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Abstract— System Identification is the process of construct-
ing an accurate and reliable dynamic mathematical model of
the system from observed data and available knowledge. The
choice of inputs used for perturbing the system is critical in the
identification and model building exercise. One of the major
objectives of system identification is accurate estimation of the
system parameters. Identification of chemical process plants
is carried out on running plants in real time. The practitioner
would thus prefer a ‘plant friendly’ input signal. We propose
unified multi-objective formulations and solution methods for
the input design for two particular cases. The input can
be evaluated as a solution to a multi-objective optimization
problem.

I. INTRODUCTION

System Identification is the process of constructing an ac-
curate and reliable dynamic mathematical model of the pro-
cess or system from observed data and available knowledge.
A number of excellent reviews on system identification and
input signal design are available [1]–[3]. Such models are
commonly used for estimation, prediction and control, fault
diagnosis, simulation, operator training etc. It is common
practice to perturb the system with specially tailored inputs
and the consequential input/output data are used to build the
system model. The quality of the model depends strongly
on the experiment design and identification and hence the
input used for perturbing the system should be carefully
selected [1].

A considerable amount of literature exists on statistical
experiment design. The input design problem, as applied
to a dynamic system for system identification, has received
much less attention [4]–[7]. The issue of experiment design
with respect to the intended model application, which is
often control, has received considerable attention recently
[8]–[10] .

System identification, in practice is carried out by per-
turbing processes or plants in operation. The concept of
plant friendly identification has received attention amongst
members of the process control and identification commu-
nity recently [11]–[14]. Techniques for synthesizing multi-
harmonic signals with low crest factors which are attractive
from a plant friendly perspective have been reported [1],
[15].

There has been some recent application of multi-objective
optimization based methods to identification and control.
[16]–[18]. However, such an approach to input design has
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not been attempted. We present two illustrative formulations
for evaluating the optimal input as a solution to a multi-
objective optimization problem.

II. OBJECTIVES

A. Experiment design

Consider a system, described in a general manner as

y(t) = f(u, t, θ, v) (1)

where, y(t), u(t), v(t), θ are the output, input, noise and
parameter respectively. It is required to select a design for
the input u(t) ∈ Ωu such that a suitable cost function
related to the end use of the identified model is minimized.
The accuracy of parameter estimates is most conveniently
expressed in terms of its bias and the covariance. For input
design purposes, it is convenient to assume an unbiased
efficient estimator, so that the covariance of the param-
eter estimates is given by the Cramer-Rao bound, viz.,
the inverse of the Fisher information matrix, and can be
computed irrespective of the choice of the estimator. The
Fisher information matrix is defined as

M = E

[

∂

∂θ
ln p(y|θ)

(

∂

∂θ
ln p(y|θ)

)t
]

(2)

Some of the commonly used measures of performance are
• A-optimality minU tr(M−1) , i.e, minimize the aver-

age variance of the parameters
• E-optimality minU λmax(M

−1), i.e, minimize the
maximum eigenvalue

• D-optimality det(M−1), i.e, minimize the volume of
the uncertainty ellipsoid

• G optimality The min-max design problem is to choose
the optimal input such that it minimizes the maximum
of covy(t, θ̂) for all possible input signals.

• Maximize the trace of the information matrix. This is
commonly done as direct minimization of the trace of
M−1 is a nonlinear optimization problem [6].

Though different experiment design criteria can be used
for optimal experiment design, it has been observed that
a ‘good’ or optimal design corresponding to one criterion
will, in general be deemed ‘good’ or optimal with respect
to other criteria too. However, the choice of the experiment
criterion is important as it is possible that inputs designed
based on some criteria may not be persistently exciting [4].
Techniques for designing optimal input signals in the time
and frequency domain have been published [3], [4], [6].



B. Plant friendly identification

Multi-variable model based control strategies are com-
monly used in chemical process industries. Plant friendly
identification has received the attention of researchers in
recent times [11]–[14]. Identification experiments in process
industries are carried out on running plants under real time
operating conditions. While a persistently rich excitation
with high signal to noise ratio is theoretically preferred,
operational, safety, environmental and economic considera-
tions have to be taken into account during identification.

• An input requiring aggressive and frequent movement
of valves and actuators is not desirable as this can lead
to equipment wear and tear.

• Identification experimentation time has to be kept to a
minimum so as to minimize off-spec products and con-
sumption of utilities. Tests using the popular Pseudo-
Random Binary Signals (PRBS) usually require days
to conduct [19].

• Output deviations should be reduced to ensure that the
product quality differs as little as possible from the set
point and remains within specified permissible limits.

It must be noted that some of these practical considerations
may be in conflict with the theoretical requirements of
identification [14].
Input friendliness factor Φi

For discrete input signals, which are commonly used in
identification practice, a quantitative plant friendliness index
in terms of the number of changes from one level to another
has been proposed [13]. For a deterministic sequence, the
input plant friendliness Φi can be defined as

Φi = 100

(

1 − nt

N − 1

)

(3)

where N is the total length and nt is the total number of
switches. For a discrete level stochastic signal, the definition
needs to be changed and the friendliness factor is simply
defined as the probability of non-transition from one state
to another, i.e, the probability that the signal continues to
be in the same state.

Although the above definition is intuitively appealing,
a drawback is that it might be difficult to represent this
quantity in a closed form in an optimization formulation.
A closed form definition which retains the same intuitive
appeal could be [12]

Φi = 1 −
∑

(uk − uk−1)
2

(N − 1)max(uk − uk−1)2

= 1 if uk = uk−1 ∀k ≤ N (4)

For a continuous system, the definition for input friend-
liness can be modified as follows.

Φi = 1 −
∫ T

0
u̇tu̇dt

Tmax(u̇tu̇)
(5)

A multi-sine signal is a signal obtained by the addition of
a finite number of harmonically related sinusoids and can
be represented as

x(t) =

Nu
∑

u=1

au cos(2πkut/T + αu) (6)

where ku are monotonically increasing harmonic numbers
ku ∈ N, u = 1, 2, . . . Nu. The input friendliness factor is
often expressed in terms of the peak factor (Pf ) or crest
factor (Cf ).

Pf =
xmax − xmin

2
√

2xrms

(7)

Cf =
max |x|
xrms

(8)

where xmin, xmax, xrms denote the minimum, maximum
and rms values of the signal respectively. For a specified
amplitude spectrum {au}, it is possible to synthesize an
input signal with a low crest factor by using a generalization
of Polya’s algorithm [15]. The crest factor is thus the ratio
of the L∞ norm and the L2 norm where the general Lp

norm of the function x(t) over the interval [0, T ] is defined
as

Lp(x) =

[

1

T

∫ T

0

|x(t)|pdt

](1/p)

(9)

and the L∞ norm is max |x(t)|.
Output friendliness factor
One possible definition could be the crest factor which has
been defined in (8) [14], [15]. However, a major drawback
of the reported procedure is that the output is assumed to
be given by

y(t) =

Nu
∑

u=1

auGu cos(2πkut/T + αu + φu) (10)

where, Gu and φu are the a priori amplitude ratio and
phase shift evaluated at the frequency 2πku/T . While, the
above expression correctly describes the steady state output
of a Linear Time Invariant (LTI) system subjected to the
multi-sine input, it does not capture the system transients. A
suitable output friendliness factor Φo that takes into account
the output variability, the time spent in out of control region,
the spectral energies or crest factor needs to be investigated.
It must be noted that a minimum crest factor input does not
imply a minimum or low crest factor output.
Constraints
The experiment design has to take into account certain
constraints that may be imposed on the conditions. Some
of these constraints are

• Amplitude constraints on inputs, at ≤ u(t) ≤ bt ,
outputs ct ≤ y(t) ≤ dt or state variables.

• Energy constraints on inputs,
∫

utu dt ≤ b ; u continuous

U tU ≤ b ; U t = [u1, u2, . . . , uN ], (11)



• Total time available for the experiment
• Number of samples
• Physical constraints on actuators, valves
• Process, safety and environmental constraints.

III. MULTI-OBJECTIVE OPTIMIZATION

In traditional single objective optimization problems, the
aim is to find a globally optimal solution, if it exists. Unlike
single objective optimization problems, in optimization with
possibly conflicting objectives, there is no unique optimal
solution. System and real world design usually involves
tradeoffs between different objectives and more than one
decision maker. There has been considerable activity in
recent times in the field of multi-objective or multi criteria
decision making [20]. A fair amount of subjectivity and
user influenced decision making is a characteristic feature
of multi-objective problems. There are several possible
approaches for solving a multi-objective optimization prob-
lem.

A. Single weighted cost function

One simple and common approach to multi-objective
optimization is to formulate a single weighted objective
function from the individual costs Ji.

J = α1J1 + . . . + αnJn (12)

such that the weights αi ≥ 0. This results in the following
single optimization problem that can be solved by standard
methods of optimization.

Minimize{J} s.t

{

Li ≤ 0 ∀i
Ej = 0 ∀j

(13)

where Ej and Li are constraints that we wish to impose.

B. Pareto optimal sets

In multi-objective optimization problems, the interaction
among different objectives gives rise to a set of solutions,
called the Pareto optimal solutions (see Fig. 1). Solutions A,
D, B form a Pareto optimal front and no one solution in this
set can be said to be better than another in pure quantitative
terms. However, solution C is dominated by solution D
as solution D is better than C in both objectives. A set
is called a global Pareto-optimal set, if no solution in the
search space dominates any member in it. The optimization
algorithm should attain two goals :- search for the global
Pareto-optimal front and maintain population diversity in
the optimal front so that no bias towards any particular
objective function exists [21].

Formally, in a minimization problem, an objective vector,
z∗ = [z∗1 , z∗2 , . . . , z∗k]t is Pareto optimal if, for any other
vector, z, zi ≤ z∗i ∀i ≤ k implies that z = z∗. A
related concept is that of a weak Pareto optimal solution.
In a minimization problem, an objective vector z∗ =
[z∗1 , z∗2 , . . . , z∗k]t is weakly Pareto optimal, if there does not
exist another objective vector z = [z1, z2, . . . , zk]t such that
zi < z∗i ∀i ≤ k [20]. The set of Pareto optimal solutions is
a subset of the set of weakly Pareto optimal solutions.

Fig. 1. Pareto optimal sets

The final choice or result of the design problem is based
on subjective or higher level knowledge of the user. Thus, it
is not necessary to explicitly specify the weighting coeffi-
cients a priori, unlike the single cost function approach.
Under certain conditions, it is possible to describe the
Pareto front by solving the weighted objective problem
for different choices of the weights [20]. However, the
procedure for varying the weights to generate the complete
Pareto front is usually not clear.

In the succeeding sections, we present 2 problem
formulations:- the first is a single weighted cost function
approach for solution of the optimal input in the time
domain for a system described by the state-space equations
and the second involves description of a Pareto front for the
optimal input in the frequency domain.

IV. SINGLE WEIGHTED COST FUNCTION METHOD FOR
TIME DOMAIN INPUT SIGNAL

In this section, we consider the problem of synthesizing
an optimal input in the time domain for a system described
by the following state space model

ẋ(t) = Fx(t) + Gu(t) (14)
y(t) = Hx(t) + v(t) (15)

where x(t) is an n × 1 state vector, u(t) is a q × 1 input
vector, y(t) is a p × 1 output vector, v(t) is a p × 1
measurement noise vector, F (n×n),G(n×q), H(p×n), are
state space matrices of the system. R(p×p) is the covariance
matrix of the measurement noise.

The objective of experiment design is to minimize the
variance of the parameters and maximize the input friend-
liness and minimize identification time. In this case, we
choose to maximize the trace of the information matrix as
it leads to a convenient quadratic optimization function.

The information matrix can be expressed as [6]

M =

∫ T

0

(∇θx)tHtR−1H(∇θx)dt (16)

where ∇θ = ∂
∂θ . Thus, in the case when the parameter

to be estimated is a scalar, the trace is just the same as
the information matrix. In the multi-dimensional case, the
problem can be suitably modified by defining the augmented
state vector as [5]

xa = [x,∇θ1
x, . . . ,∇θl

x]
t (17)



The state equation can be written as

ẋa = Faxa + Gau (18)

where

Fa =











F 0 . . . 0
∇θ1

F F
...

. . .
∇θl

F F











(19)

Ga = [G,∇θ1
G, . . . ,∇θl

G]
t (20)

In addition, define, Ha, Ra as follows

Ha =











0 H 0
. . .

...
0

0 0 0 H











(21)

R−1
a = diag(R−1) (22)

Then,

tr(M) =

∫ T

0

xt
aHt

aR−1
a Haxadt (23)

The objectives are

• Maximize
∫ T

0
xt

aHt
aR−1

a Haxadt
• Maximize Φi as defined in (5)
• Minimize time T

The multi-objective optimization problem is reduced to a
single-objective optimization one by minimizing the modi-
fied cost function

J = −1/2[

∫ T

0

xt
aHt

aR−1
a Haxadt + q′Φi] (24)

It must be noted that time is not explicitly incorporated in
the above cost function. Instead, the optimization problem
is solved for different values of the terminal time. To
ensure that the problem is well posed, the input energy is
constrained.

∫ T

0

utudt = E (25)

The cost function is modified to account for the input energy
constraint as

J = −1/2

[

∫ T

0

xt
aHt

aR−1
a Haxadt

+ q′Φi − µ

∫ T

0

(utu − E

T
)dt

]

(26)

where µ is a constant chosen so that the integral equation is
satisfied. The case q′ = 0 has been solved in literature [5],
[6]. The multi-objective optimization problem (correspond-
ing to q′ 6= 0) can be solved by the Euler Lagrange method

TABLE I
COMPARISON OF INPUT SIGNALS FOR T=1

Input I Input II Input III
q′ 0 1.6 1.6
µ 0.075 0.0843 0.064

u(o) 8.2 8.2 6.5
M 1.36 1.34 1.29
Φi 0.807 0.836 0.920

M + q′Φi 1.36 2.67 2.76
Input Energy 17.2 17.2 17.2

Output Energy 6.43 6.59 6.80

of the calculus of variations which results in the following
boundary value problem.

d

dt
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u
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a 0 0
0 0 0 I

0
Gt

a

q′′
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q′′

0
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u
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(27)
where q′′ = q′/(Tmax(u̇tu̇)) and the boundary conditions
are xa(0) = xa0, λ(T ) = 0, u(0) = u0, u̇(T ) = 0.
The above differential equations are integrated to give u(t)
using the method of complementary functions. However,
calculation of the optimal input requires knowledge of the
system parameters F,G,H and noise characteristics R. This
apparent paradox in determining optimal inputs has been
recognized, but is not well known. A common technique
is to design the optimal inputs based on an initial estimate
of the model parameters and iteratively carry out design
and identification [8]. The focus of the current work is to
demonstrate and formulate the multi-objective optimization
problem in input design and the optimal input is evaluated
using the assumed model parameters.

The following Single Input, Single Output system is con-
sidered in order to demonstrate the multi-objective nature
of the input design problem.

ẋ(t) = −ax(t) + u(t) (28)
y(t) = x(t) + v(t) (29)

where a (a = 0.1) is the parameter to be estimated and
v is a zero mean, normally distributed white noise process
with variance σ2 = 1. The system is assumed to be at an
initial state x(0) = 0.1. Optimal input signals are computed
for evaluation of the parameter a and are compared in
Tables I, II for different values of the terminal time T .
The three inputs for T = 1 are plotted in Fig. 2. Input
I is evaluated by maximizing (M) alone subject to the
energy constraint . Input II maximizes the weighted sum
of the input friendliness Φi and M with the initial value
of the input assumed to be the same as Input I. Input III is
evaluated by a procedure similar to that of II, except that the
initial value of the input u(0) is chosen such that weighted
sum of the input friendliness Φi and M is maximum over
different values of u(0).

Thus, it is clear that it is possible to improve upon the
input friendliness by accepting a lower value of the infor-



TABLE II
COMPARISON OF INPUT SIGNALS FOR T=1.25

Input I Input II Input III
q′ 0 2 2
µ 0.176 0.179 0.166

u(o) 7.3 7.3 6.4
M 3.18 3.17 3.16
Φi 0.902 0.908 0.93

M + q′Φi 3.18 4.99 5.02
Input Energy 17.2 17.2 17.2

Output Energy 9.78 9.90 10.09
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Fig. 2. Comparison of different inputs for T=1 s

mation or equivalently, a higher variance in the parameter
estimates. Input I gives the best performance with respect
to parameter accuracy amongst all inputs with the same
energy. It is also possible to improve the plant friendliness
by increasing the experiment time. Thus, there exists trade-
offs between the different objectives- input friendliness,
parameter variance and time. This is clearly brought out
by solving the above multi-objective optimization problem.
The standard machinery of optimal input generation as
described in [6] does not allow the user this freedom. The
use of the weighted cost function approach to generate the
Pareto front needs to be investigated.

V. INPUT-OUTPUT CREST FACTOR MINIMIZATION-
PARETO OPTIMAL FRONT

In this section, we propose to solve the multi-objective
optimization problem by constructing a Pareto optimal
front. The use of multi-sine signals as universal, flexible
broad band excitation signals has been recommended espe-
cially for identification in the frequency domain [1], [15].
A multi-sine signal is a signal obtained by the addition of a
finite number of harmonically related sinusoids as defined
in (6).The design requirement is to phase the harmonics so
that large peaks are avoided. This is achieved by choosing
the phases so that the crest factor as defined in (8) is
minimized. Another advantage of minimizing the crest
factor is that a signal with a low crest factor can result
in improved accuracy in identification [15]. Since the L2

norm is invariant with respect to the phases αu, minimizing
the crest factor is equivalent to minimizing the L∞ norm.
Minimizing the crest factor is not straightforward due to
the nonlinear appearance of the phases in the multi-sine and
the nondifferentiable nature of the L∞ norm. One popularly
used technique is to sequentially minimize the differentiable
Lp norm for increasing values of p, typically powers of 2
such as 4,8,16,32, 64 . . . [15]. The above technique has
been reported to give better results than other crest factor
minimization methods.

The norms of a vector valued function [x(t), y(t)]t are
defined as [15].

Lp(x, y) =

[

1

2T

∫ T

0

(|x(t)|p + |y(t)|p)dt

]1/p

(30)

‖(x, y)‖∞ = max max(|x(t)|, |y(t)|)
= max(L∞(x), L∞(y)) (31)

When the function y(t) is the output of a LTI system
as in (10), minimizing ‖x, y‖∞ is equivalent to minimiz-
ing the maximum of the input and output peak values.
As mentioned in Section II-B, this would not capture
the dynamic evolution or transients in the output. Other
solutions are also possible by using weighting factors,
i.e minimizing ‖x/wx, y/wy‖∞. By choosing the weights
appropriately, we can minimize either the input or output
crest factors. It must be noted that a minimum crest factor
input signal does not necessarily imply a minimum crest
factor output signal. Thus, we are faced with a multi-
objective optimization problem of minimizing the input and
output crest factors or equivalently L∞(x) and L∞(y). In
fact, the solution obtained by minimizing ‖x/wx, y/wy‖∞is
weakly Pareto optimal. This can be demonstrated as follows.
Assume that the vector p∗ = [α∗

1, α
∗

2, . . . , α
∗

Nu
]t minimizes

‖x/wx, y/wy‖∞. If p∗ were not weakly Pareto optimal, ∃
another vector of phases p = [α1, α2, . . . , αNu

]t such that

L∞(x(p, t)) < L∞(x(p∗, t))

L∞(y(p, t)) < L∞(y(p∗, t)) (32)

Therefore, we have

‖x(p)/wx, y(p)/wy‖∞ < ‖x(p∗)/wx, y(p∗)/wy‖∞ (33)

which contradicts the assumption that p∗ is an optimal
solution minimizing ‖x/wx, y/wy‖∞ . Thus, we must have
that both inequalities in (32) cannot be true simultaneously.
Hence, any p∗ that minimizes ‖x/wx, y/wy‖∞ is weakly
Pareto optimal. It has been reported that the solution of
Lp problem is Pareto optimal [20]. Also, since sequential
minimization of Lp norms for increasing p converges to
the solution obtained by minimization of L∞ norm [15],
[22], it is possible that the above solution is also Pareto
optimal. This conjecture needs to be formally investigated.
This approach can be extended to Multiple Input Multiple
Output systems.

Thus, we have provided a constructive method for gen-
erating the weak Pareto optimal front (of which the Pareto



front is a subset) when the objectives are to minimize the
crest factor of the input and output. It is implicitly assumed
that a priori knowledge of the dynamic characteristics of
the system is available. One idea is to use the model gen-
erated by the previous identification cycle [14]. It has been
suggested that minor inaccuracies in this knowledge do not
affect the crest factor minimization procedure significantly
[15]. This however, can be guaranteed only if the model is
known within reasonable limits of accuracy. The role of the
uncertainty of the model used for output predictions and
accuracy of parameter estimates in the final choice of the
input signal would be investigated.

VI. CONCLUSIONS AND FUTURE WORK

A multi-objective optimization problem for input design
for system identification was formulated and methods of
solution outlined and results from a simple case study pre-
sented. Further generation of the Pareto front and guidelines
for selection of the input from the Pareto front would be
investigated.
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