
Multi-Objective Optimal Test Suite Computation for
Software Product Line Pairwise Testing

Roberto E. Lopez-Herrejon∗, Francisco Chicano†, Javier Ferrer†,
Alexander Egyed∗ and Enrique Alba†
∗ Systems Engineering and Automation

Johannes Kepler University Linz, Austria
Email: {roberto.lopez, alexander.egyed}@jku.at

†University of Malaga, Spain
Email:{chicano, ferrer, eat}@lcc.uma.es

Abstract—Software Product Lines (SPLs) are families of re-
lated software products, which usually provide a large number of
feature combinations, a fact that poses a unique set of challenges
for software testing. Recently, many SPL testing approaches have
been proposed, among them pairwise combinatorial techniques
that aim at selecting products to test based on the pairs of feature
combinations such products provide. These approaches regard
SPL testing as an optimization problem where either coverage
(maximize) or test suite size (minimize) are considered as the
main optimization objective. Instead, we take a multi-objective
view where the two objectives are equally important. In this
exploratory paper we propose a zero-one mathematical linear
program for solving the multi-objective problem and present an
algorithm to compute the true Pareto front, hence an optimal
solution, from the feature model of a SPL. The evaluation with
118 feature models revealed an interesting trade-off between
reducing the number of constraints in the linear program and
the runtime which opens up several venues for future research.

I. INTRODUCTION

Software Product Lines (SPLs) are families of related
software products, where each product provides a unique com-
bination of features (i.e. increments in program functionality
[1]). Some of the benefits of SPLs are increased software
reuse, faster product customization, and reduced time to market
[2]. A feature model (FM) represents all the possible feature
combinations (typically a large a number) available in an SPL.
The number of combinations poses a unique set of challenges
because testing each individual product may not be technically
or economically feasible.

Recent surveys and mapping studies on SPL testing [3],
[4], attest the increasing relevance of the topic within the
SPL community. Salient among the SPL testing approaches are
those based on Combinatorial Interaction Testing (CIT), whose
premise is to select a group of products where faults due to
feature interactions are more likely to occur [5]. Here most of
the focus has been on pairwise interactions, meaning that these
techniques consider the four possible combinations between
any two features1. The combination of features in a product
of an SPL determines the set of pairwise feature combinations
that the product covers. Pairwise SPL testing aims to select
a set of products such that their feature combinations cover
the possible combinations of all interactions between two

1For A and B features: both selected, both not selected, A selected and B
not, A not selected and B selected.

features according to the feature model of the SPL. This set of
products is called a test suite. Pairwise SPL testing approaches
have used different techniques such as simulated annealing
[6], evolutionary algorithms [7], and constraint programming
[8]. These approaches regard SPL pairwise testing as an
optimization problem where either coverage (maximize) or test
suite size (minimize) are considered as the main optimiza-
tion objective. Instead, we regard SPL pairwise testing as a
multi-objective optimization problem where the two objectives,
coverage and test suite size, are equally important. In the bi-
objective formulation of the problem we say that one solution
dominates another if the first is not worse than the second one
in any objective and it is better in at least one objective. A set
of solutions is said to be non-dominated if none dominates
another. A Pareto optimal set is a set of non-dominated
solutions each of which is not dominated by any other solution
in the search space. The Pareto front is the projection of this
set in the objective space, a plot containing the values of
the objective functions for each solution. For more details on
multi-objective optimization please refer to [9]. We present a
zero-one mathematical linear program for solving the multi-
objective problem and an algorithm that computes the true
Pareto front of a feature model using SAT solvers. This front
is the optimal solution for both objectives. We applied our
approach to 118 publicly available feature models and were
able to obtained their Pareto front. Our evaluation found a
correlation between runtime and number of products in the
feature model and revealed a trade-off between reducing the
number of constraints in the mathematical linear program and
runtime that we plan to explore as future work.

II. FEATURE MODELS AND RUNNING EXAMPLE

Feature models have become the de facto standard for
modelling the common and variable features of an SPL and
their relationships collectively forming a tree-like structure.
The nodes of the tree are the features which are depicted as
labelled boxes, and the edges represent the relationships among
them. Feature models denote the set of feature combinations
that the products of an SPL can have [10]. Figure 1 shows
the feature model of our running example, the Graph Product
Line (GPL) [11], a standard SPL of basic graph algorithms that
has been extensively used as a case study in the product line
community. In GPL, a product is a collection of algorithms
applied to directed or undirected graphs.

Fig. 1. Graph Product Line Feature Model

In a feature model, each feature (except the root) has one
parent feature and can have a set of child features. Notice
here that a child feature can only be included in a feature
combination of a valid product if its parent is included as
well. The root feature is always included. There are four kinds
of feature relationships: i) Mandatory features are depicted
with a filled circle. A mandatory feature is selected whenever
its respective parent feature is selected. For example, features
Driver and GraphType, ii) Optional features are depicted
with an empty circle. An optional feature may or may not
be selected if its respective parent feature is selected. An
example is feature Weight, iii) Exclusive-or relations are
depicted as empty arcs crossing over a set of lines connecting
a parent feature with its child features. They indicate that
exactly one of the features in the exclusive-or group must be
selected whenever the parent feature is selected. For example,
if feature Search is selected, then either feature DFS or
feature BFS must be selected, iv) Inclusive-or relations are
depicted as filled arcs crossing over a set of lines connecting
a parent feature with its child features. They indicate that
at least one of the features in the inclusive-or group must
be selected if the parent is selected. If for instance, feature
Algorithms is selected then at least one of the features Num,
CC, SCC, Cycle, Shortest, Prim, and Kruskal must
be selected. Besides the parent-child relations, features can
also relate across different branches of the feature model with
the so called Cross-Tree Constraints (CTC). Figure 1 shows
some of the CTCs of our feature model2. For instance, Cycle
requires DFS means that whenever feature Cycle is
selected, feature DFS must also be selected. These constraints
as well as those implied by the hierarchical relations between
features are usually expressed and checked using propositional
logic, for further details refer to [12].

Let us illustrate pairwise coverage in GPL. This exam-
ple has 73 distinct products each with its unique feature
combination. Consider for instance the product that com-
putes numbering in DFS order on directed graphs without
weight. For this product the features selected are: GPL,
Driver, Benchmark, GraphType, Directed, Search,
DFS, Algorithms, and Num. Some examples of combina-
tions of pairs of feature interactions are: GPL and Search
selected, Weight and Undirected not selected, CC not
selected and Driver selected. An example of invalid pair, i.e.
not denoted by the feature model, is features Directed and
Undirected both selected. Notice that this pair is not valid
because they are part of an exclusive-or relation. In total, GPL
has 418 valid pairs, so a test suite for GPL must have these
pairs covered by at least one product feature combination.

2In total, the feature model has 13 CTCs for further details refer to [11]

III. MATHEMATICAL LINEAR PROGRAM

We are interested in minimizing the number of test products
and maximizing the pairwise coverage. Since we want to
compute the Pareto front of the multi-objective optimization
problem we proceed by fixing the number of test products
and defining a zero-one mathematical program that maximizes
coverage. The approach presented here relates to the work
by Arito et al. [13] for solving a multi-objective test suite
minimization problem in regression testing.

A zero-one program is an integer program in which the
variables can only take values 0 or 1 [14]. The details of the
algorithm applied are explained in Section IV. In this section
we describe the zero-one program. Let us call n to the number
of test products (that is fixed) and f to the number of features
of the FM. We will use the set of decision variables xi,j ∈
{0, 1} where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , f}. Variable
xi,j is 1 if product i has feature j and 0 otherwise. Not all the
combinations of features form valid products. Following [12],
we can express the validity of any product in an FM as a
boolean formula. These boolean formulas can be expressed in
Conjunctive Normal Form (CNF) as a conjunction of clauses,
which in turn can be expressed as constraints in a zero-one
program. The way to do it is by adding one constraint for
each clause in the CNF. Let us focus on one clause and let us
define the Boolean vectors v and u as follows [15]:

vj =

{
1 if feature j appears in the clause,
0 otherwise,

uj =

{
1 if feature j appears negated in the clause,
0 otherwise.

With the help of u and v we can write the constraint that
corresponds to one CNF clause for the i-th product as:

f∑
j=1

vj(uj(1− xi,j) + (1− uj)xi,j) ≥ 1 (1)

As an illustration, in the GPL model let us suppose that
Search is the 8-th feature and Num is the 12-th one. The
cross-tree constraint “Num requires Search” can be written
in CNF with the clause ¬Num ∨ Search and translated to a
zero-one constraint as: 1− xi,12 + xi,8 ≥ 1.

Our focus is pairwise coverage. This means that we want
for each pair of features to cover 4 cases: both unselected, both
selected, first selected and second unselected and vice versa.
We introduce one variable in our program for each product,
each pair of features and each of these four possibilities.
The variables, called ci,j,k,l, take value 1 if product i covers
the pair of features j and k with the combination l. The
combination l is a number between 0 and 3 representing the
selection configuration of the features according to the next
mapping: l = 0, both unselected; l = 1, second selected and
first unselected; l = 2, first selected and second unselected;
and l = 3 both selected. The values of the variables ci,j,k,l
depend on the values of xi,j . In order to reflect this dependence
in the mathematical program we need to add the following

constraints for all i ∈ {1, . . . , n} and all 1 ≤ j < k ≤ f :

2ci,j,k,0 ≤ (1− xi,j) + (1− xi,k) ≤ 1 + ci,j,k,0 (2)
2ci,j,k,1 ≤ (1− xi,j) + xi,k ≤ 1 + ci,j,k,1 (3)
2ci,j,k,2 ≤ xi,j + (1− xi,k) ≤ 1 + ci,j,k,2 (4)
2ci,j,k,3 ≤ xi,j + xi,k ≤ 1 + ci,j,k,3 (5)

Variables ci,j,k,l inform about the coverage in one product.
We need new variables to count the pairs covered when all
the products are considered. These variables are called dj,k,l,
and take value 1 when the pair of features j and k with
combination l is covered by some product and 0 otherwise.
This dependence between the ci,j,k,l variables and the dj,k,l
variables is represented by the following set of inequalities for
all 1 ≤ j < k ≤ f and 0 ≤ l ≤ 3:

dj,k,l ≤
n∑

i=1

ci,j,k,l ≤ n · dj,k,l (6)

Finally, the goal of our program is to maximize the pairwise
coverage, which is given by the number of variables dj,k,l that
are 1. We can write this as:

max

f−1∑
j=1

f∑
k=j+1

3∑
l=0

dj,k,l (7)

The mathematical program is composed of the goal (7)
subject to the 4(n+1)f(f − 1) constraints given by (2) to (6)
plus the constraints of the FM expressed with the inequalities
(1) for each product. The number of variables of the program
is nf +2(n+1)f(f − 1). The solution to this zero-one linear
program is a test suite with the maximum coverage that can
be obtained with n products.

IV. ALGORITHM

The algorithm we use for obtaining the optimal Pareto set
is given in Figure 1. This algorithm takes as input the FM
and provides the optimal Pareto set. It starts by adding to the
set two solutions that are always in the set: the empty solution
(with zero coverage) and one arbitrary solution (with coverage
Cf

2 , number 2-combinations of the set of features). After that
it enters a loop in which successive zero-one linear programs
are generated for an increasing number of products starting
at 2. Each mathematical model is solved using a extended
SAT solver: MiniSat+3. This solver provides a test suite with
the maximum coverage. This solution is stored in the optimal
Pareto set. The algorithm stops when adding a new product to
the test suite does not increase the coverage. The result is the
optimal Pareto set.

V. EXPERIMENTS

This section describes how the evaluation was carried
and its scalability analysis. The experimental corpus of our
evaluation is composed by a benchmark of 118 feature models,
whose number of products ranges from 16 to 640 products, that
are publicly available from the SPL Conqueror [16] and the
SPLOT [17] repositories. The objectives to optimize are the

3Available at URL: http://minisat.se/MiniSat+.html

Algorithm 1 Algorithm for obtaining the optimal Pareto set.
optimal set← {∅};
cov[0]← 0;
cov[1]← Cf

2 ;
sol←arbitraryValidSolution(fm);
i← 1;
while cov[i] 6= cov[i− 1] do
optimal set← optimal set ∪ {sol};
i← i+ 1;
m←parepareMathModel(fm,i);
sol←solveMathModel(m);
cov[i]← |sol|;

end while

number of products required to test the SPL and the achieved
coverage. It is desirable to obtain a high value of coverage in a
low number of products to test the SPL, so they are conflicting
objectives. Additionally, as performance measure we have also
analyzed the time required to run the algorithm, since we
want the algorithm to be as fast as possible. For comparison
purposes these experiments have been run in a cluster of 16
machines with Intel Core2 Quad processors Q9400 (1 core per
experiment) at 2.66 GHz and 4 GB memory running Ubuntu
12.04.1 LTS and managed by the HT Condor 7.8.4 manager.

We computed the Pareto optimal front for each model.
Figure 2 shows this front for our running example GPL,
where the total coverage is obtained with 12 products, and
for every test suite size the obtained coverage is also optimal.
As our approach is able to compute the Pareto optimal front
for every feature model in our corpus, it makes no sense to
analyze the quality of the solutions. Instead, we consider more
interesting to study the scalability of our approach. For that,
we analyzed the execution time of the algorithm as a function
of the number of products represented by the feature model as
shown in Figure 3. In this figure we can observe a tendency:
the higher the number of products, the higher the execution
time. Although it cannot be clearly appreciated in the figure,
the execution time does not grow linearly with the number of
products, the growth is faster than linear.

Fig. 2. Pareto optimal front for our running example (GPL).

Fig. 3. Time (log scale) required to find optimal Pareto set against the number
of products of the feature models.

In order to check our intuition, we have performed a
Spearman’s rank correlation test. This test’s coefficient ρ
takes into account the rank of the samples instead of the
samples themselves. The correlation coefficient between the
execution time and the number of products denoted by a
feature model is 0.831. This is a very high value that confirms
our expectations, the higher the number of products, the higher
the execution time of the algorithm. We also computed the
Spearman’s rank correlation for the execution time against the
number of features of the feature models which was quite
lower (0.407). This is because two feature models with the
same number of features could denote significantly different
number of products depending on the constraints derived from
the relationships between the features. In summary, the best
indicator of the execution time of our approach is the number
of products denoted by a feature model.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to exactly obtain the
optimal Pareto set of the multi-objective SPL pairwise testing
problem. We defined a zero-one linear mathematical program
and an algorithm based on SAT solvers for obtaining the
optimal Pareto set. By construction the solution obtained using
this approach is optimal and could serve as reference for mea-
suring the quality of the solutions proposed by approximated
methods.

The evaluation revealed a generally large runtime for our
feature models. This fact prompted us to analyze the impact
of the number of products and number of features in runtime.
We found a high correlation in the first case and a low
correlation in the second case. As a result of this finding
our future work is twofold. First, we want to streamline
the mathematical program representation in order to reduce
the runtime of the algorithm. We observed that some of the
constraints can be redundant. For instance, features that are
selected in all the products of the product line do not need a
variable since they are valid for any product. Similarly, there
are pairs of feature combinations, that is ci,j,k,l variables,
that are not valid according to the feature model and hence
can be eliminated [18]. We also noticed that removing some

of the redundant constraints can increase the runtime, while
adding more constraints could help the SAT solver search for
a solution. We plan to study the right balance of both reducing
and augmenting constraints. Second, we will look at larger
feature models to further study the scalability of our approach.

ACKNOWLEDGEMENTS

This research is partially funded by the Austrian Science Fund (FWF)
project P21321-N15 and Lise Meitner Fellowship M1421-N15, the Span-
ish Ministry of Economy and Competitiveness and FEDER under contract
TIN2011-28194 and fellowship BES-2012-055967.

REFERENCES

[1] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[2] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[3] E. Engström and P. Runeson, “Software product line testing - a
systematic mapping study,” Information & Software Technology, vol. 53,
no. 1, pp. 2–13, 2011.

[4] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, “A systematic mapping
study of software product lines testing,” Information & Software Tech-
nology, vol. 53, no. 5, pp. 407–423, 2011.

[5] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/1883612.1883618

[6] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements
to a meta-heuristic search for constrained interaction testing,” Empirical
Software Engineering, vol. 16, no. 1, pp. 61–102, 2011.

[7] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test suites for large software product
lines,” CoRR, vol. abs/1211.5451, 2012.

[8] A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation
of pairwise test configurations from feature models,” in ISSRE, T. Dohi
and B. Cukic, Eds. IEEE, 2011, pp. 120–129.

[9] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
1st ed. Wiley, June 2001.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, 1990.

[11] R. E. Lopez-Herrejon and D. S. Batory, “A standard problem for
evaluating product-line methodologies,” in GCSE, ser. Lecture Notes
in Computer Science, J. Bosch, Ed., vol. 2186. Springer, 2001, pp.
10–24.

[12] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615–636, 2010.

[13] F. Arito, F. Chicano, and E. Alba, “On the application of sat solvers
to the test suite minimization problem,” in SSBSE, ser. Lecture Notes
in Computer Science, G. Fraser and J. T. de Souza, Eds., vol. 7515.
Springer, 2012, pp. 45–59.

[14] L. A. Wolsey, Integer Programming. Wiley, 1998.
[15] A. M. Sutton, L. D. Whitley, and A. E. Howe, “A polynomial time com-

putation of the exact correlation structure of k-satisfiability landscapes,”
in Proceedings of GECCO, 2009, pp. 365–372.

[16] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov, “Scalable prediction of non-functional properties
in software product lines: Footprint and memory consumption,” Infor-
mation & Software Technology, vol. 55, no. 3, pp. 491–507, 2013.

[17] “Software Product Line Online Tools(SPLOT),” 2013, http://www.splot-
research.org/.

[18] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “Using feature
model knowledge to speed up the generation of covering arrays,” in
VaMoS, S. Gnesi, P. Collet, and K. Schmid, Eds. ACM, 2013, p. 16.

