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Abstract- A recent approach for data fusion in wireless 
sensor networks involves the use of mobile agents that 
selectively visit the sensors and incrementally fuse the 
data, thereby eliminating the unnecessary transmission 
of irrelevant or non-critical data.  The order of sensors 
visited along the route determines the quality of the 
fused data and the communication cost. We model the 
mobile agent routing problem as a multi-objective 
optimization problem, maximizing the total detected 
signal energy while minimizing the energy 
consumption and path loss. Simulation results show 
that this problem can be solved successfully using 
evolutionary multi-objective algorithms such as 
EMOCA and NSGA-II.  This approach also enables 
choosing between two alternative routing algorithms, 
to determine which one results in higher detection 
accuracy. 
 
1. Introduction  
Due to their flexibility and cost effectiveness, wireless 
sensor networks (WSNs) have been used for numerous 
applications including environmental monitoring, facility 
monitoring, and military surveillance for tasks such as 
target detection. In distributed detection problems, the 
sensors transmit data to the fusion center. However, the 
transmission of non-critical data involves use of excessive 
battery power and network bandwidth. To circumvent this 
problem, Qi et al. [Qi01] have proposed the concept of 
Mobile Agent based Distributed Sensor Networks 
(MADSNs) where the mobile agent (program dispatched 
from a source node and executed at remote nodes) 
selectively visits the sensors and incrementally fuses the 
data. It has been found that mobile agent implementation 
saves almost 90 percent of data transfer time since it 
avoids raw data transfers [Qi01].  
     Algorithms based on local closest first (LCF) and 
global closest first (GCF) heuristics [Qi01] have been used 
to compute mobile agent routes for distributed data 
integration. The performance of these algorithms 
deteriorates as the network size grows and the sensor 
distributions become more complicated. These approaches 
consider only spatial distances between sensor nodes for 
route computation. However, other important factors must 
also be considered when computing a route for mobile 
agent.   

The computation of mobile agent routes involves 
tradeoffs between energy consumption, path loss and 
detection accuracy. For instance, as the number of sensors 
in the route increases, the quality of fused data improves 
but the energy consumption and path loss increase. We 
investigate algorithms to compute routes for a mobile 

agent with high detection accuracy, low path loss and low 
energy consumption. The tradeoffs are addressed using a 
multi-objective optimization (MOO) framework 
employing evolutionary algorithms. Research in such 
algorithms has gathered significant attention in the recent 
past, with detailed surveys in [Coello00, Coello02]. 
    For the agent routing task, a preliminary attempt 
considering multiple objectives has been pursued by Wu et 
al. [Wu04], who have combined three objectives 
(communication cost, path loss and detected signal energy 
level) into a single function and optimized it using a 
genetic algorithm that outperforms the LCF and GCF 
strategies. To evaluate the effectiveness of MOO 
algorithms against a single-objective approach, we have 
implemented a weighted genetic algorithm (WGA), 
iterated with different weights in order to obtain different 
non-dominated solutions. WGA is a generalization of the 
approach pursued by Wu et al. [Wu04]. However, this is 
not a true MOO approach, and cannot find optimal 
solutions of interest that reflect the tradeoffs if the Pareto-
optimal region is non-convex. NSGA-II is a widely known 
and applied MOO algorithm, motivating its use for this 
problem; in addition, we also use EMOCA due to its 
superior performance in our recent studies on other 
problems and the benchmark problems discussed in 
[Deb00]. 
     In Section 2, we explain the mobile agent routing 
problem. Section 3 elaborates the various objectives to be 
optimized. Section 4 summarizes the evolutionary MOO 
algorithms used in our simulations. Simulation results and 
conclusions are presented in Sections 5 and 6 respectively.  
 
 2. Mobile Agent Routing Problem 
We consider the task of routing mobile agents in a 
hierarchical MADSN, shown in Figure 1. Sensor nodes 
within the communication range of each other form a 
cluster, using algorithms such as those in [Chan04]. The 
sensors within each cluster form a completely connected 
graph. Each sensor in a cluster communicates with its 
cluster head, which is a sensor node with special features 
such as additional processing power and battery life 
compared to other sensors. The cluster heads form a 
completely connected graph: they can communicate with 
each other and with the fusion center. Elements of the 
network are connected through wireless communication 
links.    

Sensor nodes are randomly distributed in each cluster 
and collect measurements of different modalities (such as 
acoustic, seismic and infrared) from the environment. A 
mobile agent sequentially migrates among the sensors and 
the cluster heads through the network, integrates raw data 



with a desired resolution, and carries the final result back 
to the fusion center. Each sensor processes the received 
signal from the target and transmits the signal strength 
level (not the raw data) to the cluster head.  
    The cluster heads and the fusion center have 
predetermined knowledge necessary for computing the 
route, such as the geographical locations (through GPS 
interfaces) and transmitting/receiving parameters of the 
sensor nodes.  The fusion center computes an inter-cluster 
path consisting of a non-cyclic sequence of cluster heads.  
Each cluster head in the inter-cluster path also computes a 
path consisting of a non-cyclic sequence of sensor nodes 
within its cluster. The mobile agent (dispatched from the 
fusion center) would visit the sequence of cluster heads 
and a sequence of sensors within the corresponding 
clusters, collect data, and then return to the fusion center. 
 
3. Objectives to be optimized 
Our multi-objective optimization algorithms must: (a) 
minimize energy consumption, (b) minimize path loss, and 
(c) maximize total detected signal energy. These 
objectives [Wu04] are discussed below in greater detail.   
3.1. Energy Consumption 
Sensors are equipped with limited battery power and the 
total energy consumption of the WSN is a very critical 
consideration. Each sensor consumes some energy in data 
acquisition, processing and transmission. We consider a 
heterogeneous WSN, in which some sensors might have 
more power and data processing capability compared to 
other sensors.  Hence the energy consumption of the WSN 
depends on the capacity of a sensor and its functionality. 
The messages transmitted between sensors include the 
mobile agent code of size M bits and the data of size K 
bits. The partially integrated data at each sensor is stored 
in a fixed data size of K bits. The message transmission 
time over a wireless channel of bandwidth B is given by 

                      tm = (M+K)/B. 
The energy consumption of a path P is the sum of the 
energy expended at each sensor node along the path. If (n0, 

n1, n2….,nl) denotes the sequence of nodes along a path P, 
then the total energy consumption E(P) is given by  

E(P) = )())(( 2
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where tak and tpk indicate the data acquisition time and data 
processing time for node k [Wu 2004],  Hk  and Ptk denote 
the operational power level  and transmission power of 
node k. The operational level Hk corresponds to the 
operational frequency of the sensor k, the square of which 
determines its operating power level. 
 
3.2. Path Loss 
Wireless communication links need to be established 
between neighboring sensor nodes as the mobile agent 
traverses a route. The received signal level may not be 
acceptable if it is below a certain threshold due to path 
loss. The path loss represents the signal attenuation due to 
free space propagation, and should be minimized to 
guarantee reliable communication.     
      The total path loss along a path is the sum of the path 
losses associated with each link along the path. The path 
loss associated with a single link is the ratio between the 
power Pti transmitted by sensor i and the power Prj 
received by sensor j, computed (in dB) as: 

PL (di,j ) = 10×  log (Pti / Prj ) 
where di j  is the Euclidean distance between the co-
ordinates of sensors i and j.  The path loss is computed 
using the well-known Friis free space propagation model 
[Friss46], which defines the relation between the power Prj 

received by a sensor and the power Pti transmitted by a 
sensor:

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Hierarchical MADSN architecture: the arrows indicate the wireless communication links 
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                                       Pti ×  Gti × Grj × 2λ  
                               Pri=                                                                  

(4 2Π )× dij 
2 ×  β  

                                                                        
where Gti  is the gain of transmitting sensor i, Grj  is the 

gain of the receiving sensor j , λ is the wavelength, and β  

is the system loss factor. The total path loss of a path P is 
calculated as 

                       PL (P) =  �
∈Ek

kPL  

where  PL k   is the path loss associated with an edge k . 
 
3.3. Detection Accuracy 
High detection accuracy is also an important goal for 
accurate inference about the target.  Each sensor detects a 
certain amount of energy ek(u), emitted by a target. If Ko  is 
the energy emitted by a target at location u = (xt , yt ), the 
signal energy ek  measured by a sensor i is  
ek(u)=Ko/(1+α di 

p), where di is the Euclidean distance 
between the target location and sensor location, p is the 
signal decay exponent that takes values between 2 and 3, 
and α  is an adjustable constant1.   
    The goal of the mobile agent is to accumulate maximum 
information from each sensor for accurate decisions in 
target detection and classification. A path P is a non-cyclic 
sequence of sensor nodes within a set of selected clusters 
of the hierarchical MADSN. The fusion center decides the 
sequence of clusters the mobile agent should visit based on 
the representative energy of the cluster head.  The sum of 
the detected signal energy along a path P is defined as 

DE(P) =  �
=

n

i
iE

1

 

where Ei  is the representative energy of the i th  sensor  as 
described below in 3.3.1 and 3.3.2.  
Mobile agent routing in a WSN should be robust, allowing 
for faulty sensors. To the best of our knowledge, mobile 
agent routing has not been studied in the context of fault  
tolerance in WSNs. Byzantine faulty sensors [Lamport 82] 
send incorrect data that tends to be on either extreme in 
comparison with data sent by non-faulty sensors. In the 
model we consider, each sensor detects a certain amount 
of energy from the target and transmits the detected signal 
energy level to the cluster head. The cluster head 
computes two representative energy values, viz., 
1. Cluster head representative energy, and  
2. Representative energy for each sensor in its cluster. 
We propose and evaluate two different approaches to 
calculate these representative energies: randomized 
median filtering and randomized censored averaging. 
 
3.3.1 Randomized median filtering:  In this approach, 
the representative energy of each cluster head is computed 
as the median of all the detected energy values sent by the 
sensors of that cluster. In a cluster with s sensor nodes, 

                                                 
1 For our simulations, we chose α =1.  

each sensor has s-1 neighbors. For each sensor, the median 
of ek(u)’ s of m randomly chosen neighbors is used, to 
calculate the representative energy Ei of sensor i . Here, m 
is an algorithm parameter randomly chosen in the interval 
[3,s-1]. 
 
3.3.2 Randomized censored averaging: This approach 
improves the detection accuracy of the system by 
eliminating extreme values on both ends of the received 
signal energy values.  
1. The cluster head drops the r highest and r lowest values 
among the set of detected energy values sent by all s 
sensors to the cluster head. To accommodate for Byzantine 
faulty behavior [Lamport82, Clouqueur01], r is chosen to 
be r = � (s-1)/3� . The average of the remaining s-2r 
values is computed as the representative energy of the 
cluster head. 
 2. For each sensor i, the cluster head randomly chooses m 
sensors in the interval [2r+2,s-1] among its s-1 neighbors. 
The cluster head drops r highest and r lowest values 
among the set of m of these ek(u)’ s and averages the 
remaining m-2r values to compute the representative 
energy Ei of sensor i.  
 
4. Multi-objective evolutionary algorithms 
We have solved the mobile agent routing problem using 
two evolutionary MOO algorithms that strive towards 
finding multiple diverse high quality candidate solutions: 
EMOCA [Rajagopalan04a, Rajagopalan04b ], and NSGA-
II [Deb00]. Figure 2 shows the common high-level 
description of both algorithms, as applied to this problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Multi-objective evolutionary algorithm 
 
The main differences between the two algorithms are the 
following: 
1. Mating selection:  EMOCA employs binary 

tournament selection to generate the mating 
population where the fitness of each individual equal 
to the sum of its non-domination rank and diversity 
rank (higher crowding distance corresponds to a better or 
lower diversity rank), and some dominated individuals 
would be selected for mating if they contribute to 
population diversity. NSGA-II primarily uses non-
domination rank for selection, with diversity being 
used to break ties. 

2. Archiving: EMOCA is akin to PAES [Knowles 00] in 
that it maintains an explicit archive separate from the 

Randomly generate an initial population; 
While computational bounds are not exceeded, 
do: 
• Generate mating population; 
• Generate offspring by two-point crossover 

followed by mutation; 
• Trim the new pool consisting of parents and 

offspring to generate the population for the 
next iteration, with the primary criterion of 
non-domination and secondary criterion of  
diversity. 



evolving population, whereas NSGA-II retains good 
solutions within the evolving population.  

3. New pool generation: In EMOCA, each offspring is 
compared with one of the parents to form the new 
pool, considering both domination and crowding 
density. There are three possible cases: 

Case 1: If the offspring dominates the parent, then the 
offspring is added to the new pool. 
Case 2: If dominated by the parent, and if it has a 
higher crowding distance than the parent, then the 
offspring is added to the new pool with probability 1-
exp(Ψ(parent)-Ψ(offspring)), where Ψ  denotes the 
“crowding distance”  of a solution as defined in NSGA-
II. This policy rewards diversity.  
Case 3: Otherwise, if the offspring has a higher 
crowding distance than the parent, then it is added to 
the new pool, else the parent is added to the new pool. 

Each individual in the population is a sequence of sensor 
nodes being visited by the mobile agent, represented as a 
sequence of cluster-head and labels of sensors within 
clusters, e.g., (ch1, s7, s6, s3, ch2, s8, s1, s9, s4, ch3, s5, 
s11, s12) denotes that s7, s6, and s3 are sensors traversed 
in the cluster with cluster-head ch1.  For each individual, 
path computation proceeds as follows: 
Ø  The fusion center computes an inter-cluster path 

between the cluster heads. The initial path consists of 
a random non-cyclic sequence of cluster heads.  

Ø  Each cluster head in the inter-cluster path computes 
an intra-cluster path consisting of a random non-
cyclic sequence of sensor nodes within its cluster.  

Ø  The mobile agent is dispatched from the fusion center 
and visits the first cluster head in the path, followed 
by a sequence of sensor nodes within that cluster, and 
returning to the cluster head. Then it successively 
visits the remaining cluster heads and sensor nodes in 
the routing sequence and returns to the fusion center. 

 Operators: Two-point crossover is applied separately for 
intra-cluster and inter-cluster paths, removing duplicate 
occurrences of sensors. For example, crossover between  
Parent 1 : 1-2-5 |  13 -7-19-8 | 14-6-12 –0 and 
Parent 2: 3-5-6-9-1 | 7-4-2 |16-19-18 
where “  | “  denotes the crossover points, results in  
Child 1: 1-2-5 -7-4-2-14-6-12-0 and 
Child 2: 3-5-6-9-1-13-7-19-8-16-19-18, 
subsequently corrected to: 
Child 1: 1-2-5 -7-4-14-6-12-0 
Child 2: 3-5-6-9-1-13-7-8-16-19-18. 
The mutation operator’s application results in swapping 
the positions of two randomly chosen sensors in the path.  
For instance, 1-3-7-9-8-6- 2-5-0 may be mutated to 1-3-2-
9-8-6- 7-5-0.  The mutation operator is also applied 
independently for the intra-cluster and inter-cluster paths. 
During each iteration, crossover and mutation operators 
are applied to either an intra-cluster or an inter-cluster 
path, with equal probability. We have chosen a probability 
of 0.9 for crossover and 0.1 for mutation. In our 
simulations, small variations in these probabilities did not 
have a significant impact on the performance of the 
algorithm. 
 

5. Performance comparison 
Efficient MOO algorithms generate (i) many, (ii) non-
dominated2, and (iii) diverse solutions. Several metrics for 
comparing the performance of MOO algorithms have been 
analyzed [Knowles02, Zitzler03].   Most of these metrics 
such as the S metric and the convergence metric require 
the knowledge of the true Pareto-optimal front. For the  
mobile agent routing problem, the Pareto-optimal set3 is 
unavailable, hence we chose the C-metric, the domination 
metric, and the S-metric.   

The Set Coverage metric (C-metric) [Zitzler99] 
calculates the fraction of solutions in one non-dominated 
set (obtained by one algorithm) that are dominated by 
those obtained by the other algorithm. If A and B are the 
sets of candidate solutions, then C(A,B)= | {b∈B|∃ a∈ 
A:a»b}| /|B|.  Note that C(A,B)=1 when every solution in 
B is dominated by solutions in A, and C(A,B)=0 when 
none of the solutions in B is dominated by any element in 
A. Although no conclusive inferences can be drawn in 
general from the C-metric values, we may argue that one 
algorithm is better than another if C(A,B) is found to be 
significantly higher than C(B,A) over many trials.  

The Domination metric [Rajagopalan04a] is defined 
as 

Dom(A,B) =  d(A,B)/(d(A,B)+d(B,A)), 

               where d(X,Y)=Σ | {y∈ Y| x»y} |. 
x∈ X 

Mutually non-dominating solution pairs are ignored in 
calculating the dominance factor d(A,B). Note that 
Dom(B,A)=1-Dom(A,B),  and if each solution of algorithm 
A dominates every solution produced by algorithm B then 
Dom(A,B)=1.  

The Spacing (S) metric [Schott95] determines the 
uniformity of spacing between neighboring solutions 
obtained by an algorithm. Formally, S = 

2

1

)())1/(1( �
=

−×−
n

i
i ddn  where n is the number of non-

dominated solutions in the archive, di is the sum of 
difference in objective function values between solution i 
and its two nearest neighbors for each objective ([Deb00]), 

and d  is the mean value of these distance measures.  A 
lower value of this metric indicates that the non-dominated 
solutions are uniformly spaced.  
 
6. Simulation Results 
We performed simulations on heterogeneous sensor 
networks of different sizes and distribution patterns. The 
sensors were randomly deployed within each cluster of the 
network. Targets were placed at random locations in the 
sensor field. The sensor parameters for data acquisition 
and wireless channel are summarized in Table 1. 

                                                 
2A solution vector a dominates b, written a»b, if and only   if∀ i 
∈ {1,….m} :   fi(a) ≥  fi(b), and  ∃ j ∈ {1,….m} : fj(a) >  fj(b).  
 
3The Pareto-optimal front consists of candidate solutions not 
dominated by any others. 
 



Table 1: Parameters for mobile agent routing 
Mobile agent size 400 bytes 
Average data size 100 bytes 
Transmitter gain 2 
Receiver gain 2 
Carrier frequency 2.4 GHz 
Channel width 16 bits 
Channel operation frequency 20 KHz 
Transmitter power range 200-1000 mw 
Operational power range 100 - 500 mw 
Data acquisition & processing time 50-100 ms 
 
The data processing time and power level of each sensor is 
chosen randomly from the specified ranges. Experiments 
were performed for different network architectures.  In 
each cluster, r randomly chosen sensors were designated 
as faulty where r = � (s-1)/3�  and s is the total number of 
sensors in the cluster.   

Our simulation results show that the MOO approach is 
successful for solving the mobile agent routing problem as 
compared to the WGA, a generalization of the approach 
pursued by Wu et al [Wu04]. The solutions obtained by 
the MOO algorithms have much higher quality compared 
to the solutions obtained by WGA.  For instance, for a 500 
node MADSN, EMOCA obtains a path with a detection 
accuracy of 2038, energy consumption of 1 unit and path 
loss of 9,695,016.  On the other hand, the path obtained by 
WGA has a detection accuracy of 310, energy 
consumption of 2.7 units and a path loss of 83,701,064.  
     We executed EMOCA and NSGA-II for 1000 
generations in each trial; further execution resulted in no 
improvements. In NSGA-II, we used a virtual archive that 
stores new non-dominated solutions obtained at every 
generation.  The results are presented in Table 2 (averages 
over 30 trials). An algorithm �� that produces a set of 
mutually non-dominating solutions A is considered to be 
better than algorithm � � that produces set B�  iff C(A,B) is 
high, C(B,A) is low, Dom(A,B) is high, and S(A) < S(B). 
The results show that the non-dominated solutions 
obtained by EMOCA are better and more uniformly 
spaced compared to those obtained by NSGA-II. The 
results also indicate that EMOCA consistently 
outperformed NSGA-II in all trials. The computational 
effort for EMOCA and NSGA-II are similar. Both 
algorithms required an average of 800  generations before 
all non-dominated solutions were discovered in the 
archive.  
         We have also compared the performance of EMOCA 
with a weighted genetic algorithm (WGA) in which all 

three objectives were normalized and combined into 
weighted single objective function. WGA employs 
identical genetic operators as EMOCA with binary 
tournament selection and an elitist steady-state 
replacement strategy.  The results are presented in Table 3. 
The results clearly indicate that EMOCA outperforms 
WGA in all trials with a C-metric value of 0 and a Dom- 
metric value of 1. The solutions obtained by WGA 
correspond to the non-dominated set obtained with 100 
randomly chosen weight vectors in the interval [0,1]. For 
each weight vector, WGA converged within 1000 
generations. The computational effort of WGA is 
significantly higher than EMOCA in order for it to 
discover the non-dominated solutions corresponding to 
100 different weight vectors. (100,000 generations as 
compared to 800 generations required by EMOCA). 

 We also compared the performance of EMOCA for 
randomized median filtering (RMF) and randomized 
censored averaging (RCA) approaches using both the C 
metric and Dom-metric values. The results are presented in 
Table 4, with a minor abuse of notation: the labels in the 
parentheses following “C”  or “Dom”  indicate the 
approaches used to obtain the sets being compared.  The 
results indicate that the randomized censored averaging 
approach outperforms the randomized median filtering in 
all experiments. For instance, in networks with 100 and 
600 nodes, C(RMF,RCA) are zero indicating that none of 
the solutions obtained by RCA are dominated by the 
solutions      obtained by RMF.    

Figures 4 and 5 show the non-dominated solutions 
obtained by EMOCA and NSGA-II with the RCA 
approach. The plots indicate that EMOCA discovers 
several non-dominated solutions with higher quality 
compared to NSGA-II. Figures 6 and 7 show the non-
dominated solutions obtained by EMOCA and NSGA-II 
with the RCA approach, indicating the tradeoffs between 
path loss and detected signal energy. The plots also 
indicate that EMOCA is able to find routes with high 
detected signal energy, low energy consumption and low 
path loss. For instance, one of the non-dominated solutions 
has a detected energy value of 150 units with a very low 
energy consumption of 0.5 units and a path loss of 
500000. The plots show that the non-dominated solutions 
obtained have good diversity with a large spread in the 
objective space which is confirmed by the S metric values 
in Table 3. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 



Table 2: EMOCA (E) versus NSGA-II (N) using C, Dom and S metrics:  All results are averages over 30 trials. 
 

 
 

Table 3: EMOCA (E) versus weighted genetic algorithm (WGA) using C and Dom metrics: All results are averages over 30 trials. 
 

Randomized median filtering Randomized censored averaging Problem parameters : 
(no of targets, 
clusters and 
sensors/cluster) C(WGA,E) C(E,WGA) Dom(E,WGA) C(WGA,E) C(E,WGA) Dom(E,WGA) 

1,5,20 0 0.79 1 0 0.87 1 
2,10,20 0 0.84 1 0 0.93 1 
2,10,30 0 0.89 1 0 0.89 1 
3,10,40 0 0.96 1 0 0.81 1 
3,20,25 0 0.96 1 0 0.67 1 
4,30,20 0 0.97 1 0 0.92 1 
5,20,35 0 0.99 1 0 0.97 0.97 
5,20,40 0 0.98 1 0 0.89 1 
5,30,30 0 0.95 1 0 0.86 1 

 
Table 4: RCA versus RMF approaches using C , Dom and S metrics: All results are averages over 30 trials. 

 
Problem parameters : (no 
of targets, clusters and 
sensors/cluster 

C(RMF,RCA) C(RCA,RMF) Dom(RCA, RMF) S(RCA) S(RMF) 

1,5,20 0 0.96 1 0.008 0.023 

2,10,20 0.34 0.82 0.66 0.011 0.087 

2,10,30 0.17 0.90 0.84 0.005 0.054 

3,10,40 0.01 0.80 0.98 0.016 0.097 

3,20,25 0.12 0.68 0.68 0.071 0.124 

4,30,20 0 0.92 1 0.016 0.942 

5,20,35 0.23 0.73 0.58 0.034 0.087 

5,20,40 0 0.92 1 0.064 0.091 

5,30,30 0.23 0.73 0.58 0.013 0.064 

Randomized median filtering Randomized censored averaging Problem 
parameters: 
(no of targets, 
clusters , 
sensors 
per cluster) 

C(N,E) C(E,N) Dom(E,N) S(E) 
 

S(N) 
 

C(N,E) C(E,N) Dom(E,N) S(E) S(N) 

1,5,20 0.005 0.95 0.67 0.002 0.07 0.0047 0.81 0.70 0.005 0.26 
2,10,20 0.16 0.84 0.85 0.02 0.09 0.10 0.78 0.73 0.012 0.16 
2,10,30 0.11 0.86 0.93 0.006 0.02 0.05 0.76 0.86 0.011 0.14 
3,10,40 0.16 0.87 0.75 0.01 0.13 0.18 0.75 0.75 0.008 0.09 
3,20,25 0.08 0.83 0.72 0.02 0.38 0.13 0.82 0.77 0.035 0.18 
4,30,20 0.11 0.77 0.77 0.06 0.10 0.21 0.86 0.81 0.05 0.13 
5,20,35 0.09 0.83 0.84 0.03 0.26 0.19 0.84 0.74 0.03 0.55 
5,20,40 0.15 0.86 0.79 0.02 0.27 0.06 0.81 0.79 0.05 0.28 
5,30,30 0.28 0.74 0.68 0.05 0.14 0.23 0.82 0.72 0.06 0.25 



 
 
Figure 4:  Projections showing the non-dominated solutions 
obtained by EMOCA along two of the  three objectives 
(energy consumption and detected signal energy) for a 200 
node MADSN in one trial 
 

 
Figure 6:  Projections showing non-dominated solutions 
obtained by EMOCA for two dimensions (detected signal 
energy and path loss) for a 200 node MADSN in one trial 

                                                                          
Figure 5: Projections showing the non-dominated solutions 
obtained by NSGA-II along two of the  three objectives 
(energy consumption and detected signal energy) for a 200 
node MADSN in one trial 
 

 
Figure 7:  Projections showing non-dominated solutions 
obtained by EMOCA for two dimensions (detected signal 
energy and path loss) for a 200 node MADSN in one trial 

 
7. Conclusions 
We have developed a multi-objective optimization 
framework for mobile agent routing in wireless sensor 
networks.  EMOCA and NSGA-II, two recently developed 
multi-objective evolutionary optimization algorithms, 
were used to obtain mobile agent routes.  Our comparisons 
with a GA using weighted objectives showed conclusively 
that EMOCA is much more successful for this problem.   
 
    Although comparing MOO algorithms is difficult, our 
simulation results indicate that EMOCA obtains sets of 
candidate solutions that appear to be better with respect to 
quality (relative non-domination) and diversity (spacing of 
the solutions). The non-dominated solutions obtained 
illustrate that EMOCA is able to discover satisfying routes 
with high detected signal energy in the presence of faulty 
sensors.  
 
    We have also proposed two approaches (randomized 
median filtering and randomized censored averaging) for 
fault tolerance in MADSNs, and compared their results  

 
 
using EMOCA. The results indicate that the randomized 
censored averaging approach outperforms the randomized 
median filtering approach. 
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