferences,” Computers & Operations

Research, vol. 12, no. 4, pp. 365–381, 1985.
[29] P. Leonelli, S. Bonvicini, and G. Spadoni, “Hazardous materials trans-

portation: a risk-analysis-based routing methodology,” Journal of Haz-

ardous Materials, vol. 71, no. 1-3, pp. 283–300, 2000.
[30] M. Zhang, Y. Ma, and K. Weng, “Location-routing model of hazardous

materials distribution system based on risk bottleneck,” in Int. Conf. on

Services Systems and Services Management, vol. 1, 2005, pp. 362–368.
[31] P. Wu, R. Clothier, D. Campbell, and R. Walker, “Fuzzy multi-objective

mission flight planning in unmanned aerial systems,” in IEEE Sympo-

sium on Computational Intelligence in Multi-Criteria Decision-Making,
Honolulu, Hawaii, 2007.

[32] B. S. Stewart and I. Chelsea C. White, “Multiobjective A*,” J. ACM,
vol. 38, no. 4, pp. 775–814, 1991.

[33] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and
expressivity,” in AAAI National Conf. on Artificial Intelligence, 1994, p.
1123.

[34] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrom, “(TAL)
Temporal action logics: Language specification and tutorial,” Electronic

Transactions on Artificial Intelligence, vol. 2, no. 3-4, pp. 273–306,
1998.

[35] A. Mali and Y. Lipen, “MFSAT: a SAT solver using multi-flip local
search,” in Proc. IEEE Int. Conf. Tools with Artificial Intelligence, Nov.
2003, pp. 84–93.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B: CYBERNETICS, VOL. , NO. , MONTH YEAR 14

[36] T. Belker, M. Hammel, and J. Hertzberg, “Learning to optimize mobile
robot navigation based on HTN plans,” vol. 3, Sept. 2003, pp. 4136–
4141.

[37] J. Bresenham, “Pixel-processing fundamentals,” IEEE Computer Graph-

ics and Applications, vol. 16, no. 1, pp. 74–82, 1996.
[38] W. F. Phillips, Mechanics of Flight. Hoboken, New Jersey, USA: John

Wiley & Sons, 2004.
[39] P. Wu, D. Campbell, and T. Merz, “On-board multi-objective mission

planning for unmanned aerial vehicles,” in IEEE Aerospace Conference,
Big Sky, Montana, 7-14 March 2009.

[40] S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach,
2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2003.

[41] Civil Aviation Safety Authority (CASA), “Civil aviation regulations
1988 (CAR 1988),” August 2003.

[42] D. Ferguson, M. Likhachev, and A. T. Stentz, “A guide to heuristic-based
path planning,” in Int. Conf. on Automated Planning and Scheduling

(ICAPS), Monterey, CA, 2005.
[43] Office of the Secretary of Defense, “Unmanned aircraft systems

roadmap: 2005-2030,” Tech. Rep., 2005.
[44] NOAA National Weather Service, “Structure and dynamics of supercell

thunderstorms,” 2004, http://www.crh.noaa.gov/lmk/soo/docu/supercell.
php.

Dr Paul Wu is a researcher at the Australian Re-
search Centre for Aerospace Automation (ARCAA),
Queensland University of Technology (QUT). In
2009, he received his PhD from QUT for his thesis
on Multi-Objective Mission Flight Planning in Civil
Unmanned Aerial Systems (UAS). Some projects
he has worked on include the modelling of risk
presented to population centres from overflight of
aircraft, and delivery of multimedia content to mo-
bile phones, for which he was awarded the Engineers
Australia Queensland Division J H Curtis Award. He

is currently undertaking research on algorithms and architectures for UAV path
planning and risk analysis.

Dr Duncan Campbell is an Associate Professor at
the Queensland University of Technology (QUT), in
Brisbane, Australia. He is the Alternate Head of the
School of Engineering Systems. Dr Campbell has
over 65 internationally peer reviewed papers and
researches in the areas of robotics and automation,
embedded systems, computational intelligence, intel-
ligent control and decision support. He leads a group
in the Australian Research Centre for Aerospace
Automation and has collaborations with a number
of universities around the world including Mas-

sachusetts Institute of Technology, USA and TELECOM-Bretagne, France.
Dr Campbell is currently the IEEE Queensland Section chapter chair of the
Control Systems / Robotics and Automation Society Joint Chapter.

Dr Torsten Merz is a senior research scientist
at CSIRO’s Autonomous Systems Laboratory in
Brisbane, Australia. His research interests include
dependable autonomous systems, unmanned aircraft
systems, robot architectures, robot perception, and
real-time systems. Previously, he held a position as
assistant professor at the Department of Computer
and Information Science at Linköping University,
Sweden. He was part of the WITAS UAV project
team and involved in the development of flight
modes and mission planners for unmanned heli-

copters. He earned a Diploma in Informatics from the University of Bielefeld
and received a Doctor of Engineering from the University of Erlangen-
Nuremberg, Germany.

