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ABSTRACT Reconfigurable robots have received broad research interest due to the high dexterity they

provide and the complex actions they could perform. Robots with reconfigurability are perfect candidates in

tasks like exploration or rescue missions in environments with complicated obstacle layout or with dynamic

obstacles. However, the automation of reconfigurable robots is more challenging than fix-shaped robots

due to the increased possible combinations of robot actions and the navigation difficulty in obstacle-rich

environments. This paper develops a systematic strategy to construct a model of hinged-Tetromino (hTetro)

reconfigurable robot in the workspace and proposes a genetic algorithm-based method (hTetro-GA) to

achieve path planning for hTetro robots. The proposed algorithm considers hTetro path planning as a multi-

objective optimization problem and evaluates the performance of the outcome based on four customized

fitness objective functions. In this work, the proposed hTetro-GA is tested in six virtual environments with

various obstacle layouts and characteristics and with different population sizes. The algorithm generates

Pareto-optimal solutions that achieve desire robot configurations in these settings, with O-shaped and

I-shaped morphologies being the more efficient configurations selected from the genetic algorithm. The

proposed algorithm is implemented and tested on real hTetro platform, and the framework of this work

could be adopted to other robot platforms with multiple configurations to perform multi-objective based

path planning.

INDEX TERMS Reconfigurable robot, tiling robotics, multi-objective path planning, genetic algorithm,

NSGA-II.

I. INTRODUCTION

Path Planning (PP) has been a fundamental field of study

for autonomous mobile robots. For instance, autonomous

underwater vehicles (AUVs) and autonomous surface vehi-

cles (ASVs) enter dangerous waters to perform environmen-

tal monitoring or mapping [1], [2], and some autonomous

surveillance robots are designed and deployed in military

operations to perform investigation and rescue tasks in con-

fined spaces or hard-to-reach areas. Due to the autonomous

nature of the robots and the hazardous working environments

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Huei Cheng .

they are deployed in, precise and adaptive path planning

algorithms are crucial for them to operate appropriately.

The goal of mobile robot PP is to determine a collision-free

path between the starting and goal points while optimizing

the specific performance criterion. Some of the commonly

adopted criteria include time consumption, energy consump-

tion, and distance traveled [3].

In general, robot workspaces can be categorized into

static environments and dynamic environments. [4] The two

categories of methods can be further classified based on

whether the robot possesses complete information regarding

the surrounding environment [5]. A global path planning

method studies themap in a fully observable environment and
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generates a globally optimized path. The setup of a global PP

algorithm allows the navigation path to be determined before

the robot motion begins. On the other hand, a local PP is

implemented in an unknown or partially known environment,

where data feed from robot on-board sensors are required to

construct environment maps and to direct the operations [6].

Reconfigurable robots are kinematic machines with vari-

able morphologies, and the development of reconfigurabil-

ity in robotics has received increasing attention since the

1980s [7]. Reconfigurable robot platforms can be categorized

into two major classes [7] : intra-reconfigurable and inter-

reconfigurable robots. An intra-reconfigurable robot changes

its internal morphology without the requirement of external

assembly or disassembly [8]. Examples include amphibious

robots equipped with eccentric paddle mechanism (ePaddle)

that enables versatile locomotion in amphibious environ-

ments [9] and pavement sweeping robot Panthera with the

robot footprint can change the width to adapt with the

working conditions [10], [11], Hornbill with reconfigurable

manipulators [12]. An inter-reconfigurable robot consists of

a congregation of homogeneous or heterogeneous modules

and forms a variety of morphologies through assembly and

disassembly process. Examples include chain-type systems

like Tetriamond [13], CONRO [14], hTetro-Infi [15], hTri-

hex [16], Crystal [17], and M-Lattice [18]; as well as hybrid-

type robots like M-TRAN [19].

Though a massive rise of reconfigurable robots is seen,

autonomy systems developed for these platforms mostly

emphasize autonomous motion control, and few explore the

autonomous PP problem of reconfigurable robots. PP prob-

lem is modeled differently in reconfigurable robots and

in fixed morphology robots. For fixed-morphology robots,

exhaustive search such as Dijkstra and A* algorithms are

commonly utilized to solve global PP problems; on the other

hand, Ant Colony Optimization (ACO) [20], Particle Swarm

Optimization (PSO) [21], Neural Network [22], Motion Plan-

ning [23], Path Tracking [24], Graph theory [25] and Genetic

Algorithm (GA) [26] have been implemented to solve local

PP problems. Among the existing PPmethods, GA has shown

its strength in convenient modeling, easy implementation,

and practical problem solving [27] due to its flexibility to

perform optimization without prior information [28], and its

ability to explore the solution space [29], which hinges on the

advantages of both deterministic and probabilistic schemes to

improve solutions using operators like crossover and muta-

tion [30].Multiple modified genetic algorithms (MGAs) have

been developed specifically for path planning tasks [31] and

have been implemented on various autonomous robots that

operate in environments with complicated terrains or with

dynamic obstacles, like mobile manipulator robots [32] and

unmanned aerial vehicles (UAVs) [33].

However, due to the intrinsic complexity of reconfigurable

robots, autonomous motion planning between different con-

figurations has been a difficult topic. PP problems for recon-

figurable robots, which involve multiple configurations, are

more challenging. With the increased degrees of freedom

in these robots and the additional constraints due to differ-

ent robot configurations, PP approaches designed for fixed-

morphology robots mentioned above are no longer sufficient

to determine optimal solutions. New or revised architecture-

specific PP approaches have been designed to tackle PP

problems base on the possible topology and the available

motions. For instance, revised GAs with customized fitness

functions are implemented to solve the PP problem of the

lattice modules in M-Lattice robot [34]. To overcome stairs

and obstacles, Kairo 3 robot makes use of extended RRT*

algorithm [35] to autonomously calculate the actions required

for the tasks [36]. Research has also been conducted to pro-

vide heuristic-based algorithms [37] and distributed planning

algorithms [38] for lattice-type inter-reconfigurable robots

that are less architecture-specific.

The hTetro robot platform, developed by

Prabakaran et al. [39] is a chained-type inter-reconfigurable

cleaning robot with seven potential configurations [40] which

utilizes tileset theory to perform area coverage tasks with the

awareness of energy consumption [41]–[43]. To carry out PP

tasks on a hTetro platform, the algorithm should determine

a valid path while taking several additional criteria into con-

sideration including time consumption, path safety, and path

smoothness. Time efficiency and safety consideration are

generally required for real robot implementation [44], while

path smoothness aims to improve robot service qualities for

robots that could not easily perform jerk motion of state

switching [45]. Therefore, a multi-objective evolutionary

algorithm (MOEA) has been utilized in the proposed GA to

approximate the Pareto optimal solution of any given envi-

ronment settings for hTetro. Similar approaches that model

multi-objective optimization problems (MOOP) for robot

path planning tasks and attempt to solve them through evolu-

tionary algorithms are shown in the works of [46] and [47].

The contribution of this paper is threefold. First, a new sys-

tematic approach path planning for tetromino-based recon-

figurable robot using novel multi-objective genetic algorithm

is proposed. The Pareto solution for the proposed optimiza-

tion problem is found using modified Non-dominated sorting

genetic algorithm-II (NSGA-II) [48]. Second, the proposed

robot and workspace modeling techniques can be modified

and implemented in other chain-type inter-reconfigurable

robot platforms with multiple configurations. And third, with

proper definitions of the fitness functions, the multi-objective

optimization framework proposed in this work could be easily

adapted to other robot architectures which also aim to achieve

multiple goals during the path planning process.

The rest of the paper is organized as follows: Section II

describes the reconfigurable robot platform and the

workspace model. Section III provides a brief introduction

to genetic algorithms. In Section IV, the proposed hTetro-

GA is presented. Section V shows the simulations and results

of the proposed algorithm. Finally, Section VII presents the

conclusions along with a note of future developments.
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FIGURE 1. hTetro system model.

II. HINGED-TETRO RECONFIGURABLE ROBOT

In this section, the different morphologies and actions avail-

able for the hTetro robot are introduced. The system model

setup of the proposed path planning algorithm is also

presented.

A. hTetro HARDWARE ARCHITECTURE

hTetro is a chain-type inter-reconfigurable tiling robot as

shown in Fig.1. The robotmodules are referred to as ‘‘blocks’’

which share identical mechanical structures. The blocks

could be disassembled freely, and additional blocks could

be added to increase the degree of freedom of the entire

architecture. In our work, the robot consists of four blocks

connected by three hinges. The hinges allow the robot plat-

form to perform shape-shifting and reassemble into multi-

ple configurations. The top view graph of hTetro hardware

components is shown in Fig.2. The perception component

of hTetro is an RPLidar fixed on block 2 (B2). Each block

is mounted with four geared 7.4V DC motors for balance

locomotion. The servo motors mounted to the hinges could

rotate the blocks clockwise or counter-clockwise to perform

reconfiguration. The servo motors operate at 14.8V and with

high torque of 77 kg.cm, which is enough to carry the robot

block masses during transformation and to lock the position

of the blocks during locomotion. Two servomotors are placed

in block 2, and one sits in block 4. The Intel compute stick

with ROS [49] based system installed controls all hTetro

operations.

B. hTetro ROBOT MODEL AND CONFIGURATION

In Fig.1, workspace W ⊂ R
2 is the 2-D Cartesian space

where the hTetro robot navigates. The geometries of the four

FIGURE 2. hTetro hardware components.

hTetro blocks are represented as Bn (n = {1, 2, 3, 4}), which
are modelled as four squares of the width dB. The angle

differences between the local frames of each block and the

workspace frame are denoted as θBn (n = {1, 2, 3, 4}). The
hinges are represented as Hn (n = {1, 2, 3}), and the hinge

angles between two blocks are denoted as θHn
(n = {1, 2, 3}),

which follow the rotation constraints below:

π

2
≤ θH1

= π

2
+ θB1

− θB2
≤ 3π

2
π

2
≤ θH2

= π

2
+ θB2

− θB3
≤ 3π

2
π

2
≤ θH3

= π

2
+ θB4

− θB3
≤ 3π

2

The different combinations of hinge angles θHn

(n = {1, 2, 3}) form shapes that simulate that of one-

sided tetrominoes as shown in Fig. 3, which are defined

as the 7 basic morphologies of an hTetro robot. The hinge

angle combinations that form these morphologies are listed

in Table 1.

FIGURE 3. 7 basic morphologies of hTetro.

A total of six parameters are required to determine an

hTetro configuration inW , which is presented as follow:

Definition 1 (Robot Configuration): The configuration q

of a hTetro robot is a six-element array

q = [xB2
, yB2

, θB1
, θB2

, θB3
, θB4

]T (1)
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TABLE 1. hTetro morphology table.

where xB2
, yB2

represents the x and y coordinates of the center

of hTetro Block 2 (B2) as illustrated in Fig.1

C. WORKSPACE MODEL

The workspace defined in this paper is modeled through the

grid-based method. By performing a simple cellular decom-

position technique with a fixed resolution, the workspace

is separated into a collection of square-shaped grid cells

of size dgrid. Based on the occupancy of obstacles in the

workspace, each grid cell contains a variable that states

whether any obstacle is in presence within the grid area [50].

In this paper, the grid width dgrid is set to be identical to the

hTetro block width dB and the occupancy of obstacles in the

workspace is defined asWobs.

D. hTetro ROBOT MOTION AND NAVIGATION

Based on the architecture design of hTetro robot by Veera-

jagadheswar et al. [39], each hTetro block uses four omni-

directional wheels as its moving mechanism and utilizes

hingemotors to shape-shift into different robotmorphologies.

This mechanical design enables an hTetro robot to perform

three types of motion: translation (T ), rotation (R), and

shape-shift (S).

The omnidirectional wheel mechanism allows the robot to

perform an instant change of its moving direction. In this

paper, a single translation motion command (T ) moves the

hTetro robot in one of the four directions for a distance

of dgrid. When the robot rotates, it rotates against the axis

that passes through the center of B2 (denoted as (xB2
, yB2

)

in Fig.1). In this paper, a single rotation motion command

(R) rotates the entire robot for 90◦ clockwise or counter-

clockwise. In the case of shape-shift (S) motions, we assume

that the desired shape to be M and the initial hTetro block

angles are θ i
Bn
. The ideal hinge angles for shapeM according

to Table 1 (θM
Hn

) will be utilized to determine the required

heading angle change (△θBn ) of each block during shape-

shifting and is calculated as follow:

△θB1
= θ

i
B1
− θ

i
B2
− θ

M
H1
+ π

2

△θB3
= θ

i
B3
− θ

i
B2
− θ

M
H2
+ π

2

△θB4
= θ

i
B4
− θ

i
B3
− θ

M
H3
+ π

2

Table 2 introduces the motion commands (mc) for hTetro

robots. The motion commands represent the encoding genes

in the proposed hTetro-GA. The next robot configuration

TABLE 2. hTetro configuration motion command table.

(qs+1) after a command is issued can be calculated simply

by adding the change of robot configuration (△q) to current

robot configuration (qs):

qs+1 = qs +△q (2)

For robot platforms with fixed morphologies, route opti-

mization usually focuses on minimizing the entire distance

traveled. The path planning algorithms developed for these

platforms attempt to search for the ideal trajectory with the

shortest distance to navigate the robot from source to desti-

nation. Nevertheless, this is not the case for hTetro due to the

three different motions it could potentially perform. Defining

minimum distance traveled as the optimal goal for hTetro

completely omits the cost of rotation motion and shape-

shifting; therefore, an alternative optimization goal has to be

defined, which is introduced later in section IV-B where the

multi-objective evaluation technique is implemented.

E. hTetro MOTION VALIDITY ANALYSIS

The simplicity to implement of approximate cellular

decomposition [6] for the defined workspace has made the

grid-based model to be one of the most popular path plan-

ning (PP) methods. A*, D*, and D* Lite based algorithms

[51], [52] are commonly implemented to produce low-cost

paths in minimum distance traversal problems; while wave-

front PP [53], BSA [54], [55], and spiral-STC [56] algo-

rithms aim to tackle coverage PP problems on grid-based

models. These algorithms assume fixed-morphology robots

with robot sizes smaller or equal to the grid size, so that the

validity of the generated paths simply depends on whether

these paths overlap with obstacle grids in the environment.

While designing grid-based PP for reconfigurable robots,

however, determining the path validity becomes more com-

plicated, which requires a full evaluation of the robotmotions.

In the case of hTetro, a crucial task is to ensure that the

geometries of the four hTetro blocks do not intersect with

any of the obstacle grids while the robot performs the

three main motions: translation (T ), rotation (R) and shape-

shifting (S). This validity check is the core constraint in

the proposed hTetro-GA, and robot individuals that perform

invalid motions during the navigation are likely to be rejected

in the algorithm.

An example of robot motions and motion validity check is

demonstrated in Fig.4. Fig.4a illustrates the starting position
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FIGURE 4. Three hTetro motions and motion validity analysis.

of an hTetro robot in the workspace with an L-shaped mor-

phology. The obstacle grids are painted in blue in the pre-

sented scenario. Linear translation (T ) motionwith command

‘TX+ ’ is performed in Fig. 4b, rotation (R) motion with

command ‘R−’ is performed in Fig.4c, and shape-shifting

(S) with command ‘SS ’ is performed in Fig.4d. Areas swept

by the four blocks are shaded. The motions described in these

scenarios are invalid due to the overlapping areas between

the swept areas and the obstacle grids. The validity check

in each block is conducted through a point in the polygon

(PIP) check [57], which allows an accurate estimation of the

intermediate configurations of hTetro in continuous space

when performing actions like shape-shifting.

III. INTRODUCTION TO GENETIC ALGORITHM

Genetic algorithm (GA) is a universal searching and opti-

mization algorithm introduced by John Holland based on the

mechanics of Darwin’s theory of evolution [58]. During the

initialization of GA, a population of randomly generated indi-

viduals (chromosomes) is determined. The evaluation process

in GA is then launched to calculate the corresponding fitness

values for each individual. The selection criteria filter out

individuals with weak performances. A new generation of

the population is determined based on the encoded genes in

the remaining individuals through biologic genetic operators

such as mutation and crossover [29]. GA process creates off-

spring generation of populations that are more adapted to the

environments and demonstrate better performance compared

to their parents [59], [60].

Various GA algorithms have been developed to tackle

PP problems considering GAs generally provide great

potential and flexibility to solve combinatorial optimiza-

tion problems [61]. Many of these algorithms modeled the

environment utilizing cellular decomposition and grid-based

methods. Y. Hu et al. implemented a knowledge-based GA

with domain knowledge and small-scale local search in [26],

which is capable of finding near-optimal robot path in both

static and dynamic environments.

IV. PROPOSED hTetro-GA

This paper expands on previous works of evolutionary

algorithm based path planning described in Section III by

modeling the environment as grid-based cells and pro-

poses hTetro-GA, a global multi-objective genetic algorithm

(MOGA) that solves the MOOP and provides the Pareto-

optimal solution that navigates the hTetro robot to any

desired destination. A list of terminologies frequently used

in hTetro-GA is shown in Table 3 for reference.

Fig.5 illustrates the flowchart of the proposed hTetro-GA.

hTetro-GA takes the workspace obstacle map (Wobs),

the roadmap (Q), and several GA-related parameters as input

and produces the ideal hTetro motion command sequence.

A roadmap (Q) is a series of predefined hTetro robot config-

urations (q), which specifies the series of positions and mor-

phologies that the robot should arrive at during the navigation

process.

As shown in the flowchart, the hTetro-GA consists of

three main loops: configuration loop, population loop, and

child loop. Within a configuration loop, the hTetro robot

navigates to the next configuration in the roadmap (Q), and

the loop terminates once the hTetro robot reaches the last

configuration specified in Q. In a configuration loop, GA is

used to plan the path between different configurations. Once

a new generation of the population is generated in the popula-

tion loop, hTetro-GA operators and selection procedures are

applied. The children (p) in the population perform simulated

navigation in the child loop, in which the robot fitness values

are evaluated to find the individual robot with the genes that

result in the Pareto-optimal fitness values.
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TABLE 3. Terminologies in proposed hTetro-GA.

A. INITIALIZATION OF hTetro-GA

In this paper, the configuration sequences in Q are denoted

as qs, where s represents the sequence number of the config-

uration. The next ideal configuration is represented as qs+1.
In hTetro-GA, genetic algorithm is performed to determine

the path between the two configurations – qs and qs+1,
and the parent population generates two types of offspring

populations: (1) conservative GA operation population Pkc ,

and (2) non-conservative GA operation populationPknc, where

k represents the k-th population in the algorithm. Details

regarding Pkc and P
k
nc will be introduced in Section IV-C.

During the population initialization process in the config-

uration loop, the first generation (P0) is generated, and the

pseudo-code is shown in Algorithm 1. P0 consists of a total

of npop robot individuals. A robot individual is represented

as p, which stores genetic information. The motion com-

mands (mc) introduced in Table 2 are implemented to encode

the chromosomes in the proposed hTetro-GA, and the total

number of motion commands in robot individual p is repre-

sented as lp. During the initialization process of hTetro-GA,

a predefined maximum length (lp,max) determines the start-

ing length of a gene in robot individuals. In Algorithm 1,

the encoded motion command of each child in P0 are ran-

domly determined based on the starting probability coef-

ficient of each motion command (λmc). The determination

process follows proportionate reproduction selection [62],

where commands with a larger starting probability coefficient

are more likely to be chosen.

As shown in Fig.5, once the starting population P0 is deter-

mined, the navigation process of P0 begins. In the child loop,

the fitness of the path is calculated after each robot motion is

Algorithm 1 Initialization Process of hTetro-GA

1: // Generation of random individuals in a population

2: Spawn P0 with a total of npop children.

3: for all child p ∈ P0 do

4: t ← 0

5: while t < tmax do

6: rnd ← random(0, 1)

7: for all mc ∈ mc do

8: if rnd < λmc then

9: p.Push(mc)

10: t ← t + tmc

11: break

12: end if

13: rnd ← rnd − λmc

14: end for

15: end while

16: end for

performed, and the process repeats until the encoded genes

in p satisfy the child termination criterion. A child robot

terminates when it fails path validity check mentioned in

Section II-E, when it reaches the next configuration qs+1 in

Q, or when all motion commands in p are fully executed.

Once all children in the population complete the navi-

gation, the hTetro-GA operators and the hTetro-GA selec-

tion process produce a new generation of populations until

the population satisfies any population termination crite-

rion. The termination criteria include population reaching

the predefined maximum allowed generations of populations

(npop,max) and the convergence of the solution.
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FIGURE 5. hTetro-GA flowchart.

B. MAIN OBJECTIVES IN hTetro-GA OPTIMIZATION

The hTetro navigation problem described in this work is a

multi-objective optimization problem (MOOP). In this paper,

the ultimate goal within the GA operation in each configura-

tion loop is to identify the best-performing motion command

sequence that navigates the hTetro robot from qs to qs+1.
The MOOP evaluates the performance of the robot motion

command using the four following criteria: (1) goal reach-

ability, (2) time consumption, (3) path smoothness, and

(4) path safety. Due to the command-based encoding genes

in robot individuals (p), it is not guaranteed that all individuals

in the population will arrive at the ideal configuration in the

end. This limitation has introduced an additional constraint

in our multi-objective optimization problem, and the solution

should ensure that the first fitness value criterion – goal

reachability – holds a higher priority compared to the three

remaining criteria.

The four criteria selected for hTetro-GA are introduced and

calculated as follow:

1) GOAL REACHABILITY FITNESS (fgr)

Goal reachability fitness is given the highest priority in the

hTetro-GA path fitness evaluation process. The calculation

of goal reachability fitness of robot individual p is calculated

using Equation 3.

fgr(p) =
1

1+WA∗ (Pos(plp−1))
(3)

where:

Pos(pi) = the position of block 2 (xB2
, xB2

) after

executing pi (the i-th motion command

in individual p)

WA∗ (x, y) = the h-score in A* algorithm that estimates

the distance between position (x, y) and the

position of the goal configuration [63]

In Equation 3, the function calculates the heuristic score

of the position of block 2 after the final motion command is

executed. An individual with an ending position near the goal

position results in a higher fgr value. Once a robot individual

reaches the next configuration (qs+1), the goal reachability

fitness of the robot always yields a value of 1 since the

distance between the robot and the goal configuration is 0.

If the robot does not manage to reach the next configuration

during the navigation process, the goal reachability fitness

value will be less than 1.

2) TIME CONSUMPTION FITNESS (ft)

The time consumption fitness value of robot individual p is

calculated through Equation 4 as shown below.

ft(p) = 1−

lp
∑

i=1
tpi

tmax
(4)
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where:

tpi = time consumption for hTetro motion command pi

(i-th motion command in p), where pi ∈ mc

mc= {‘‘Tx+ ’’, ‘‘Tx− ’’, ‘‘Ty+ ’’, ‘‘Ty− ’’, ‘‘R+’’, ‘‘R−’’, ‘‘SM ’’}

In Equation 4, the denominator’s value represents the total

time consumption of the entire navigation process. A longer

navigation process yields a smaller time consumption fitness

value. It is worth noting that the calculation of the time con-

sumption takes into the consideration of the fact that duration

of hTetro rotation (R) and shape-shifting (S) may not be iden-

tical to the translation (T ) motion: the appearing frequencies

of each motion command in the gene are multiplied by the

time consumption of the corresponding motion based on real-

world measurement values.

3) PATH SMOOTHNESS FITNESS (fsm)

The path smoothness fitness value of robot individual p is

calculated using Equation 5.

fsm(p) = 1−

lp−1
∑

i=1
dif (pi, pi+1)

lp − 1
(5)

where:

dif (pi, pi+1) =
{

1, if pi 6= pi+1
0, if pi = pi+1

(pi, pi+1 ∈ mc)

In Equation 5, a smaller difference between neighbor

motion commands contributes to a higher path smooth fitness

value. This definition encourages path with high consistency

in the motion commands.

4) PATH SAFETY FITNESS (fsf)

The path safety fitness describes the security of the overall

robot path throughout the navigation, and its value of robot

individual p is calculated through Equation 6.

fsf(p) = 1− dgrid

lp ·λsp

lp
∑

i=1

4
∑

n=1

∑

(x,y)sp∈sp

Wobs(P(p, i, n)+(x, y)sp)
∣

∣|(x, y)sp
∣

∣ |
(6)

where:

Wobs(x, y) =
{

1, if (x, y) is within an obstacle grid

0, otherwise

In Equation 6, the robot sums up the occupancy informa-

tion of the grids within a certain searching range throughout

the navigation. The searching pattern profile is represented

as sp with a searching pattern specific coefficient (λsp), and

(x, y)sp is a vector representation of a grid within the search

pattern with respect to the origin, which is the center of

block 2 in our case. In this paper, the searching patterns are

circles with predefined radii and center at each block in the

hTetro robot. With Equation 6, obstacles that are presented

within the searching pattern reduce the overall path safety

FIGURE 6. hTetro robot path safety fitness evaluation. The values in each
grid represents the number of searching pattern circles the grid is within.

fitness (fsf), and the robot individual is less desired during the

optimization process. In Fig.6, a searching radius of 2 · dgrid
is implemented, and an obstacle grid may result in a decrease

of the fsf value several times if it locates within the radii of

multiple circles. This implementation ensures that the robot

can navigate safely in any shape configuration by keeping a

certain distance with the environment obstacles.

C. hTetro-GA MULTI-OBJECTIVE TECHNIQUES

AND POPULATION SORTING

Techniques that attempt to solve MOOPs have been vastly

studied in the past two decades due to the presence of various

objectives in recent research optimization problems. MOOPs

are intractable optimization problems with the conflicting

nature among the optimization parameters [64]. With the

fitness values defined in Section IV-B, we canmathematically

formulate the MOOP for hTetro robot navigation as follow:

minimize F(p) = (−fgr(p),−ft(p),−fsm(p),−fsf(p))T

subject to p ∈ �

where:

� = the decision set which includes all feasible solutions p

Since an ideal path that optimizes all four fitness value func-

tions does not exist inmost case scenarios [65], the realization

of Pareto optimality in the solutions has become our main

focus. Details regarding the Pareto optimality is introduced

in Stadler’s work [66]. And the main goal of our MOOP is

to find a Pareto optimal set, which consists entirely of Pareto

optimal solutions p∗ ∈ �.

Multi-objective evolutionary algorithms (MOEAs) are

capable of approximating the Pareto optimal sets within

a single run [65] of the evolutionary algorithms. Non-

dominated sorting genetic algorithm-II (NSGA-II), a clas-

sical MOEA technique, has been proven to provide results

with better quality in solving MOOPs [67]. This paper imple-

ments the NSGA-II technique to approach our hTetro nav-

igation MOOP due to the following advantages NSGA-II

possess [48]:
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FIGURE 7. hTetro-GA with implementation of NSGA-II technique.

1) NSGA-II approach reduces the time complexity of the

presented MOOP from O(4n3pop) to O(4n
2
pop).

2) The elitism approach in NSGA-II preserves the entire

gene information in the process so that once a robot suc-

cessfully reaches the goal, it is guaranteed that at least

one of the individuals in the next generation population

will reach the destination as well.

3) The density estimation and crowding distance calcu-

lation introduced in NSGA-II efficiently preserves the

diversity among the population members, which is cru-

cial in our presented MOOP so that different routes to

the destination can be explored.

The implementation of NSGA-II techniques in our pro-

posed hTetro-GA is shown in Fig.7. Several modifications are

applied to the proposed algorithm to increase the converging

speed and to improve the quality of the results. The procedure

of the proposed hTetro-GA sorting and selection technique

are listed as follow:

1) The algorithm takes in three groups of population,

namely Pk , Pkc , and P
k
nc for analysis.

2) The algorithm eliminates extra copies of robot individ-

uals in the population that carry genetic information

identical to existing individuals. This is to prevent iden-

tical well-performing individuals from doubling every-

time hTetro-GA executes and swarming the fronts in

future generation populations.

3) Perform goal reachability sort, which sorts the entire

population into two sections. The section with robot

individuals that reaches the goal (fgr(p) = 1) is shaded

in red in to Fig.7.

4) Perform fast non-dominated sorting independently

in both sections in the previous step. The fast non-

dominated sorting algorithm implemented is identical

to the approach in the original NSGA-II paper [48].

Concatenate the results and generate a sequence of

fronts F. Since the goal reachability fitness has a

higher priority compared to the other three criteria,

robot individuals with smaller goal reachability fitness

values (fgr) are strictly Pareto-dominated by those with

higher values.

5) Push the fronts to the next population Pk+1. If the total
individuals of all the fronts are larger than npop, perform

crowding distance sort in the last front, which sorts

the individuals in ascending orders. The calculation of

crowding distance follows the formula introduced in

the NSGA-II paper [48]. The well-performing individ-

uals with small crowding distances in the last front

are then pushed to Pk+1 until all population slots are

filled in.

6) Perform conservative GA operation and non-

conservative GA operation on Pk+1, which generates

two extra population groups – Pk+1c and Pk+1nc , respec-

tively. Perform hTetro navigation and fitness analysis

on the generated individuals and repeat the entire

process.

D. hTetro-GA REPRODUCTION OPERATORS

Apart from the reproduction operators that are implemented

in classical GAs, such as genetic mutation and genetic

crossover, this paper introduces two extra operators for the

motion command-based hTetro robot genes, namely rear-

rangement, and removal.

Constantly improving the performance of hTetro robot

individuals (p) across the population is crucial in GAs,

and with the definition of the hTetro robot genetic model,

the introduction of the three extra operators speeds up the

algorithm and improves the performance of the results.

In this paper, the genetic operations are separated into two

categories: (1) conservative GA operations and (2) non-

conservative GA operations. Conservative GA operations

are operations that ensure that the (x, y) portion of the vector

sum of configuration changes (
∑

△q) remains the same,

which results in offspring robots with the same ending posi-

tion as their parent robots. Conservative GA operations excel

at exploring various possibilities to arrive at a certain desti-

nation, which is useful when qs+1 has already been explored
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and reached. Once a robot reaches qs+1, conservative GA

operations will improve the genes while keeping the goal

reachability of the individual intact. Non-conservative GA

operations, on the other hand, includes the operations that

do not preserve the same ending position or morphology of

the parent robots, which is crucial during the early phase of

hTetro-GA when all robots are still searching for a valid path

to the next configuration.

Non-conservative GA operations implemented in this

paper include mutation and crossover, while conservative GA

operations include removal and rearrangement. The opera-

tions are defined as follow:

1) MUTATION OPERATOR

The mutation operator in hTetro-GA is the classic GA muta-

tion operator, which modifies a single motion command (mc)

within the chromosome to a randommotion command within

the motion command set (mc). Since the motion commands

in mc includes all three types of motions, a single mutation

in a gene may alter a translation motion command into a

shape-shift or a rotation command. Therefore, the naviga-

tion result of the mutated gene may end up with a different

position or morphology compared to the parent gene. The

mutation rate of each motion command is denoted as rmu.

Fig.8a shows the mechanism of the mutation operator in

hTetro-GA. The mutation operator helps increase the gene

diversity and is the primary operator that contributes to

the gene evolution during the early exploration phase of the

algorithm when the goal remains undiscovered by any of

the robot individuals. Mutating a translation motion com-

mand (T ) to rotation (R) or shape-shifting (S) is crucial when

the robot tries to steer through narrow spaces or attempts to

avoid dynamic obstacles.

2) CROSSOVER OPERATOR

The hTetro-GA crossover method implemented is a

single-point crossover operator, and the offspring individual

possesses the genetic information from both parents com-

bined. The mechanism of the crossover operator is illustrated

in Fig.8b. In hTetro-GA, crossover operation occurs with a

rate of rcr on each robot individual.

To increase the likelihood of improvements in the offspring

hTetro robot individuals, deterministic tournament selection

with a tournament size of 4 is chosen to decide the two best

parents for crossover operations. The individuals in the tour-

naments are compared based on their rankings determined

previously in the NSGA-II procedure, and if the individuals

locate in the same front, the crowding distances are compared

instead.

3) REMOVAL OPERATOR

The hTetro-GA removal operator is introduced to eliminate

motion commands within the robot individuals. Since the

sorting procedure takes the time consumption fitness (ft)

into consideration, the individual that navigates to the goal

with minimum time spent is always preferred. The removal

FIGURE 8. hTetro-GA reproduction operators.

operator continuously simplifies the motion commands in

the individuals across each generation of populations, which

gradually speeds up the computational process in each popu-

lation loop as the chromosomes’ sizes shrink after each gen-

eration of populations. The removal operator is a conservative

GA operator, so the removed motion commands do not alter

the final position or morphology of the hTetro robot.

Removal operations on non-translational motions such as

rotation motions (R) and shape-shift motions (S) are applied

arbitrarily. Each single point of non-translational command

has a removal rate of rrm,nt in the gene. On the other hand,

instead of single-point removals, removal operations on trans-

lational motions are executed in pairs to preserve the fidelity

of path destination. The two translation pairs in this paper

are: (‘‘Tx+ ’’, ‘‘Tx− ’’) and (‘‘Ty+ ’’, ‘‘Ty− ’’). Each translation

motion command has a removal rate of rrm,t. While executing

removal operations on translational motions, the algorithm

randomly searches two translation motion commands within

the chromosome. If the two commands form a translation

pair, the operator removes both simultaneously. Fig.8c illus-

trates the possible outcomes of removal operations for both

translational motion commands and non-translational motion

commands, where the red ‘‘X’’ signs represent removed

genes.
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4) REARRANGEMENT OPERATOR

hTetro rearrangement operator performs swapping between

two random motion commands within a chromosome.

Rearrangement is a conservative GA operation since all

motion commands are preserved during the process. Fig.8d

demonstrates the process of rearrangement operator. This

operator works well during the later phase of the GA process

when the goal has been explored, as it excels at exploring the

different combinations of the motion commands that result in

maximum path smoothness fitness (fsm) value and maximum

path safety fitness (fsf) value. Each motion command has a

rearrangement rate of rra.

V. hTetro-GA SIMULATION

The evaluation of the proposed hTetro-GA is conducted

through simulations in virtual environments. This section

introduces the setup of the virtual environments and the

parameters being evaluated. The section then analyzes the

results and discusses the proper starting parameters for

the proposed algorithm.

A. VIRUTAL ENVIRONMENT SETUP

In this paper, virtual environments are defined by obstacle

maps (Wobs) and roadmaps (Q). To comprehensively evaluate

the proposed algorithm, virtual environments with different

obstacles in terms of size, position, and mobility (static and

dynamic) are built.

The environments presented in this study are all in

the size of 24 · dgrid × 24 · dgrid and are illustrated

in Fig.9, which include H-shaped obstacles (Fig.9b), random

obstacles (Fig.9a), spiral obstacles (Fig.9c), 3-slit obstacles

(Fig.9d), perpendicular dynamic obstacles (Fig.9e), and par-

allel dynamic obstacles (Fig.9f) environments.

In these environments, the cellular decomposition method

is implemented for all static and dynamic obstacles so

that they are considered as grid-shaped obstacles within

our model. During the robot termination evaluation pro-

cess, the path viability is evaluated continuously to check

whether any of the hTetro blocks collide with the obstacles.

The dynamic obstacles in Fig.9e and Fig.9f perform sim-

ple patrolling motions on a predefined route. The naviga-

tion speed of the dynamic obstacles is set to dgrid per time

instance.Multiple roadmaps that specify robot configurations

throughout the navigation are defined and are illustrated in

the figures. All roadmaps in this study begin and end with

configurations of O-shaped morphology. In the perpendic-

ular dynamic obstacles environment (Fig.9e), four config-

urations are specified in the roadmap instead of just the

starting and goal configuration, so the configuration loop in

the hTetro-GA process (Fig.5) is performed three times.

B. hTetro-GA SIMULATION PARAMETERS

Most evolutionary algorithms include multiple parameters

such as population size (npop), mutation, and crossover

rates. The best values for these parameters are usually

problem-specific. In the hTetro-GA performance simula-

tion, population size is an independent variable, while other

parameters are considered as control variables. The parame-

ters are introduced as follow:

1) POPULATION SIZE (npop)

Population size is a parameter that significantly affects the

performance of an evolutionary algorithm. An algorithmwith

a larger population size explores the solution space more

completely, which yields better solutions in most cases, but

it also requires more computational resources. In this simu-

lation, population size of npop = 25, 50, 100 are analyzed.

The algorithm’s efficiency is evaluated by tracking the pop-

ulation number and time consumption when the robot first

reaches the next configuration and when the population loop

terminates. The effectiveness of the algorithm is determined

through the fitness values of the final hTetro motion com-

mand sequence m̂c. In this simulation, hTetro-GA is executed

50 times for each population size in each virtual environment.

2) REPRODUCTION OPERATOR PARAMETERS

The parameters used in reproduction operators affect the

gene diversity between the parent and child populations.

The parameters introduced in section Section IV-D include

rmu, rcr, rrm,t, rrm,nt, and rra.

In the non-conservative operation process of hTetro-GA,

the mutation rate rmu is set to 1
lp,max

, while the crossover

rate rcr is set to 0.5 throughout the navigation process. The

selection of rmu results that approximately 1 mutation occurs

in each individual in the next population group (Pk+1nc ) during

the early phase of navigation when the goal configuration

has not been reached. This mutation rate produces fewer

mutations in the later phase of navigation so that other GA

operators are weighted more while refining the path informa-

tion in the genes. On the other hand, setting rcr to a constant

0.5 represents that around half of Pk+1nc is generated from

crossover operations, allowing fast solution exploration of the

algorithm.

In conservative operation process, the translational motion

command removal rate rrm,t, non-translational motion com-

mand removal rate rrm,nt, and the rearrangement rate rra are all

set to 1
lp
. This value will result in one single removal operation

to occur in each individual on average, which provides suffi-

cient gene variety in the next conservative population group

(Pk+1c ) to continue the GA process.

3) hTetro-GA SPECIFIC PARAMETERS

Several problem-specific parameters are introduced during

the initialization of the hTetro-GA process in this simulation.

The starting probability coefficient of each motion com-

mand (λmc) determines the appearance rate of each motion

command in the starting gene. The coefficients for the transla-

tional motions are set to 0.25, and the coefficients for rotation

and shape-shifting are set to 0. This setup speeds up the

searching process of the goal configuration as rotations and
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FIGURE 9. Virtual environment constructed for hTetro-GA analysis and ideal path results based on best time consumption
fitness (fc), best path smoothness fitness (fsm), best path safety fitness (fsf), and best overall fitness within the first front (F0)
of the final population in hTetro-GA.

121278 VOLUME 8, 2020



K. P. Cheng et al.: Multi-Objective Genetic Algorithm-Based Autonomous PP for Hinged-Tetro Reconfigurable Tiling Robot

TABLE 4. hTetro-GA efficiency and final fitness performance table.

shape-shift are often unnecessary during the beginning of the

navigation with no obstacle encountered.

The predefined gene maximum length (lp,max) depends on

the size and the complexity of the environment. In the simula-

tion, lp,max = 200 is chosen for spiral obstacle environment,

and lp,max = 100 is selected for other environments. The

maximum population number npop,max is set to 1000 in this

simulation to ensure that the algorithm has enough time to

determine the best motion command sequence.

In Equation 6 where path safety fitness is calculated, a cus-

tom searching pattern parameter sp is defined. This paper

implemented a circle shaped searching pattern with 2 · dgrid
as mentioned previously. The searching pattern coefficient is

set to 6+ 2
√
2 in this setting.

VI. RESULTS AND DISCUSSION

The performance of the proposed hTetro-GA is recorded

in Table 4. In this table, the average number of popula-

tions required for the algorithm to find a motion command

sequence that first reaches the next configuration and to reach

convergence is shown. The average time consumption of the

two instances is recorded as well. The output solution is

selected by choosing the individual with the smallest crowd-

ing distance in the globally optimal Pareto-optimal set (F0).

The fitness values of the final output multi-objective based

motion command sequence are shown in the table, which

includes the goal reachability fitness (fgr), time consumption

fitness (ft), path smoothness fitness (fsm), and path safety

fitness (fsf). To better visualize the output of hTetro-GA,

the solutions are illustrated in all environments in Fig.9.

A. NAVIGATION STRATEGY OF hTetro-GA

The navigation results of proposed hTetro-GA illustrated

in Fig.9 demonstrate several essential features of our

algorithm. It is shown in the H-shaped and spiral obstacle

environments (Fig.9b, 9c) that the algorithm is capable of

determining feasible paths in maps with complicated obstacle

setup instead of merely performing a greedy search of the

shortest distance to the next configuration.

With the starting and goal configuration both having the

identical morphology – O-shaped morphology, it is shown

in all virtual environments that the algorithm prioritizes

generating motion command sequences without any shape-

shift or rotations. This is because shape-shift or rotations

result in lower time consumption fitness value, and the robot

individual is more likely to be rejected during the non-

dominated sort in hTetro-GA. However, due to the design

of 3-slit and parallel obstacle environments (Fig. 9d, 9f),

hTetro individuals with only translational motion commands

fail to navigate successfully to the destination with only

O-shaped morphology. It is demonstrated in both scenarios

that the algorithm determines the positionswhere valid shape-

shift and rotation actions can be conducted and use trans-

formed configuration to navigate through narrow obstacles.

It is also observed that in the multi-objective based solution

in both environments, the transformations occur when the

robot drives near the obstacle and attempts to transform back

to the O-shaped morphology before it arrives at the goal

configuration, implying that the preferred morphology of the

current hTetro-GA setup is O-shaped morphology.

Even though a total of 7 morphologies are available for

the hTetro robot navigation, the two most used morphologies

are O-shaped and I-shaped morphologies. According to the

experiments conducted, the best navigation strategy hTetro-

GA suggests is to utilize O-shaped morphology to travel

in open spaces, which maximizes the path safety fitness

value, while utilizing I-shaped morphology to travel through

obstacles when the algorithm fails to find a path to the

goal configuration with only translation motion commands.

The other 5 morphologies are not as competitive against

the O-shaped and I-shaped morphologies in terms of the

maximization of path safety and the capability to reach goal

configurations. Even though these morphologies may show

up during the early phase of the navigation, as the MOGA

gradually optimizes the solution set, these individuals fall
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FIGURE 10. Fitness values of the hTetro-GA multi-objective based best performing individual in each generation of population.
Fig. 10e illustrates the navigation outcome from three configuration loops in hTetro-GA.

into non-leading fronts during non-dominated sorting and are

eventually rejected. Note that the definition of fitness values

influences the choice of configurations in the solutions, so the

algorithm may yield solutions with more than 2 configu-

rations combined if fitness values are defined differently.

Since the proposed MOOP solution selects a Pareto-optimal

solution, it is not guaranteed that it will find the shortest path

as it may evaluate other criteria more (like path safety). Paths

only indicate the trajectory of Block 2 in Fig. 9b, Fig. 9c and

the hTetro robot moves in O-configuration, the paths seem to

be longer to prevent the other blocks from getting too close

to the left side of the H, and corner obstacle (which reduces

the path safety fitness).

B. MULTI-OBJECTIVE PATH PLANNING PERFORMANCE

Through the implementation of the NSGA-II technique,

the proposed hTetro-GA demonstrates a strong capability

to determine the globally Pareto-optimal set in the search

space. The implementation of elitism ensured that the genetic

information from robot individuals that successfully navigate

to the goal configurations would be carried to the future

generation of populations.

In Fig.9, the multi-objective based output solutions are

marked as a black-colored route in all environments. Three

additional solutions within F0 are shown, which represents

the motion command sequences with best ft, fsm, and fsf.

Note that the best sequence with fgr is not listed as all indi-

viduals in F0 successfully reached the target configurations

in Q and possess goal reachability fitness values of 1. It is

observed that the four routes all take similar approaches to

navigate to the goal configurations. As shown in Fig.9b, solu-

tions with the highest fsf might perform additional motions

in order to increase the safety; while solutions that pos-

sess the highest fsm may compromise on the safety fitness
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FIGURE 11. Implementation of path planning on the real robot platform. (a), (c) built map and generated path plans. (b),(d) the sequences of robot
navigation to go from source to destination with shape shifting between O to I.

fsm values (Fig.9e, Fig.9f). The multi-objective based solu-

tions, which consist of individuals with the maximum sum of

the four fitness values within F0 demonstrate consistent per-

formance throughout the entire hTetro-GA navigation com-

pared to solutions which focus only on a single fitness value.

In Fig.10, the four fitness values in each generation of

populations in the multi-objective based solutions are plotted.

The implementation of the NSGA-II technique allows the

proposed algorithm to find a balanced solution between the

four fitness values. As shown in the figures, the goal reacha-

bility fitness (fgr) value reaches 1 once the algorithm finds

a valid motion command sequence to navigate to the goal

configuration. After the goal configuration is found, the algo-

rithm will aim to improve path safety, path smoothness, and

time consumption fitness values until the solution converges.

It is worth noting that the path safety fitness (fsf) values are

considerably high at the beginning of the navigation. This

occurs when the first few generations of populations fail

to reach the goal configurations and only navigate in safe

grids that are distant to the obstacles in the environment.

Even though fsf has a trend towards declining during the

navigation process, the non-dominated sorting process will

attempt to maximize the path safety of the solutions once the

goal configurations are reached.

C. EFFECT OF POPULATION SIZE ON

hTetro-GA PERFORMANCE

In Table 4, it is demonstrated that differences in npop greatly

influences the number of the population when the first p

reaches the goal configuration and when the process is ter-

minated. The final output multi-objective based solutions

in the three npop scenarios all demonstrate consistent capa-

bility to navigate to the goal configuration without failing

(fgr = 1). As recorded in Table 4, when the popula-

tion size increases, the values of ft, fsm and fsf all increase

accordingly. This has shown that initializing the algorithm

with a larger population size results in a fast exploration of

the space, and the algorithm is capable of finding a valid

solution early, with the solution found being refined with

higher fitness values. Despite the early termination of the

population, the average time consumption for each operation

still increases significantly when npop rises due to the extra

computation load in the navigation and selection process.

In the presented virtual environment, a starting npop of 50 has

shown to be effective as it provides near-optimal outcome

within a short time period; however, as the environment size

increases, a larger npop may be required during the initializa-

tion process to speed up the early exploration process in the

algorithm.
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D. DEPLOYMENT OF PATH PLANNING ON hTetro

The generated path by proposed path planning method is

implemented to the real hTetro robot platform. The real

experiment aims to show that the robot platform can follow

the found optimal path, change to required shapes to over-

come the narrow space while avoiding obstacle safety.The

room is modeled as a grid-based environment in ROS, and

occupied grids such chairs, tables, and walls are consid-

ered as obstacle grids. Grid width (dgrid) and hTetro block

width (dB) are both set to 25cm in this implementation.

Hector SLAM [68] is used for map construction and robot

localization. Fig.11 shows the hardware implementation of

hTetro-GA. In Fig.11a,b, the path that connects start and

goal configuration which are defined near the obstacles is

generated with the proposed algorithm based on a provided

map, and in Fig.11b,d, the shape-shift and translation motion

are both demonstrated by the robot to successfully navigate

through the obstacles. During navigation, additional robot

pose check has been implemented into the workflow: the

robot location and orientation are monitored and adjusted in

real-time to ensure that the robot does not deviate from the

ideal trajectory, which may result in collisions with obstacles

in the environment. It is also observed that since robot shape-

shift motions do not always sweep out the same area modeled

in Fig.4 during motion validity analysis, providing a smaller

clearance for robot shape-shifting could result in collisions

in real-world scenarios. The validity analysis in hTetro-GA

workflow (Fig.5) has been adjusted to assume a larger sweep-

ing radius of 35cm from hTetro blocks to mitigate this issue.

We are also in the state of developing the hTetro so that

it works autonomously in wider testbed environments with

complex obstacle settings. Once the stable platform has been

constructed, GA algorithms with different parameter settings

will be evaluated.

VII. CONCLUSION

This paper presents a novel algorithm, hTetro-GA, which is a

global path planning algorithm for reconfigurable robots. The

proposed algorithm focuses on multi-objective optimization

and attempts to find the solution with Pareto-optimal goal

reachability, time consumption, path safety, and path smooth-

ness through genetic algorithms.

In this paper, the model of the hTetro robot and the

grid-based workspace are first constructed. The paper then

introduces the robot configuration and motion validity, which

are both crucial discussion topics in systems that involve

reconfigurable robots. The workflow of hTetro-GA is next

organized into three loops where genetic algorithms are

executed to navigate between different configurations. Four

fitness objective functions are then introduced to evaluate the

performance of the robot individuals from different perspec-

tives. In order to solve the MOOP in this study, the NSGA-II

technique is implemented to determine the Pareto-optimal

robot individual with the best performing motion com-

mand sequence in the generation. Novel genetic algorithm

operators are introduced in this paper due to the self-

reconfigurable nature of hTetro to generate a wide variety of

individuals in the genetic pool, which helps the algorithm to

find Pareto-optimal paths during navigation.

The proposed hTetro-GA has shown the strong capability

of determining feasible motion command sequences to the

goal configurations in various environments with different

settings. It manages to handle dynamic obstacles in given

environments, whichmakes the real-world implementation of

the algorithm in known environments feasible. The feature

of identifying navigation paths based on a roadmap with

multiple designated configurations is useful in multiple sce-

narios. During an exploration or a rescue task, especially in

hazardous environments, the proposed algorithm can be used

to generate paths for reconfigurable robots to safely navigate

to multiple destinations within the area to perform specific

actions.

Future research areas are as follow: (1) Fine-tuning of

hTetro-GA parameters: Multiple parameters are involved

in the presented hTetro-GA, and the algorithm performance

of different npop values is analyzed in this paper. We would

like to expand the work and analyze the performance when

parameters like searching pattern (sp), mutation rate (rmu),

the virtual environment size are modified. (2) Increased

complexity setup: The proposed algorithm would be revised

by allowing hTetro block disassembly during each navigation

to improve the algorithm efficiency by increasing the degree

of freedom. Architectures with 5 or more hTetro blocks

should be explored for further performance comparison.

(3) Optimization of hTetro-GA workflow: The proposed

algorithm is a global PP algorithm, and we would like it to

work better in local PP problems by making modifications

like storing unknown obstacles encountered in Wobs and

performing re-calculation of hTetro-GA when the obstacle

map is updated to reroute the path. (4) Implementation of

other multi-objective optimization techniques: Due to the

fact that the traditional PP algorithms such as A*, D*, and

artificial potential field could not be directly implemented on

reconfigurable robots, the comparative analysis betweenmul-

tiple algorithms could not be presented in this work. Imple-

menting other multi-objective algorithms like MOPSO [69]

and ǫ-constraint method [70] for hTetro in the future will

allow us to compare their performance with the proposed

NSGA-II based technique.
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