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Multi-objective integer programming: An improved

recursive algorithm

Melih Ozlen, Benjamin A. Burton, Cameron A. G. MacRae

Abstract

This paper introduces an improved recursive algorithm to generate the set of all nondominated objective vectors for
the Multi-Objective Integer Programming (MOIP) problem. We significantly improve the earlier recursive algorithm
of Özlen and Azizoğlu by using the set of already solved subproblems and their solutions to avoid solving a large
number of IPs. A numerical example is presented to explain the workings of the algorithm, and we conduct a series
of computational experiments to show the savings that can be obtained. As our experiments show, the improvement
becomes more significant as the problems grow larger in terms of the number of objectives.

Keywords: Multiple objective programming, Integer programming

1 Introduction

Multi-Objective Integer Programming (MOIP) has drawn the attention of researchers in recent years,
as discussed in section 2. MOIP is seen as an extension to classical Integer Programming (IP) which
has already been used in a wide variety of decision making environments including logistics, planning,
location/allocation, scheduling, routing, and so on. Multiple objectives enable decision makers to consider
not just a single objective but a set of objectives simultaneously, such as cost, profit, waste, environmental
impact, risk, etc.

In this study we deal with the noninteractive and exact solution of the MOIP problem, in the case
where there is no information available on the form of the utility function. That is, we focus on algorithms
for generating the full set of all nondominated objective vectors. However, in Section 2 we also discuss the
literature on noninteractive and exact methods where information about the utility function is known. We
refer the reader to Ehrgott [2005] for a more detailed discussion on multi-objective optimisation, theory,
and methodology.

The main contribution of this paper is to improve the recursive algorithm of Özlen and Azizoğlu [2009]
for generating the full nondominated set. A key drawback of the former algorithm is that it does not make
use of any information obtained from the already solved subproblems. Our new algorithm incorporates
this valuable information, and is able to avoid solving a large set of intermediate IPs as a result.

The remainder of this paper is organised as follows. Section 2 reviews the related literature, and in
Section 3 we describe the problem and explain the original recursive algorithm. In Section 4 we introduce
our improved algorithm, and Section 5 offers a detailed illustration of its workings using an instance of
quad-objective assignment problem (QOAP). We present the results of a computational experiment in
Section 6, and discuss the savings that can be obtained using this new algorithm. We conclude and
provide several future research directions in Section 7.

2 Literature

Here we survey the literature on exact noninteractive approaches to MOIP, beginning with the special case
in which an explicit utility function is known, and then moving towards the most general case of MOIP.
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For the special case in which there is an explicit utility function, we aim to identify a solution that
optimises the given utility function. Abbas and Chaabane [2006], Jorge [2009] deal with the case of a
linear utility function and propose methods to identify an optimal solution, which must be one of the
extreme supported nondominated objective vectors. Ozlen et al. [2012] handle the case of a nonlinear
utility function, where the solution may be any member of the nondominated set.

In a more general case of a linear but unknown utility function, it is sufficient to identify all ex-
treme supported nondominated objective vectors, since the optimal solution must come from this set.
Przybylski et al. [2010b], Özpeynirci and Köksalan [2010] propose similar algorithms to identify all ex-
treme nondominated objective vectors for the MOIP problem. Both algorithms use a weighted single
objective function and partition the weight space in order to enumerate the extreme supported nondomin-
ated set; an approach first proposed for Multi-Objective Linear Programming (MOLP) by Benson and Sun
[2000, 2002].

In the most general case where there is no information available about the utility function, the aim is
to generate all nondominated objective vectors, since these can optimise an arbitrary linear or nonlinear
utility function. Klein and Hannan [1982] develop an approach based on the sequential solutions of the
single-objective models. Their algorithm generates a subset, but not necessarily the whole set, of all
nondominated objective vectors. Sylva and Crema [2004] improve the approach of Klein and Hannan
[1982] by defining a weighted combination of all objectives, and their approach guarantees to generate
the full nondominated set. The main drawback of their method is that with every iteration a number of
binary variables and constraints are added to the subproblems, making it impractical to solve problems
which require a large number of iterations. Laumanns et al. [2005, 2006] develop an adaptive version of the
ǫ-constraint method to generate all nondominated objective vectors; the main handicap of their algorithm
is that it needs to solve a large number of IPs to generate weak nondominated objective vectors as it
progresses.

Przybylski et al. [2010a] propose a generalisation of the two-phase algorithm for MOIP, where first
extreme supported nondominated objective vectors are identified, and then the remaining nondominated
vectors are identified using this earlier set. For the first phase, their algorithm requires an efficient method
of generating extreme supported nondominated objective vectors for MOIP. This is relatively easy for
problems with unimodular constraint sets, such as assignment, transportation or minimum cost network
flow problems. In these easier cases, one can use any algorithm for generating extreme nondominated
objective vectors for the MOLP problem; see Burton and Ozlen [2010] for a recent discussion on this
topic. In general, however, generating all extreme supported nondominated objective vectors for MOIP is
hard, as discussed in Przybylski et al. [2010b], Özpeynirci and Köksalan [2010]. Likewise, the second phase
of their algorithm runs well for specific well-studied problems such as the assignment problem, but for
general MOIP it remains difficult to use and requires problem-specific implementation; see Przybylski et al.
[2009].

An alternative and general approach for generating all nondominated objective vectors for MOIP is
given by Özlen and Azizoğlu [2009], whose algorithm recursively identifies objective efficiency ranges using
problems with fewer objectives. This algorithm forms the basis for this paper, and we describe it in detail
in the following section.

3 The problem and the recursive algorithm

In its most general form the MOIP problem is defined as:

Min f1(x), f2(x), . . . fk−1(x), fk(x)
s.t x ∈ X

where X is the set of feasible points defined by Ax = b, xj ≥ 0 and xj∈ Z for all j ∈ {1, 2, . . . , n}.

The individual objectives are defined as f1(x) =
∑n

j=1
c1jxj , f2(x) =

∑n
j=1

c2jxj , . . . , and fk(x) =∑n
j=1

ckjxj, where cij ∈ Z for all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , n}.
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A point x′ ∈ X is called k-objective efficient if and only if there is no x ∈ X such that fi(x) ≤
fi(x

′) for each i ∈ {1, 2, . . . , k} and fi(x) < fi(x
′) for at least one i. The resulting objective vector

(f1(x
′), f2(x

′), . . . , fk(x
′)) is said to be k-objective nondominated. There may be many efficient points in

the decision space that correspond to the same nondominated objective vector, and so it can be extremely
costly to generate all efficient points. Therefore the focus of this paper (as with most other papers of this
type) is to generate the smaller set of nondominated vectors in objective space.

Özlen and Azizoğlu [2009] describe a recursive algorithm to generate the full set of nondominated
objective vectors for the MOIP problem. A key tool in their algorithm is Constrained Lexicographic Multi
Objective Integer Programming (CLMOIP), which is formulated as:

Lexicographic objective 1: Min f1(x), f2(x), . . . fk−1(x)
Lexicographic objective 2: Min fk(x)
s.t. (∗)
fk(x) ≤ lk
x ∈ X.

For any value of the bound lk, each solution to this CLMOIP problem yields a nondominated objective
vector for our original MOIP problem. The algorithm of Özlen and Azizoğlu [2009] essentially operates
by repeatedly solving this CLMOIP problem, storing any solutions that are found, and then shrinking
the bound lk in order to generate new solutions (eventually terminating when the bound lk is so small
as to render the constraints infeasible). The recursion arises because the (k − 1)-objective version of this
same algorithm is used to minimise the first lexicographic objective above. Algorithm 1 describes the full
process in pseudocode; see Özlen and Azizoğlu [2009] for details and proofs. The set NDk returned by
Algorithm 1 contains all k-objective non-dominated objective vectors for the original MOIP problem.

Lemma 1. If M is the maximum value of fk amongst all CLMOIP solutions, then after solving this
CLMOIP problem we have identified all solutions to our original MOIP problem with M = fk ≤ lk (and
typically several with fk < M also) and M provides an upper bound on the fk values of all nondominated
objective vectors satisfying the constraint fk(x) ≤ lk.

Proof. We only summarise the proof, see Özlen and Azizoğlu [2009] for a more detailed version of this
proof.

i) For any MOIP problem where we minimise k objectives, any nondominated objective vector providing
an upper bound on fk values of all nondominated objective vectors should be nondominated with respect
to first k − 1 objectives otherwise this point would not be nondominated.

ii) Any MOIP problem with the additional constraint, fk(x) ≤ lk, still is a MOIP problem so i) holds,
thus any solution providing an upper bound on fk should be nondominated with respect to first k − 1
objectives for the constrained MOIP problem.

iii) Any CLMOIP problem defined above generates all nondominated objective vectors with respect to
first k−1 objectives and at the same time minimises the kth objective to make sure all the objective vectors
generated are nondominated for kth objective and thus nondominated with respect to all k objectives.

iv) Following i), ii) and iii), if M is the maximum value of fk amongst all CLMOIP solutions, there
cannot be any nondominated objective vector with M < fk ≤ lk and M provides an upper bound on the
fk values of all nondominated objective vectors satisfying the constraint on fk.

The minimum decrement of the objective function is 1, due to integer objective coefficients, which
allows us to replace the bound lk with M − 1 in subsequent CLMOIP runs, as seen in Step 2 of Algorithm
1.

Remark 2. Algorithm 1 iterates by solving tighter versions of the CLMOIP problem due to the decreasing
values of lk that restrict the feasible region.

As can be seen in the numerical example presented in Section 5, this algorithm at the lowest level can
end up solving a large number of IPs that generate the same nondominated objective vectors again and
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Algorithm 1 Özlen and Azizoğlu [2009]’s recursive algorithm for the original MOIP problem

Step 0. Set lk = ∞ and initialise NDk to the empty set.

Step 1. Solve the CLMOIP problem (∗), using Algorithm 1 to optimise the first k − 1 objectives.
If the problem is infeasible then,

STOP.
Let the (k − 1)-objective nondominated set be ND∗

k−1

Step 2. NDk = NDk ∪ND∗

k−1
.

lk = max{fk | f ∈ ND∗

k−1
} − 1.

Go to Step 1.

again. The main reason behind this is that the algorithm does not make use of already solved subproblems
or their solutions.

4 An improved recursive algorithm

A major drawback of the recursive algorithm described above is that it does not store or utilise information
on subproblems that have already been solved. With this in mind, we propose an improved algorithm that
uses such information to avoid solving a large number of low-level IPs. The main idea is, when solving a
new CLMOIP problem, to search for a relaxation of this problem that has been solved before, enabling
us to skip the new CLMOIP problem entirely. We only allow relaxation of the constraints on individual
objectives, thus avoid any issues that may arise from allowing a linear relaxation.

The following two lemmas show how a relaxation to a CLMOIP problem can be used to avoid solving
it. Both results are straightforward, and so we omit the proofs.

Lemma 3. Let P be a CLMOIP problem, and let R be a relaxation of P. If R is infeasible, then P is
also infeasible.

Lemma 4. Let P be a CLMOIP problem, and let R be a relaxation of P. If every nondominated objective
vector for R is also feasible for P, then the set of all nondominated objective vectors for P is precisely the
set of all nondominated objective vectors for R.

Remark 5. If R has even a single nondominated objective vector that is not feasible for P, then the
solution to R cannot be used to avoid solving P.

As we recurse down through Algorithm 1, we accumulate constraints of the form fi ≤ li. In general,
each intermediate CLMOIP problem that we solve is of the form:

Lexicographic objective 1: Min f1(x), f2(x), . . . fq(x)
Lexicographic objective 2: Min fq+1(x)
s.t.
fq+1(x) ≤ lq+1, fq+2(x) ≤ lq+2, . . ., fk(x) ≤ lk
x ∈ X.

We denote such a problem using the notation (q, lq+1, lq+2, . . . , lk). It is straightforward to identify relax-
ations using this notation:

Lemma 6. The CLMOIP problem (q, l′q+1, l
′

q+2, . . . , l
′

k) is a relaxation of (q, lq+1, lq+2 . . . , lk) if l′i ≥ li for
all i = q + 1, . . . , k and if l′i > li for some i = q + 1, . . . , k.

Remark 7. Since Algorithm 1 iterates by incrementally lowering the bounds l2, l3, . . . , lk, as the algorithm
progresses it becomes highly likely that we can find a relaxation of the current CLMOIP amongst our set
of already solved problems.
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Remark 8. There could be many relaxations to a given CLMOIP, each with different nondominated sets—
all of the relaxations should be examined until one is found that allows us to avoid solving the current
CLMOIP.

Using these ideas, Algorithm 2 improves the earlier Algorithm 1 by making use of already solved
CLMOIP problems and their solution sets.

Algorithm 2 Improved recursive algorithm to generate nondominated set of MOIP

Step 0. Set lk = ∞.

Step 1. Repeat:
Check the list of previously solved CLMOIPs to find a relaxation to the current CLMOIP

problem (∗).
If all nondominated objective vectors for the relaxation are feasible for the current CLMOIP

then,
Let that nondominated set be ND∗

k−1
and go to Step 3.

If the relaxation is infeasible then,
STOP

Until there are no other relaxations to the current CLMOIP.

Step 2. Solve the CLMOIP problem (∗), using Algorithm 2 to optimise the first k − 1 objectives.
If the problem is infeasible then,

STOP.
Let the (k − 1)-objective nondominated set be ND∗

k−1

Step 3. NDk = NDk ∪ND∗

k−1
.

lk = max{fk | f ∈ ND∗

k−1
} − 1.

Go to Step 1.

Set NDk returned by Algorithm 2 resides all k-objective non-dominated objective vectors, stated
formally:

Theorem 9. Algorithm 2 generates all nondominated objective vectors for the original MOIP problem.

Proof. Özlen and Azizoğlu [2009] show that Algorithm 1 generates all nondominated objective vectors.
Algorithm 2 only differs in Step 1, and it is clear from Lemma 3 and Lemma 4 that these changes to
Step 1 do not change the subsequent results.

5 Numerical example

In this section we illustrate our approach on a numerical example. We use a randomly generated 4
objective assignment problem with the objective function coefficients listed in Table 1. This problem has
14 nondominated objective vectors that can be identified using Algorithm 1, as presented in Table 2 and
its continuation Table 3. The rows of these tables show the various CLMOIP and IP problems as they are
recursively solved.

The first column of these tables shows the CLMOIP problems with q = 3 that are solved at the highest
level of the recursion. For instance, rows 1–20 follow the CLMOIP problem (3,∞); that is:

Lexicographic objective 1: Min f1(x), f2(x), f3(x)
Lexicographic objective 2: Min f4(x)
s.t.
f4(x) ≤ ∞
x ∈ X.
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c1 3 2 4 4 3 c2 2 1 3 2 2 c3 2 5 5 4 4 c4 2 5 4 5 2
5 4 3 4 3 3 5 5 1 1 4 2 4 2 5 2 4 1 2 2
3 1 5 3 4 4 3 4 1 5 4 1 2 4 3 3 3 2 4 1
5 5 4 5 3 4 5 5 2 4 4 4 1 3 1 1 3 4 3 5
1 1 1 1 3 3 4 1 5 5 4 3 5 4 1 2 2 1 3 1

Tab. 1: Objective function coefficients for the example 4 objective assignment problem

The second column shows the CLMOIP problems with q = 2 that appear at the first level of recursion.
For instance, rows 6–9 follow the problem (2, 22,∞):

Lexicographic objective 1: Min f1(x), f2(x)
Lexicographic objective 2: Min f3(x)
s.t.
f3(x) ≤ 22, f4(x) ≤ ∞
x ∈ X.
The third column shows the CLMOIP problems with q = 1 at the deepest level of recursion. For

instance, row 7 describes the problem (1, 18, 22,∞):
Lexicographic objective 1: Min f1(x)
Lexicographic objective 2: Min f2(x)
s.t.
f2(x) ≤ 18, f3(x) ≤ 22,f4(x) ≤ ∞
x ∈ X.
Each of these deepest problems (i.e., each table row) yields a new IP that Algorithm 1 must solve. The

resulting nondominated objective vectors (obtained by minimising the remaining lexicographic objectives
up the recursion stack) are given in the columns labelled f1(x), . . . , f4(x). Each IP that yields a new
nondominated objective vector is marked with an asterisk (∗).

The final “relaxation” column shows the improvements that we gain with the new Algorithm 2: each
entry in this column lists a previously-solved subproblem that allows us to avoid solving the current
CLMOIP. For instance, the problem (2, 10, 13) can be avoided by using the relaxation (2, 10,∞), and the
problem (1,∞, 14, 12) can be avoided by using the relaxation (1,∞, 15, 12). Illustrating Remark 5 we
cannot use (2,∞,∞) to avoid solving (2,∞, 13) although it is a previously solved relaxation, since one of
the solutions of (2,∞,∞), namely (11, 19, 12, 14), is not feasible for (2,∞, 13).

The results are extremely pleasing: by reusing problems that have already been solved, Algorithm 2 is
able to generate the full nondominated set by solving only 40 IPs (shown by the 40 rows with no relaxation
entry), in contrast to the 79 IPs required by Algorithm 1 (corresponding to all 79 rows of the tables).

6 Computational experiment

Przybylski et al. [2010a] perform computational experiments using 3-objective assignment problems and
compare CPU times of various non-dominated set generation algorithms including Sylva and Crema [2004]
and Laumanns et al. [2006]. Their results identify Laumanns et al. [2006] as the best general algorithm
with other algorithms failing to generate the set, for even small problem instances, within a reasonable
amount of time. As such, we compare an improved version of Laumanns et al. [2006] as discussed in
Laumanns et al. [2005] with Özlen and Azizoğlu [2009] and the improved recursive algorithm using the
3-objective 3-dimensional Knapsack (3O3DKP) problem instances from Laumanns et al. [2006] in Table 4.
Özlen and Azizoğlu [2009] is significantly faster compared to Laumanns et al. [2005] in solving 303DKPs
and this behaviour becomes more significant with the growing problem size. The improved algorithm
introduced in this paper is significantly faster compared to Özlen and Azizoğlu [2009] for all problem sizes
while solving 3O3DKPs.
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3-obj 2-obj 1-obj f1(x) f2(x) f3(x) f4(x) Relaxation

(3,∞) (2,∞,∞) (1,∞,∞,∞) * 11 19 12 14

(1, 18,∞,∞) * 12 11 11 13

(1, 10,∞,∞) * 13 9 16 11

(1, 8,∞,∞) * 14 8 23 13

(1, 7,∞,∞) inf

(2, 22,∞) (1,∞, 22,∞) 11 19 12 14 (1,∞,∞,∞)

(1, 18, 22,∞) 12 11 11 13 (1, 18,∞,∞)

(1, 10, 22,∞) 13 9 16 11 (1, 10,∞,∞)

(1, 8, 22,∞) inf

(2, 15,∞) (1,∞, 15,∞) 11 19 12 14 (1,∞,∞,∞)

(1, 18, 15,∞) 12 11 11 13 (1, 18,∞,∞)

(1, 10, 15,∞) inf

(2, 11,∞) (1,∞, 11,∞) 12 11 11 13

(1, 10, 11,∞) inf (1, 10, 15,∞)

(2, 10,∞) (1,∞, 10,∞) * 15 16 7 12

(1, 15, 10,∞) * 16 15 10 13

(1, 14, 10,∞) inf

(2, 9,∞) (1,∞, 9,∞) 15 16 7 12 (1,∞, 10,∞)

(1, 15, 9,∞) inf

(2, 6,∞) (1,∞, 6,∞) inf

(3, 13) (2,∞, 13) (1,∞,∞, 13) 12 11 11 13

(1, 10,∞, 13) 13 9 16 11 (1, 10,∞,∞)

(1, 8,∞, 13) 14 8 23 13 (1, 8,∞,∞)

(1, 7,∞, 13) inf (1, 7,∞,∞)

(2, 22, 13) (1,∞, 22, 13) 12 11 11 13 (1,∞,∞, 13)

(1, 10, 22, 13) 13 9 16 11 (1, 10,∞,∞)

(1, 8, 22, 13) inf (1, 8, 22,∞)

(2, 15, 13) (1,∞, 15, 13) 12 11 11 13 (1,∞,∞, 13)

(1, 10, 15, 13) inf (1, 10, 15,∞)

(2, 10, 13) (1,∞, 10, 13) 15 16 7 12 (2, 10,∞)

(1, 15, 10, 13) 16 15 10 13 (2, 10,∞)

(1, 14, 10, 13) inf (2, 10,∞)

(2, 9, 13) (1,∞, 9, 13) 15 16 7 12 (2, 9,∞)

(1, 15, 9, 13) inf (2, 9,∞)

(2, 6, 13) (1,∞, 6, 13) inf (2, 6,∞)

(3, 12) (2,∞, 12) (1,∞,∞, 12) 13 9 16 11

(1, 8,∞, 12) inf

(2, 15, 12) (1,∞, 15, 12) 15 16 7 12

(1, 15, 15, 12) * 17 13 15 11

(1, 12, 15, 12) inf

(2, 14, 12) (1,∞, 14, 12) 15 16 7 12 (1,∞, 15, 12)

(1, 15, 14, 12) * 19 15 14 11

(1, 14, 14, 12) inf

(2, 13, 12) (1,∞, 13, 12) 15 16 7 12 (1,∞, 15, 12)

(1, 15, 13, 12) inf

(2, 6, 12) (1,∞, 6, 12) inf (2, 6,∞)

Tab. 2: Iteration of Algorithm 1 and Algorithm 2 on a numerical example
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3-obj 2-obj 1-obj f1(x) f2(x) f3(x) f4(x) Relaxation

(3, 11) (2,∞, 11) (1,∞,∞, 11) 13 9 16 11 (2,∞, 12)

(1, 8,∞, 11) inf (2,∞, 12)

(2, 15, 11) (1,∞, 15, 11) * 15 17 11 10

(1, 16, 15, 11) 17 13 15 11

(1, 12, 15, 11) inf (1, 12, 15, 12)

(2, 14, 11) (1,∞, 14, 11) 15 17 11 10 (1,∞, 15, 11)

(1, 16, 14, 11) * 17 16 13 11

(1, 15, 14, 11) 19 15 14 11

(1, 14, 14, 11) inf (1, 14, 14, 12)

(2, 13, 11) (1,∞, 13, 11) 15 17 11 10 (1,∞, 15, 11)

(1, 16, 13, 11) 17 16 13 11 (1, 16, 15, 11)

(1, 15, 13, 11) inf (1, 15, 13, 12)

(2, 12, 11) (1,∞, 12, 11) 15 17 11 10 (1,∞, 15, 11)

(1, 16, 12, 11) inf

(2, 10, 11) (1,∞, 10, 11) inf

(3, 10) (2,∞, 10) (1,∞,∞, 10) * 13 19 17 10

(1, 18,∞, 10) * 14 11 16 9

(1, 10,∞, 10) inf

(2, 16, 10) (1,∞, 16, 10) 14 11 16 9

(1, 10, 16, 10) inf (1, 10,∞, 10)

(2, 15, 10) (1,∞, 15, 10) 15 17 11 10 (1,∞, 15, 11)

(1, 16, 15, 10) * 18 15 15 9

(1, 14, 15, 10) inf

(2, 14, 10) (1,∞, 14, 10) 15 17 11 10 (1,∞, 15, 11)

(1, 16, 14, 10) inf

(2, 10, 10) (1,∞, 10, 10) inf (2, 10, 11)

(3, 9) (2,∞, 9) (1,∞,∞, 9) 14 11 16 9

(1, 10,∞, 9) inf (1, 10,∞, 10)

(2, 15, 9) (1,∞, 15, 9) * 16 18 15 9

(1, 17, 15, 9) 18 15 15 9

(1, 14, 15, 9) inf (1, 14, 15, 10)

(2, 14, 9) (1,∞, 14, 9) inf

(3, 8) (2,∞, 8) (1,∞,∞, 8) inf

Tab. 3: Iteration of Algorithm 1 and Algorithm 2 on a numerical example (cont.)

n |ND|
Laumanns et al. [2005] Özlen and Azizoğlu [2009] Improved Algorithm

CPU time (secs) CPU time (secs) # IP CPU time (secs) # IP
10 9 0.80 0.30 58 0.22 46

20 61 20.40 10.09 1119 3.99 333

30 195 391.24 117.93 4705 35.65 1204

40 389 1046.01 416.83 13628 84.27 2357

50 1048 7081.07 2044.65 38683 422.52 6001

100 6500 403937.83 82420.58 207515 21358.38 35450

Tab. 4: Comparison of Laumanns et al. [2005], Özlen and Azizoğlu [2009] and improved recursive al-
gorithm on 3O3DKP
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n k |ND|
Özlen and Azizoğlu [2009] Improved Algorithm

CPU time (secs) # IPs solved CPU time (secs) # IPs solved
5x5 3 12 0.12 152 0.05 71

4 33 4.24 4332 0.63 704

5 34 41.59 42229 2.53 3524

10x10 3 221 25.61 4062 8.61 1158

4 736 2771.80 316448 214.98 16268

15x15 3 483 79.07 8367 25.25 2268

4 7855 21075.83 1405070 2580.15 122986

20x20 3 1942 450.72 29710 163.66 9055

4 22837 146813.61 5568823 11808.15 323703

25x25 3 3750 784.80 33803 401.14 15320

30x30 3 5195 1765.90 55272 819.73 22410

35x35 3 10498 4119.68 96161 2062.49 41828

40x40 3 14733 5204.42 111096 3066.30 55935

45x45 3 23942 12069.63 190405 6455.39 91780

50x50 3 29193 16464.46 215528 9108.42 109142

Tab. 5: Comparison of Özlen and Azizoğlu [2009] and improved recursive algorithm on MOAP

n k
|ND| Özlen and Azizoğlu [2009] Improved Algorithm

CPU time (secs) # IPs solved CPU time (secs) # IPs solved
5 3 8 2.31 75 1.51 45

4 10 8.00 453 3.13 141

10 3 94 1006.27 3410 183.15 605

4 561 281300.50 1052981 11984.49 39665

15 3 560 32841.38 41702 3557.41 3662

Tab. 6: Comparison of Özlen and Azizoğlu [2009] and improved recursive algorithm on MOTSP

We also perform experimentation using the 3-objective assignment problem (3OAP) instances from
Przybylski et al. [2010a] and generate additional objectives using a similar distribution to theirs to test the
performance of Özlen and Azizoğlu [2009] and the improved recursive algorithm on problems with more
than 3 objectives (MOAP). The results are available in Table 5. The improved algorithm is faster compared
to Özlen and Azizoğlu [2009] on MOAP. CPU time improvement becomes more significant with increasing
number of objectives where the improved algorithm cuts the number of IPs solved quite effectively using
the relaxations. For instance, the new algorithm improves the CPU time by 90% in solving the 4-objective
20 rows AP.

In order to see the performance of the improved algorithm on harder MOIP problems, we experiment
using multi-objective travelling salesman (MOTSP) instances from Özpeynirci and Köksalan [2010]. We
also generate some problems with higher number of objectives using their problem generator, the results
are available in Table 6. The usage of relaxations bring great CPU time improvements for the MOTSP as
well, and we see over 95% cut in the CPU time for the 4-objective 10-city TSP problem.

All computations are carried out on a single core of an Intel Core i7-2600 processor on a machine
with 8 GB of RAM with hyper-threading and turbo-boasting disabled. GCC 4.7 is used to compile
the code with default options, and CPLEX 12.5 with a single thread and default settings is used as
the integer programming solver. A general C implementation of the improved recursive algorithm to
solve problems, input in an extended LP file format, with arbitrary number of objectives is available at
https://bitbucket.org/melihozlen/moip_aira/.

9

https://bitbucket.org/melihozlen/moip_aira/


The large and diverse set of problems in terms of their difficulty that we use to compare the original
and improved algorithms show that the new algorithm brings significant improvements in terms of the
CPU time. The improvements become even larger when the number of objectives increases.

7 Conclusion

We propose a significant improvement on the recursive algorithm developed by Özlen and Azizoğlu [2009],
based on the systematic reuse of solutions to relaxations of intermediate CLMOIP problems. Our nu-
merical example and computational experiments show that the CPU time required by this new algorithm
is significantly smaller than the requirement of the original algorithm, and moreover this improvement
becomes more pronounced with increasing number of objectives.

One important feature of the improved recursive algorithm (which it inherits from the original) is that it
may be used to generate only a subset of the nondominated objective vectors. This feature is important in
cases where there are known restrictions on the individual objective function values, or where an explicitly
known utility function is provided by the decision maker.

One area for future research is the development of domain-specific approaches to Multi Objective
Combinatorial Optimisation (MOCO) problems that make similar improvements to avoid solving a large
number of subproblems.

Another area might be to develop algorithms to solve MOIP which can take advantage of the highly
parallel computing resources as most of the existing algorithms are limited to using a single core or thread.
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