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Multi Objective Optimization 

Handout November 4, 2011 

 

(A good reference for this material is the book 

“multi-objective optimization by K. Deb) 
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Multiple Objective Optimization 

• So far we have dealt with single objective optimization, e.g. 
Objective (S) is a scalar. 

• For many problems there are competing objectives.  For 
example,  

– A. expected investment return versus risk with decisions 
  about stock mixtures in a portfolio or 

– B. expected speed of autonomous vehicle through a course 
versus risk of having an accident 

• Competing objectives means that 

–  the optimal solutions for each objective are different  

–  changing the values of the decision vector to improve one 
objective might result in a decrease in the other objective. 

• What are other examples of multi-objective optimization 
problems? 
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Learning Objectives 

• Motivation for Multi Objective Optimization 

• Understanding and Visualizing Trade-offs 

• Domination, Non-Domination and Pareto Optimality 

• Key Features of Good Multi Objective Optimization 

Algorithms 

• Challenges in Developing Effective Multi Objective 

Optimization Algorithms 

• Advantages of Using Evolutionary Heuristics 

• Calculating Fitness for Multi-Objective Genetic 

Algorithms   
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Multi Objective Optimization: Problem 

Formulation 

• Minimize (or Maximize) F1(x) 

• Minimize (or Maximize) F2(x) 

 

• Minimize (or Maximize) Fm(x) 

 

• Subject to gj(x)> 0, j=1,…, J 

• hk(x) = 0,  k=1,…,K 

• x ε D  So the “decision space” is D 

• ,If  Ai< xi < Bi,,,,i=1,…,n, then D is a hypercube 

defined by the “box constraints” (Ai,Bi)  



5 

Dominated Solutions 

• Assume we want to minimize both F1 (x) and F2(x) 

 

• A solution x1 is said to dominate a solution x2 if both 
of the following are true: 

– A. F1 (x1 ) <   F1(x2 ) and  F2 (x1 ) <   F2(x2 ) 

– B. F1 (x1 ) <   F1(x2 ) or   F2 (x1 ) <   F2(x2 ) 

• In other words,  x1  dominates x2 if x1 is not worse for 
any of the functions (condition A) and is better in at 
least one of the functions (condition B)  

• Note if you are maximizing one or both of the 
functions, the direction of the inequalities will change. 
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Pareto Optimality 

• Non-Domination: A solution x* is  non-dominated   

in set S if there does not exist a solution x^ ε S which 

dominates x* 

• Let D be the feasible set of solutions for a Multi 

Objective Optmization Problem 

• Pareto-Optimality: A solution x* is  pareto optimal if 

there does not exist a solution x^ ε D which 

dominates x*.  

• Pareto Front: The set of all possible pareto-optimal 

solutions is called the pareto front 

• The aim of a multi objective optimization algorithm is 

to deduce the pareto front or a near optimal front 



7 

Figure 14 
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Figure 14: Identifying Non Dominating 

Solutions 

• In Figure 14 we are trying to maximize F and 

minimize F2  we see that solutions 1 and 5 have  the 

same value of F2, but 5 has a larger value of F1. 

 

• Which is the better solution 1 or 5?  Why?  Is one of 

them dominated? 

 

• What about the comparison between solution 1 and 

2?  Is one of them  dominated by the others. 

 

• Which are the points x* that are non dominated, i.e. 

there is no other solution that dominates x*/ 
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Board comments on Figure 14  

• Clearly 5 dominates 1 since they have the same F2 

value and 5’s F1 value is higher than 1’s and goal for 

f1 is maximize. 

• 1 clearly dominates 2 since f2 is lower and  f1 is 

higher. 

 

• The non dominated points are 3 and 5 since they 

have eq to or less values of f2 in comparison to the 

other points and eq to or greater values of f1.  

Between each other, neither dominates the other. 
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Multi Objective Approach 
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Equations for two objectives for 

Cantilever Problem 
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Figure 10 
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Table 1 
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Figure 11 

 A-E are solutions 

from table 1 



Figure 1 of Pareto fronts  

• In the following slide we are assuming the two cost 

functions have been evaluated for thousands of 

points and the points are plotted in terms of their  f1 

(horizotal) and f2 (vertical) values. 

• All these points are in a gray cloud in Figure 15. 

• The difference between the 4 plots is related to 

whether you are trying to minimize or maximzie f1 

and f2  
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Figure 15 
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Two Goals in Ideal Multi-Objective Optimization 

• Converge on the Pareto Optimal Front 

 

• Maintain as diverse a distribution as possible. 
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Multi Objective Problems: 

Optimization Methods 

• Classical Methods 

– Convert Multi Objective Problem into multiple 

Single Objective Problems 

– Each Single Objective Problem can be solved 

via conventional or heuristic methods 

• Evolutionary Methods 

– Population based approach with retention of 

good trade-off solutions is employed 

– No need to solve multiple Single Objective 

Problems 

MO BACKGROUND 
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COMMON APPROACHES FOR 

APPROXIMATING THE TRADEOFF 

CURVE 

• Weighting Method 

– assign weights to each objective and 

then optimize the weighted sum of the 

objectives 

• Constraint Method 

– optimize one objective, convert other 

objectives into constraints 

MO BACKGROUND 
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Weighted Method to Solve Multi Objective 

Problems with Single Objective Optimization 

• Replace  

• Minimize (F1(x) 

• Minimize F2(x) 

• subject to gj(x)> 0, j=1,…, J 

• x ε D 

• With  

• Minimize rk  F1(x)  + F2(x) 

• subject to gj(x)> 0, j=1,…, J 

• x ε D 

• So rk   is a ratio of weights on F1(x)  and   F2(x) 

• Solve this for many values of rk, k=1,…Mk to attempt to get 

different points on the Pareto Front 



21 

Weighted Sum Method 



22 

Weighted Sum Method: Non-Convexity 



23 

Problems with Weighted Sum Method for 

Multiple Objectives 

• You must solve a Single Objective many times for 

each ratio of w1/w2. 

• No control over area of objective space searched. 

• Approach will not work on non-convex parts of 

tradeoff curve.  (The solution is always where the 

tangent is w1  /w2.  If there are two such points, then 

the optimal is the lower of those two points.) 
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Figure Another Classical Method:  Constraint 

Method for Multi Objective Optimization 

• Optimize one objective and constrain all the others 

• Constraint Method: 

• Minimize F2 

• Subject to F1  Ri 

 

• Solve the problem for many values of Ri. 

• Again has the problem that  must solve a single 

optimization problem many times 

• Solution highly depends on the values of Ri 

chosen 


