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Abstract: Optimization methods for a hybrid microgrid system that integrated renewable energy
sources (RES) and supplies reliable power to remote areas, were considered in order to overcome
the intermittent nature of RESs. The hybrid AC/DC microgrid system was constructed with a
solar photovoltaic system, wind turbine, battery storage, converter, and diesel generator. There is a
steady increase in the utilization of hybrid renewable energy sources with hybrid AC/DC microgrids;
consequently, it is necessary to solve optimization techniques. Therefore, the present study proposed
utilizing multi-objective optimization methods using evolutionary algorithms. In this context, a
few papers were reviewed regarding multi-objective optimization to determine the capacity and
optimal design of a hybrid AC/DC microgrid with RESs. Here, the optimal system consisted of the
minimum cost of energy, minimum net present cost, low operating cost, low carbon emissions and
a high renewable fraction. These were determined by using multi-objective optimization (MOO)
algorithms. The sizing optimization of the hybrid AC/DC microgrid was based on the multi-objective
grey wolf optimizer (MOGWO) and multi-objective particle swarm optimization (MOPSO). Similarly,
multi-objective optimization with different evolutionary algorithms (MOGA, MOGOA etc.) reduces
energy cost and net present cost, and increases the reliability of islanded hybrid microgrid systems.

Keywords: hybrid microgrids; hybrid renewable energy system; renewable energy sources; evolu-
tionary algorithms; multi-objective optimization

1. Introduction

All over the world, energy demands will increase by 53% by 2035 [1]. In recent years,
fossil fuel resources have gradually decreased; due to this, renewable energy sources have
become essential resources for generating power. These sources are integrated with a hybrid
microgrid to obtain reliable power, protect the environment, overcome the intermittent
nature of the RESs and reduce pollution caused by fossil fuel emissions [2]. Like the power
system, the microgrid’s operational factors are considered due to the increasing importance
of renewable energy sources in the present scenario.

There are many similarities between microgrids and conventional grids, but both are
used to supply power for locally dedicated loads [3,4]. As a result, it is asserted that early
isolation techniques are now being reviewed as microgrids, which have the unique capacity
to incorporate grid connections when required [5]. However, the distribution of renewable
energy sources and the various countries’ investments in hybrid microgrid deployment are
not similar. As predicted, the power strategies of a country directly impact the level and
quality of energy generated [6]. The smaller the dependency on conventional sources, the
higher the integration of renewable sources. According to Aleasoft energy forecasting, the
total energy produced from non-renewable sources in India is shown in Figure 1.
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By incorporating renewable energy systems with utility grids, the power distribution
model has been moved towards a decentralized structure, resulting in the research of
hybrid microgrids. In DC systems, power electronic-based distributed generator (DG)
and energy storage of static devices, such as batteries, is more efficiently used. However,
AC systems still dominate most of the loads in the power system. This encourages the
development of hybrid microgrids combining the benefits of DC and AC systems [8,9].

In [10], the authors proposed how to position a capacitor using a brand-new mine
Blast algorithm (MBA). In addition to reducing power loss, consideration was also given
to enhancing the voltage profile and minimizing the net annual cost. In [11], the authors
suggested decreasing annual costs and power loss by strategically placing capacitors in
radial distribution networks (RDNs). The objective function was to minimize active and
reactive power losses and the cost and installation of capacitors, which are required to
sustain reactive power and maintain the voltage profile. In [12], the authors looked at
incorporating several DGs into the IEEE 33-bus radial distribution system (RDS) to reduce
operational losses and enhance voltage profiles. In the case of optimum power factor (OPF-
DG) and unity power factor (UPF-DG), the research attempted to discover the best locations
and sizes of one to seven DGs to be interconnected. In [13], the authors discussed the multi-
objective optimal scheduling in standalone power systems, which consisted of multiple
pulsed loads, optimal mobility, and the maximum multiple pulsed-load performance value.

The authors examined the techno-economic viability of a hybrid renewable energy
system (HRES) for sustainable rural electrification in Benin [14] using the case study of
the village of Fouay. Optimization, modelling, and sensitivity analysis were carried out
using HOMER software. Additionally, the potential energy resources and the distance
between the power plant and the recipient played a significant role in determining whether
HRES was the most cost-effective. In [15], the authors presented an optimum method for
a RES-based generating system to be integrated with the current power system of Azad
Jammu and Kashmir (AJK), which is experiencing power shortages and load shedding.
In [16], the authors set power-related efficiency levels from the point of view of reliability.
This included power system availability, expected power deficiency, accumulated power
deficiency, instantaneous power capacity, and accumulated power capacity for a hybrid
power system (HPS) in a generic smart grid. In [17], the authors presented a three-port
bidirectional converter with a single conversion stage. The converter’s modified form
has fewer active and passive parts, which improves the converter’s performance and
enhances efficiency. In [18], the authors proposed a DC-DC Multiple-Input Multiple-
Output (MIMO) Buck/Boost converter with two input sources, a primary solar power
input and a secondary battery input. A secondary bidirectional port explicitly designed for
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charging and discharging hybrid electric vehicles (HEV) was supported in addition to the
converter’s two other outputs, which include a fixed voltage output.

The authors in [19] suggested a high-gain multiport bidirectional DC-DC converter. It
may be used in AC/DC microgrid and hybrid electric cars. It is capable of bidirectional en-
ergy transfer and multi-source power sharing. Both identical and different voltage sources
may be employed with it. In [20], the authors constructed and analyzed a 15-level reduced
switch inverter with varying modes of operation. The proposed inverter is asymmetric and
uses unequal DC voltage sources. This inverter architecture was examined for multiple
objectives, such as fewer switches, capacitors, and low total harmonic distortion (THD) for
generating maximum output voltage steps.

Different factors and issues must be considered when the discussion is mainly about
the multi-objective optimization problem (MOOP) of a hybrid system. Some of the topics
included in the system are cost optimization, design and control, acceptable power qual-
ity, reliability, and placement. In [21], the authors presented evolutionary algorithms for
multi-objective (MO) challenges by using a heuristic approach; there has been a growth
in their use in recent research for renewable energy unit optimization. In [22], the authors
explained research conducted to solve one of these problems using MOOP. Multi-objective
evolutionary algorithms (MOEAs), categorized as population-based approaches, are ap-
propriate for this issue because they can achieve the global optimum. However, among
many of the research papers on HRES optimization, only a few studies have used evo-
lutionary algorithms (EA) to solve many objectives in HRES optimization. Finally, the
recent research developments will outline the multi-objective optimization methods used
in an HRES. In [23], the authors reviewed the multi-objective optimization technologies in
wind energy forecasting and introduced the fundamental theories and techniques related
to multi-objective optimization. In [24], the authors presented a new formulation for the
optimal allocation and sizing of distributed energy resources and the operation of energy
storage systems (ESSs) to enhance the voltage profiles and decrease the annual costs. The
multi-objective multiverse optimization method (MOMVO) was a solution tool. In [25], the
authors presented a new multi-objective optimization model to enhance voltage profiles,
decrease DG and battery energy storage system (BESS) costs, and maximize power transfer
between off-peak and peak hours. These objectives were rectified using the multi-objective
grasshopper optimization algorithm (MOGOA).

The main objective of this research was to design an optimal hybrid AC/DC microgrid
for remote locations. Here, the optimal system consisted of a low cost of energy, minimum
net present cost, low carbon emissions, minimum operating costs, and a higher renewable
energy fraction. All these objectives were obtained by applying the MOO algorithms to the
proposed system. The use of MOO algorithms reduced the complexity of the mathematical
equations-solving procedure.

Organization of the Paper

Section 2 of this paper describes hybrid renewable energy systems. Section 3 presents
an overview of the microgrid. Section 4 describes the multi-objective optimization. Section 5
explains the optimization, and conclusions are presented in Section 6.

2. Hybrid Renewable Energy Systems

There are enough power-producing resources worldwide to meet the increasing electri-
cal demand. However, the electricity provided by RESs is poor because of their intermittent
nature. As a result, a non-single combination of these non-conventional energy sources
will be required to complete the transformation from conventional to renewable generation.
Renewable energy sources such as solar, hydro, biomass, geothermal, wind, nuclear, hydro-
gen and fossil fuels must work as a single unit in various combinations to supply demand,
as shown in Figure 2.
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Figure 2. Types of energy sources [26].

The first power generation technologies, such as hydro, biomass, and geothermal
power, have been employed since the end of the 19th-century industrial revolution. The
second power generation technologies, such as wind power, solar heating, and bioenergy,
evolved due to R&D activities in the nineties [27]. The 1970s oil crisis increased the
awareness of fossil fuel degradation, promoting the development of alternative energy
sources. However, the growth of sustainable green energy has been driven by an increasing
concern for environmental conservation. Due to further development, third-generation
technologies, such as biomass, geothermal, and ocean energy, have emerged.

In [28], the authors focused on HRES systems that integrate solar, diesel, wind and
battery energy storage technologies. In the last decade, the use of solar and wind technolo-
gies to generate electricity has increased worldwide because they are numerous, clean, and
site-specific. However, they are incredibly cost-effective due to their low maintenance costs.
However, this shows that combining solar and wind energy systems are becoming more
common due to their complementary nature, which explains why hybrid renewable energy
source modelling was included. Table 1 shows some of the benefits and limitations of RES.

Table 1. Benefits and Limitations of RES [29,30].

Benefits Limitations

RES, such as solar, wind, geothermal, etc., are free of cost. RES, such as solar, wind etc., depends heavily on the
weather conditions.

Economic Advantages: RES’s cost of fuel consumption and O&M is
low.

High Capital Cost: RES power plants’ installation cost is
quite higher.

Benefits to the Environment:
Pollution-free or enormous natural resources.

A reliable source of energy:
Solar and wind energy plants are spread over all geographical
regions and weather conditions in one part will not shut down

power to any area.

Difficult to generate a high amount of energy as those
created by coal stations.

Many photo voltaic (PV) panels and wind turbine
(WT)-developing farms need to be set up to meet the high

power generated by fossil fuels.

2.1. Solar Energy

A photovoltaic array turns light photons into electrons in the PV system. This opera-
tion produces a DC, which can be amplified with DC-DC converters before being inverted
to supply AC power to the loads, as shown in Figure 3a,b. As a result, power electronic
devices play a vital role in connecting PV panels to the grid. A unique maximum power
point tracking (MPPT) is also used to allow the PV to capture the maximum amount of
energy from the Sun by varying the slanting angle of its beams during the day. Finally,
the electricity is controlled with a lowpass filter before entering the grid to remove any
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undesired harmonics [31]. Semiconducting crystalline elements are used in the majority
of PV cells. PV cells come in various shapes and sizes, including mono-crystalline, poly-
crystalline, and thin-film PV cells. In [32], the authors described the Levy flight and fitness
distance balance (FDB)-based coyote optimization algorithm (LRFDBCOA) for enhancing
the automated generation control (AGC) of three different interconnected PV-based power
systems.
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2.2. Wind Energy

Among all renewable energy sources, wind energy is the most promising source. The
power production is related to the cube of the wind velocity; hence a minor change in the
wind causes a considerable variation in the available power and generation cost. Wind
generators have a 20-year of lifespan. Wind energy generally works best in ‘wind farms’
m2or ‘wind energy plants,’ with capacities ranging from a few megawatts to hundreds
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of megawatts [35]. Although windmills cover a vast geographical region, their actual
“footprint” covers a small percentage of the land. As a result, transformers have access
to enormous amounts of land to produce more income, strengthening the rural economy.
Figure 4 depicts the essential wind energy system operation with the conventional grid.
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Figure 4. Basic wind energy system with the utility grid [36].

Due to the growth of wind energy used to develop wind turbines and additional
equipment, the size of wind turbines has increased in recent years due to exhaustive
research in this area, and the installation cost has decreased. Low wind speed was identified
as a limitation, so proper planning and forecasting techniques became more essential. The
operating system, wind speed prediction, and farm site selection determine the potential of
wind energy. The optimal structure of wind farms consists of the wind turbine design and
farm layout, which are the primary interests of researchers. The lack of wind prediction data
compared to solar estimation data makes it difficult to build up new wind farms [37,38]. It
is a well-known fact that solar energy is more reliable than wind energy. As a result, wind
farm siting is an essential requirement that necessitates extensive research and study of the
wind in the area.

In [39], the authors analyzed the controller’s performance for optimal power manage-
ment by creating the doubly fed induction generator and its power converter. They also
developed a doubly fed induction generator wind turbine model that includes a distri-
bution network rearrangement and efficient reactive power control. Figure 5 shows the
electrical power production of solar photovoltaic and wind energy systems and describes
the battery energy storage capacity throughout India up to 2023.
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2.3. Diesel Generator

DGs are presently widely utilized as backup devices in the HRES to encourage green
power. DGs are used when RES and battery systems fail to meet the load requirements.
Many factors influence the selection of DGs, including different loads, fuel prices, cost
of transportation, and so on. In [41], the authors looked at DG sizing in two scenarios:
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when the DG is directly connected to the load, and when it is utilized as a battery charger.
The generator operation is economical at a total load of 70–80%. As a result, DGs help
augment power during peak load hours and afterwards for recharging energy storage units
as needed.

2.4. Energy Storage Systems

The power produced from RES cannot be stored for later utilization, which is the
main drawback compared to conventional sources. Because of that, it is not easy to get
much power from them when they are still available. Furthermore, they depend on the
environmental conditions of the particular site; hence they cannot be guaranteed to be
uniform and focused at all times. Therefore, they are unpredictable and unreliable. For
example, the electricity generated by a wind turbine is particularly susceptible to harmonic
distortions and associated faults, which might affect the system’s functioning due to the
highly unpredictable behavior of wind energy. An ESS is required to smooth out the
fluctuations and improve the power quality [42]. The essential functions of the ESS are to
control the energy outputs and supply the auxiliary services as needed. Because of that,
they are a vital source of energy for achieving high levels of renewable system penetration.
If an ESS operates as a buffer, the energy imbalance between the load and production
systems can compensate. For example, a microgrid in an islanded operation will rely on
an ESS to maintain total power balance due to some distributed generators’ malfunction.
Even if the issue is solved by bringing up other production systems, the ESS is crucial
for quickly replacing the power gap. ESSs are required when the micro grid (MG) is in a
grid-connected mode to maintain power quality and control reactive power. Some ESSs are
now being used in microgrids with HRES.

2.4.1. Flywheel Energy Storage

One way to store electrical energy is mechanical energy, which can be divided primarily
into kinetic and potential energies. Mechanical energy storage devices may be designed
using these kinetic and potential energies along with the energy conservation equation.
Flywheel energy storage is one such mechanical storage device [43].

2.4.2. Supercapacitor and Ultra-Super Capacitor

A high-capacity capacitor with a capacitance value much greater than ordinary but
with lower voltage restrictions is referred to as a supercapacitor or ultra-capacitor. It
connects rechargeable batteries with electrolytic capacitors. It can take and distribute
charges considerably quicker than batteries and withstand many more charge and discharge
cycles than rechargeable batteries [44]. It stores 10 to 100 times more energy per unit
mass volume than electrolytic capacitors. Instead of long-term compact energy storage,
supercapacitors are used in applications needing several quick charge/discharge cycles.

2.5. Hybrid Solar–Battery System

Stand-alone solar production systems are a desirable and essential electricity source
for security camera devices, streetlights, electric signs, and weather observation systems.
The conventional solar PV and battery systems are shown in Figure 6. In addition, the
stand-alone PV generation system requires energy storage equipment. The critical point
to increasing the efficiency of the generation system is to control battery charging and to
discharge with the highest power of the solar PV array [45,46]. The PV panel does not
use battery charging because of their unreliable output and dependence on atmospheric
conditions, so there is no charge/discharge cycle, leading to a low-charge state [47]. De-
pending on the application of the PV system, the batteries are changed every three to
five years, and improving the size of the PV panel depends on cost. Here, optimization
of the battery hybrid storage system includes reducing battery size and extending the
battery life by avoiding deep discharges through high currents [48]. In [49], the authors
considered the uncertainties of distributed photovoltaics, a multi-objective robust opti-
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mization strategy for active distributed networks to maximize renewables’ utilization and
simultaneously minimize network losses. In [50], the authors proposed a quantitative
techno-economic comparison method of battery, thermal energy storage, pumped hydro
storage and hydrogen storage in wind–photovoltaic hybrid power systems from the per-
spective of multi-objective capacity optimization. The multi-objective capacity optimization
models are developed based on minimizing the levelized cost of energy and loss of power
supply probability.
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2.6. Hybrid Solar–Wind–Battery System

The hybrid solar-wind-battery system operates as an islanded system to confirm
the availability of the load requirement, as shown in Figure 7. A controller monitors the
availability status and an available source with the load [52]. The pictorial representation of
the hybrid solar-wind-battery system is in the following diagram. MPPT of the solar system
and pitch control of the blade angle of WTs were incorporated to increase the system’s
performance under various environmental situations. In [53], the authors proposed a
method for designing and constructing hybrid solar–wind systems and their planning and
analysis using discrete cost function optimization and energy balance calculations. In [54],
the authors proposed an optimal hybrid renewable system design using solar, wind energy,
battery storage, thermal loads, thermal load controller, boiler, and a diesel generator for
the considered site. The techno-economic analysis was carried out using HOMER Pro
(Micro grid analysis 3.14.2 (Pro Edition) by Peter Lilienthal, UL 1790 30th St, Suite 100,
Boulder, CO, USA) software to meet the load demand requirement of the village. In [55], the
authors focused on the design and sizing optimization of the entire system and delivered
three main contributions. First, this paper proposed a retired electrical vehicle battery
model based on the model of capacity fading of lithium battery cells, which could allow a
more realistic result for the design. Second, a power management strategy was presented
to regulate the energy flow for protecting the retired electrical vehicle battery and other
system components. Third, multiple objectives were considered in the optimization model,
including minimizing loss of power supply, system cost, and a new indicator, namely,
potential energy waste.
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2.7. Hybrid Solar–Wind–Diesel–Battery System

Nowadays, researchers are focusing on PV–wind or PV-wind-diesel hybrid systems
with battery storage. The installation cost of hybrid solar–wind systems is more expensive,
which consists of a DG, and frequently has a minimum installation cost than mono-type
renewable systems. Among all hybrid systems, this is the most commonly used system.
In [57], the authors implemented a two-objective optimization of a hybrid solar–wind–
diesel–battery system. They took two objectives and designed a linear programming
model: reducing total cost and carbon-dioxide emissions. In [58], the authors proposed
the strength Pareto evolution algorithm’s application to the two-objective optimization
method of an off-grid hybrid solar-wind-diesel system, including battery storage systems.
The minimized objectives are the cost of energy (COE) and the equivalent carbon-dioxide
life cycle emissions (LCE). In [59], the authors described a method of sizing optimization of
an off-grid hybrid wind–solar-diesel–battery energy system to reduce the overall cost of
the system when they are present. Figure 8 shows the circuit diagram of a non-renewable
and solar–wind–diesel–battery system.
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3. Microgrid Overview

The early power network was an isolated DC microgrid made primarily of DC power
stations. Although, the existing power network was created for various reasons, including
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challenges in obtaining the appropriate potential difference levels and line losses. Unified
control is the electrical energy network’s current prevalent operation approach. This
controlling technique has enormous problems due to investment necessities in production
and transmission because of load growth and a lack of government resources to invest in
such areas [61]. Furthermore, the unified control system has lost its admiration because
its efficiency must be enhanced, particularly in industrial regions, and not all industries
are keeping up with technological developments. Therefore, microgrids determined their
methods for the electricity network operation to decrease the operating and maintenance
costs of the present electricity network with the earlier mentioned disadvantages. For
various kinds of microgrids, many configurations have been suggested. Microgrids are
classified into three broad types based on the general topologies shown in Figure 9.
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In [63], the authors reviewed and compared the optimal power flow approaches mainly
related to intelligent distribution grids. This work compares the main optimal power flow
approaches in terms of their objective functions, constraints, and methodologies. In [64], the
authors proposed a novel optimization model that sizes the most cost-efficient renewable
power capacity mix of an autonomous microgrid supported by storage technologies. The
proposed algorithm considered operational, technical, and land-use constraints. The
problem was formulated using linear programming, and was tested and scrutinized with
sets of historical weather, load demand and installation prices data, and was modelled
hour-by-hour. In [65], the authors discussed definitions and classification of microgrid
stability, considering pertinent microgrid features such as voltage-frequency dependency,
unbalancing, low inertia, and generation intermittency. In [66], the authors proposed
differences in allocations and sizes of all the equipment based on the assumed specific
structure for each MG catalogue. Then, the MATLAB (version R2022b, MathWorks, Natick,
MA, USA) working platform utilized the non-dominated sorting genetic algorithm-II to
compute the multi-objective functions associated with the minimized system cost, the loss
of power supply probability, and the greenhouse gas emissions for each MG catalogue.

3.1. DC Microgrid

A DC microgrid mainly consists of DC sources and loads. The essential benefits of
DC microgrids are energy storage system incorporation, improved total efficiency because
of low AC-DC-AC conversion losses, and the removal of DG co-ordination. Therefore,
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because of the inability of the produced DC electricity to be transported over long distances,
it has lost the admiration of researchers over time. The DC sources, such as PV modules,
fuel cells (FCs), etc., are supplied with DC power and used to provide DC loads. Integrating
the microgrid design with the power distribution system is one of the issues that must
be solved in this microgrid [67]. In [68] the authors focused on the operation and control
framework in both grid-connected and islanding modes to provide the guideline for where
we currently stand on the migration path from the overwhelming fully AC microgrids to
more flexible DC microgrids.

3.2. AC Microgrid

As we know, it is a fact that AC systems have more benefits than DC systems. There-
fore, they can be used in most applications for many years. The benefits include quickly
changing the voltage levels by using the low-frequency transformer, bearing the faults and
preservation can be handled. AC RESs. such as wind turbines, biogas, tidal, and wave
turbines, have been combined with AC microgrids in the past few years. The major issues
in AC microgrids are DG synchronization problems and reactive power compensation,
which may increase the transmission system losses.

Furthermore, because AC renewable sources are sensitive to geographical and atmo-
spheric variations, controlling microgrids’ frequency that uses the AC RESs is complex [69].
In [70], the authors proposed a control strategy for renewable-interfaced hybrid energy
storage systems under grid-connected/islanding conditions. A second harmonic-based
phased locked loop is employed for effective synchronization/resynchronization of the
microgrid system under contingency conditions. In [71], the authors implemented a hybrid
unit of typical coupling-based architecture for multiple microgrids where microgrids are
grid-connected via the AC interfaces and interconnected via the DC interfaces. Based on
the proposed architecture, coordinated control schemes under different operation scenarios
are finally created.

3.3. AC and DC Microgrid

This structure combines the advantages of both AC and DC microgrids and makes it
easier to integrate AC and DC loads with their respective sources. This arrangement has
several advantages, such as voltage transformation, economic feasibility, and harmonic
control [72]. Despite all the benefits mentioned, a hybrid AC/DC microgrid has minor
limitations, such as protection concerns and complex coordination among the units, which
can be overcome by adopting optimal operation approaches [73]. However, the overall
superiority of the hybrid AC/DC microgrid to other microgrids is a suitable case for eval-
uating operational issues. In the islanded mode of operation, the system is disconnected
from the network, and the ESS plays a significant role, which incurs an additional opera-
tional cost. Apart from that, the extra energy will not be able to be stored. This operating
mode gives more importance to the local loads, so it is more suitable for remote places
and is mainly employed for seasonal purposes. PV systems comprise most islanded MG’s
capacity because they are the most cost-effective RES [74–76].

The primary concentration of the AC islanded MG’s converter is that of multiple AC-
DC-AC conversions and serves as a frequency and voltage reference. In [77], the authors
proposed high-efficiency distribution architectures combining AC and DC networks. This
testing facility provided a research testbed for investigating different aspects of microgrid
systems, employing a total of 15.5 kW of reconfigurable Solar PV and 80 kWh of lithium
energy storage on a 145 kVA commercial building load. In [78], the author designed a
microgrid test model based on the 14-busbar IEEE distribution system. This model can
constitute an essential research tool for analyzing electrical grids in their transition to grids.
In [79], the authors reviewed other interconnection methods and control challenges of
AC and DC microgrids. Then they presented an overview of various control strategies of
bidirectional interlink power converters presented in the literature; all were carried out
comprehensively. In [80], the authors proposed a new decentralized control strategy for
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an HMG that regulates a common bus’s voltage magnitude in each microgrid. Unique
droop characteristics for sources across microgrids and interlinking were proposed in this
regard. In [81], the authors explained a comprehensive approach to improve the primary
voltage and frequency controls in hybrid AC/DC microgrids. The proposed method ends
in an efficient autonomous power-sharing task in the islanded operations through the
interlinking converter. An improved droop-based power control was presented and then
applied to the interlinking converter (IC) between the AC and DC MGs. In [82], the authors
proposed an advanced system-level energy management system (EMS) for residential
AC/DC microgrids by taking advantage of the innovations offered by digitalization. Finally,
the proposed EMS supports green transition as it was designed for an MG that includes
renewable energy sources, batteries, and electric vehicles.

4. Multi-Objective Optimization

Multi-objective optimization problems have received interest from researchers since
the early 1960s. In a MOO, issues and functions must be optimized simultaneously. In the
case of multiple objectives, a solution that is best for all goals does not necessarily exist
because of the differentiation between objectives [83]. For example, a solution may be best
for one purpose but worse for another. Therefore, there usually exists a set of solutions for
the multiple-objective case, which cannot simply be compared with each other.

For such solutions, called Pareto optimal solutions or non-dominated solutions, no
improvement is possible in any objective function without sacrificing at least one of the
other objective functions. Thus, by using the concept of Pareto optimality, we can find a set
of optimal solutions that compromise the conflicting objectives [84]. Pareto optimality is a
concept used in economics, game theory, etc. In the past few years, there has been an overall
development in applying genetic algorithms (GAs) to solve the MOO problem, known as
MOEA. The population-to-population approach is beneficial in exploring Pareto-optimal
solutions. However, the main issue in solving MOO problems using GAs is determining
individuals’ fitness values according to multiple objectives.

4.1. Multi-Objective Optimization Algorithms

Many metaheuristic algorithms take their fundamental concepts from the natural
world, including the development of organisms, animal predatory behavior, physical
processes, and geographic context. Metaheuristic optimization methods can combine ran-
dom algorithms and local search algorithms. Metaheuristic algorithms are more generic
algorithms that may be used more broadly to address actual issues than heuristic algo-
rithms, which rely on a particular situation [85]. The metaheuristic algorithm’s procedure
is iterative, enabling efficient development and exploration of the search space and the
search for approximations of ideal solutions. Single-objective optimization algorithms
and multi-objective optimization algorithms are two categories under which metaheuristic
optimization algorithms fall [86]. The development and use of multi-objective optimization
algorithms are required to solve multi objective problems (MOPs) effectively and achieve
Pareto optimum solutions. True Pareto optimum solutions for MOPs may be success-
fully and precisely approached by the solutions produced by multi-objective optimization
algorithms.

4.1.1. Multi-Objective Optimization Algorithm Based on Evolution

Global random search algorithms replicating biological evolution are known as
“evolution-based algorithms.” The fundamental tenet of evolution-based algorithms is
that organisms with high environmental adaptation have a greater likelihood of surviv-
ing [87].

4.1.2. Non-Dominated Sorting Genetic Algorithm 2

The term “genetic algorithm” (GA) refers to a metaheuristic algorithm influenced by
genetics and natural selection principles. It works well for searching. The GA can look over
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most search spaces without converging to extreme regional values. Additionally, the GA is
simple to use and quite sturdy. Consequently, the GA is excellent for solving the MOPs.
The fitness assignment, elitism, and diversification approaches are the key distinctions
across the various multi-objective GA versions [88]. One of these variants, and the most
successful multi-objective GA, is the non-dominated sorting genetic algorithm II (NSGA-II).
The NSGA-II uses elitism principles and the diversity preservation method to achieve
Pareto optimal solutions.

4.1.3. Multi-Objective Differential Evolution Algorithm

The differential evolution (DE) algorithm uses evolution to solve ongoing global opti-
mization issues. The DE method may provide more accurate optimization results in less
time than a straightforward genetic algorithm [89]. The DE algorithm employs adaptive
search criteria throughout the evolution phase. This may cause a significant population
fluctuation initially, allowing for a worldwide search. The population progressively con-
denses to a concentrated region as the population evolution process progresses, and the
accompanying population disturbance is decreased adaptively, which may guarantee local
search capability at the conclusion. As a result, the DE algorithm often has a quicker
convergence rate. The multi-objective differential evolution (MODE) method is suggested
as a way to adapt the DE algorithm to the solution of MOPs.

4.1.4. Multi-Objective Optimization Algorithm Based on Swarm Intelligence

Swarm intelligence-based optimization algorithms are often motivated by the pop-
ulation’s collective behavior. Although individuals within a population are generally
straightforward and have limited talents, cooperation among the people may result in
complex behaviors [90].

4.1.5. Multi-Objective Ant Lion Optimization Algorithm

An optimization system called the Ant Lion Optimizer (ALO) replicates the predatory
behavior of ant lions and their interactions with ants in traps. The multi-objective ant-lion
optimization (MOALO) method was proposed by Mirjalili et al. [91] and is the multi-
objective variant of the ALO algorithm. The algorithm includes the larval stage and the
adult stage, which are both significant phases. The former is mainly in charge of preying,
while the latter is primarily in order of repopulating. The method uses leader selection and
archive maintenance strategies to produce a Pareto optimal collection with a lot of variation.
The results demonstrate that the newly created MOALO method has good convergence
and coverage compared to the NSGA-II and the MOPSO algorithms. MOPSO was used for
comparison analysis in order to assess the suggested model thoroughly.

4.1.6. Multi-Objective Particle Swarm Optimization Algorithm

The Particle Swarm Optimization (PSO) technique mimics fish or bird movement. The
PSO algorithm’s basic idea is relatively straightforward, and changing its parameters is not
too difficult. The PSO algorithm’s effectiveness may be highly influenced by the individual
experiences and behaviors of the particles as well as the social experiences of the overall
population. To fulfil the use of the PSO technique on MOPs, the multi-objective particle
swarm optimization (MOPSO) algorithm is presented [92]. The Pareto dominance idea is
connected to the direction of a particle’s flight in the MOPSO algorithm. Other particles
will utilize the non-dominated vectors discovered by the MOPSO algorithm to direct their
flight once stored in a global repository. Finally, an echo state network was optimised
using the MOPSO technique to combine the intermediate results from three artificial neural
networks (ANNs).

4.1.7. Multi-Objective Grey Wolf Optimization Algorithm

The grey wolf optimizer (GWO) is an optimization method that mimics grey wolves’
hunting behavior. Predation by grey wolves mainly consists of clustering the leadership,
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surrounding the prey, updating the victim’s location, and hunting. In [93], the authors
introduced the multi-objective grey wolf optimization (MOGWO) method, a multi-objective
optimization technique based on the GWO. The Pareto archive and leader selection pro-
cedures must be implemented to support MOPs. The former is used to save the Pareto
optimal results from each iteration.

In contrast, the latter is used to perform the roulette method-based selection of the
alpha, beta, and delta wolves in the archive, which may aid in maintaining the best non-
dominated results. The weights and thresholds of an extreme learning machine (ELM) were
optimized and modified using the MOGWO technique [94]. When compared to single-
objective methods, it has the best average predicting performance. This demonstrates the
superior effectiveness and efficiency of the MOGWO algorithm. According to comparison
trials with several different multi-objective optimization models, the model optimized
by the MOGWO method can produce the best results on all evaluation metrics in most
instances. In [95], the authors proposed a technique known as multi-objective grasshop-
per optimization algorithm-Fractional order frequency Proportional-Integral-Derivative
(MOGOA-FOPID), which aims to reduce both the frequency deviation and the control
signal of the microgrid’s frequency control. By minimizing both the frequency deviation
and the control signal simultaneously using the multi-objective grasshopper optimization
algorithm (MOGOA), it is possible to manage frequency effectively while limiting battery
capacity, flywheel jerk, and excessive diesel fuel consumption.

4.1.8. Multi-Objective Multiverse Optimization

Mirjalili et al. [96] introduced the multi-objective multi-verse optimization (MOMVO)
method, which combines physics research with optimization. The multiverse hypothesis
served as an inspiration for the algorithm. Multiverse is the opposite of the universe,
which acknowledges the existence of multiple universes, and verse is the plural form of the
universe. The MOMVO algorithm considers the fundamental celestial body ideas of black
holes, white holes, and wormholes. The MOMVO algorithm may achieve the solution’s
mutation under the assurance of various mechanisms, which is a significant benefit. This
way, the search space may be discovered and explored, and the Pareto solutions set can be
improved along with avoiding local extremes. The MOMVO algorithm treats the universe
of possible MOP solutions as a whole. As a result, the solutions are seen as things in the
cosmos. This algorithm’s expansion rate notion is thought to match the goal functions [97].
The wormhole may randomly transfer the item to the best universe so far acquired, which
offers a random factor for the algorithm’s exploration and helps the MOMVO algorithm
explore more effectively. To assess its effectiveness, the MOMVO algorithm’s performance
was compared to that of the multi-verse optimization (MVO), GA, firefly algorithm (FA),
DE, GWO, neural network algorithm (NNA), and biogeography-based krill herd (BBKH)
algorithms. The MOMVO method has strong optimization capabilities and often achieves
the lowest cumulative errors across various assessment measures.

4.2. Hybrid Multi-Objective Optimization Algorithms

The flaws of the individual algorithms may be eliminated by the hybrid algorithm,
which is made up of two or more separate algorithms. The hybrid algorithms may often
converge more quickly than the different methods [98].

4.2.1. Multi-Objective Bat-Search Flower-Pollination Algorithm

The bat-search flower-pollination algorithm (BSFPA) and multi-objective optimization
make up the multi-objective bat-search flower-pollination algorithm (MOBSFPA). The bat
search (BS) algorithm, which was proposed to enhance the convergence performance of
the flower-pollination algorithm (PFA), is a component of the BSFPA. To maximize the
weight coefficients in an ensemble forecasting model for wind speed, Qu et al. suggested
and used the innovative MOBSFPA [99]. To assess the ensemble model optimized by the
MOBSFPA, the accuracy and stability of the model optimized by the BSFPA were compared.
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The experimental findings demonstrated that the MOBSFPA-optimized model may provide
more accurate and stable forecasting predictions.

4.2.2. Immune Selection Multi-Objective Dragonfly Optimization Algorithm

The immune algorithm and the dragonfly algorithm comprise the immune selection
multi-objective dragonfly optimization algorithm (ISMODA). The issue that the dragonfly
optimization algorithm (DA) may easily fall into local optimization can be improved
by introducing the immune algorithm (IA), which will also increase global optimization
capability [100]. To demonstrate the superiority of the ISMODA, which can be shown using
the multi-objective dragonfly algorithm, FA, and cuckoo search (CS) algorithm (MODA), In
comparison to the other three algorithms, this ISMODA is the best. Similar optimization
processes are used in multi-objective optimization algorithms, often better than their single-
objective counterparts. A uniform distribution of solutions in the solution set must be
sought, and the algorithm must also sort, compare, and store the optimum solutions
acquired in each iteration [101]. Because of this, multi-objective algorithms often need to
include various processes, such as archiving, leader selection, roulette techniques, elitism,
etc. The temporal complexity reflects the effectiveness of the multi-objective optimization
technique. Table 2 explains the literature review on the different MOO algorithms.

Table 2. Literature review on MOO with evolutionary techniques.

Author & Reference Published
Year

Different MOO
Algorithms Different Sources Objectives

Yu Qian Ang, et al.
[102] 2022

Multi-disciplinary,
multi-objective
optimization

solar, wind, and marine
energy

Optimization of cost, energy
utilization, carbon emission
reduction and power deficit

Yi He, et al. [103] 2022 MOEA-DM

Wind-solar battery
system integrated with

the hybrid
battery-thermal energy

storage system.

Reduction of net present cost
(NPC) and loss of power supply

probability to determine the
optimal operation threshold and

sizing decision variables

Jinzhao Xu, et al.
[104] 2022

Multi-objective
optimization and

NSGA-II

solar and geothermal
energy

To increase the energy benefits,
minimise the cost and carbon

emissions

Ting Wu, et al. [105] 2021 MO-MFEA-II Biogas-solar-wind To optimize the operational cost,
carbon emission and energy loss

Kalim Ullah, et al.
[106] 2021 MOWDO & MOGA Solar and wind

To minimize the operating cost
and emissions and maximise the

availability of RES

Gourab Das, et al.
[107] 2021 MOPSO RES such as Solar, wind

etc.
To reduce the cost of generating
units as well as carbon emission

Davide Aloini, et al.
[108] 2021

MOO based on economic
and environmental

decision making criteria.

RES such as Solar, wind
etc.

Carbon emissions and differential
cost

Martin János Mayer,
et al. [109] 2020 Multi-objective design

framework Solar, wind turbine Least cost and the least
environmental footprint options

Joy Bandopadhyay,
et al. [110] 2020 HMOMFO Solar, wind, battery

storage, diesel generator
Minimum values of loss of power

supply probability (LPSP)

Ahmed M.A.
Haidara, et al. [111] 2020 MOPSO Solar, battery energy

storage Lowest cost of energy and NPC
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Table 2. Cont.

Author & Reference Published
Year

Different MOO
Algorithms Different Sources Objectives

Peng Li, et al. [112] 2019

Multi-objective optimal
operation method

(source-network-load
coordination)

RES such as Solar, wind
etc

To optimize the consumption rate
of renewable energy and the

operation cost

Amirmohammad
Behzadi, et al. [113] 2019 MOGA Solar, TEG

High hydrogen production rate,
lower payback period and total

cost rate.

Mohammad Ghiasi,
et al. [114] 2019 MOPSO Solar, wind turbine To reduce network losses and

increase efficiency

Evolutionary techniques have been key instruments for solving real-world problems
in multi-objectives in recent decades. On the other hand, analyses of single-objective
approaches, presented as problems to find the “optimal” response, which relates to the
maximum or minimum value of a single optimization problem, group all multiple opti-
mization problems into one. Hence, multi-objective techniques allow decision-makers to
consider the exchange between the various benefits of various objects and select the best
option [115,116]. Many genuine issues have several objectives, such as cost minimization,
performance maximization, reliability enhancement, etc. These are complex but actual
issues.

The most important and time-consuming process in MOO is determining the Pareto
front from a set of points in a multi-objective field. This is generally accomplished by a
process known as no-dominant sorting [117]. Hence, in sustainable and renewable energy,
heuristic techniques, Pareto-based MOO, and parallel processing are exciting research
topics. In [118] the authors proposed a multi-objective approach that not only calculates
the traditional Pareto frontier but also compiles near-optimal solutions that enlarge the
options portfolio for microgrid developers. The proposed iterative approach stores all
the simulated answers and post-processes them to provide the developer with multiple
design options. A modified version of multiple-objective particle swarm optimization, with
improved convergence criteria based on the quadratic mean of the crowding distances and
spread, is developed and used. In this [119], the authors maximize the RES penetration
and improve the system’s voltage profile modelled by minimizing the operation cost
through a multi-objective optimization model. In [120], the authors presented a novel
approach using a decomposition-based multi-objective evolutionary algorithm to optimally
design a PV/wind/diesel hybrid microgrid system considering load uncertainty. Loss of
power supply probability and cost of electricity were the optimization problem’s objective
functions. In [121], the authors proposed a rule-based EMS optimized by a nature-inspired
grasshopper optimization algorithm for long-term capacity planning of a grid-independent
microgrid incorporating a photovoltaic wind turbine, a battery bank, and a diesel generator.
In addition, a rule-based algorithm was used to implement an EMS to prioritize the usage
of RES and coordinate the power flow of the proposed microgrid components. Table 3
explains the different objective functions and sources of the different MOO algorithms.



Electronics 2023, 12, 1062 17 of 31

Table 3. Brief discussion on multi-objective optimization algorithms.

Authors/References Sources Objectives

J graca Gomes et al. [37] RESs
Study of optimization methods, energy storage system optimization,

developing reliable power, optimal operation of hybrid MG,
Levelized cost of energy and net present cost.

Jose Maurilio Raya-Armenta
et al. [48] RESs

Developing reliable power, supply environmentally friendly energy
supply, energy management optimization, and economic and

emission reduction.

Halil Cimen et al. [55] RES, BS, EVs Energy management optimization, reduction in operating cost.

Davide Fiority et al. [77] RESs Calculates the traditional Pareto-Frontier and compiles near-optimal
solutions.

Heydar Chamandoust et al.
[78] RESs Improve the voltage profile, improve reliability, maximise renewable

energy penetration, and minimise operating costs.

Houssem Rafik El-hana
Bouchekara et al. [79] PV, WT, DG Load uncertainty, power supply probability loss, and electricity cost.

Abba Lawan Bukar et al.
[80] PV, WT, BS, DG Minimize the cost of energy, deficiency of power supply probability,

reduction of emission, and reduced fuel consumption.

Harish Kumar et al. [93] PV, WT, DG, BS, thermal
load controller (TLC). Levelized cost of energy, net present cost and high renewable fraction.

Aykut Fatih Guven et al.
[100] PV, WT, BS Optimal size, reliability improvement, minimization of annual

system cost

Davide Fioriti et al. [101] RESs Levelized cost of energy, Net present cost, discounted payback period

Devansh Agarwal et al.
[102] RESs The optimal operation is to minimize the operating cost, minimise

power loss during local trade, and maximise total market gain.

Wenqiang zhu et al. [103] WT, BS, Tidal turbine
currents

Minimize the loss of power supply probability, the cost of energy and
the sizing optimization problem

4.3. Different HRES with Multi-Objective Optimization Methods

Many objective approaches for solving problems in RES are discussed in various
works and a few suggestions are that they are used in HRES. A GA is designed for issues
with multiple objectives. According to this research, genetic algorithms are a popular meta-
heuristic technique suited for these problems. In recent years, genetic algorithms have
been a standard method for objective optimizations of several HRES. In [122], the authors
designed the HRES over its lifetime by considering its operation. The sizing issue in HRES
has received more attention in recent papers than other issues such as placement, cost,
design, and control approach. In [123], the authors addressed how a hybrid model could
improve the forward-feeding back-propagation model with a GA. A GA optimized the
sizing and economic analysis of a WT–PV–battery hybrid system, reducing the annualized
system cost. In this work, researchers used a MOGA to optimize the sizing of a hybrid
solar–wind–battery system with two main goals: reducing the annualized cost of the system
and decreasing the feasibility of losing power supply. Table 4 shows the performance of
each MOO algorithm regarding different objectives, as mentioned. It can be concluded that
the MOO algorithms are superior to the single objective optimization techniques.
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Table 4. Performance evolution of each MOO algorithm.

Reference MO Algorithms Objectives Description

[7]

MOPSO, pareto envelop-based
selection algorithm-II (PESA-II),

strength pareto evolutionary
algorithm-II (SPEA-II)

NPC, COE and CO2
emission

A SPEA-II algorithm is the best in terms of
robustness and reliability. In general, the

proposed hybrid microgrid system is
cost-effective and reliable and ensures energy is

available more than 98% of the time at a
reasonable cost.

[8] MOEA
Optimal size, NPC,

COE and CO2
emission

The multi-objective optimal design of hybrid
PV-wind-diesel-battery system for the reliable

power-supply.

[13] MOPSO, MOWDO, MOGA Operating cost,
Carbon emission

The operating cost is reduced by 12% and 6%
with and without hybrid DRPS and IBT using

MOGA, 13% and 8% using MOWDO compared
to MOPSO. Similarly, the availability of RES is
maximized by 20% and 17% using MOGA and
25% and 19% using MOWDO as compared to

MOPSO, respectively.

[14] MOGOA

Voltage profiles, DG
BESS costs, and

maximize energy
transfer

MOGOA is used to solve the formulated
constrained optimization problem. The

performance of the MOGOA algorithm is
compared with the other heuristic optimization
algorithms using two Pareto optimality indices.

[15] MO model based on mixed-integer
programming approach

Carbon emission,
energy cost

The proposed system is designed with 100
photovoltaic modules and 94 wind turbines; the

system can supply 18% of the plant’s energy
requirements while emitting the least amount of

carbon dioxide (90,899 kgCO2-eq/yr).
Furthermore, the energy cost is 0.0557 $/kWh,
less than the cost of kWh purchased from the

grid.

[18]
MO robust optimization (Monte
Carlo simulation and simulated

annealing algorithm)
Levelized COE

Compared with the deterministic optimal design,
the standard deviation of LCOE of the

multi-objective robust optimum is reduced by
17.22%, which is less sensitive to the

uncertainties.

[19] MOGA Optimal size, the total
cost of electricity

To size the developed system considering all
storage dynamics. To achieve an optimal system
configuration, different economic analysis cases

were established.

[31]
MOPSO and technique for order
preforence by similarity to ideal

solution method (TOPSIS)

Cost of electricity,
pollution emissions

The proposed method is compared with
simulated annealing and genetic algorithm to
show its faster computation speed and higher

solution quality.

[32] MOPSO
Reliability of the
system, cost of

electricity production

The optimization and the assessment of an
HMGS in different cities to point out the

potential of each location for HMGS investment.
MOPSO is used to find the optimal system

configuration and the optimal component size
for each location

[42] MOMVO Voltage profile,
Annual cost

The proposed formulation eliminated all the
voltage magnitude violations and provided

almost 50% loss reductions. Pareto fronts of the
proposed method are be better than the

non-dominated sorting genetic algorithm and
multi-objective particle swarm optimization.
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5. Optimization Techniques

The optimization algorithms focus on optimizing a problem and refer to strategies
for finding the upper and lower bounds of a given function by computing the value of
the process using inputs extensively chosen from within an acceptable set. The techniques
which are widely used for microgrids are described in this section. Since the utility grid
can be considered the reference distributed energy resource, several existing optimizers
have been used in grid-connected MG. These algorithms are classified as traditional,
heuristic/meta-heuristic, and hybrid optimization methods. The conventional techniques
depend on linear and non-linear mixed-integer programming algorithms [124]. Since the
1940s, the problems in the power system can be solved by heuristic search techniques. These
depend on the situation that uses trial and error to find solutions to challenging issues
quickly. Furthermore, population-based heuristic approaches are thoroughly examined,
and various hybrid methods relating to algorithms that combine multiple methods are
presented.

In [125], the authors implemented a novel hierarchical two-tier optimization method-
ology for a network of HRESs. In the proposed method, the operational optimization
of each HRES was carried out by minimizing the operating cost of various sub-units in
the first layer. In the second layer, three cooperative optimization strategies inspired by
concepts of double-auction e-marketing were applied where HRESs were assumed to
operate under the grand coalition. In [126], the author provided an in-depth overview
of the EMS optimization problem of islanded microgrids (IMGs) by systematically ana-
lyzing the most representative studies. Metaheuristic algorithms can be population- or
trajectory-based and are available in many shapes and sizes. On the other hand, GAs
work with a population of strings and are categorized as population-based algorithms,
whereas hill-climbing algorithms work with a trajectory. Metaheuristic algorithms are
divided into two groups: single-solution-based and population-based. The population-
based metaheuristic algorithms are divided into two types 1. Evolutionary algorithms
2. Swarm-intelligence algorithms. The following Table 5 explains the difference between
heuristic and metaheuristic algorithms.

Table 5. Comparisons between Heuristic and Metaheuristic Algorithms [127].

Heuristic Algorithm Metaheuristic Algorithm

This technique depends on the problem This technique does not depend on the
problem

They are frequently adjusted to the issue at
hand

However, to customize the approach to this
issue, significant fine-tuning of its intrinsic

properties is required.

They make every effort to take advantage of
the problem’s unique characteristics.

They do not take benefit of the problem’s
uniqueness.

They are frequently very greedy. They are not avaricious

They frequently become locked in a local
optimum and, as a result, fail to find the global

optimum solution.

They may even be willing to put up with a
temporary degradation of the solution.

By comparing both, it can be concluded that the heuristic algorithms have some
disadvantages over the meta-heuristic algorithms.

5.1. Heuristic Optimization Techniques

Heuristic techniques popularly used for the EMS of islanded microgrids are GWO,
AC, PSO, artificial bee colony (ABC), teaching learning based optimization (TLBO), EAs,
GS, JAYA, and their advanced versions. According to the observation of all heuristic tech-
niques, the most popular algorithms are PSO and EAs, the ant colony optimization (ACO),
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gravitational search algorithm (GSA), TLBO, and JAYA algorithms are also employed for a
few applications [128].

5.1.1. Genetic Algorithms (GA)

GA was introduced by Holland in 1975 and is one of the most-used EA approaches.
Generally, it is a population-based approach used to simulate the process of natural selec-
tion. The GA method consists of initialization, objective function (OF) assessment, selection,
crossover for offspring production, and mutation. The OF in the offspring is analyzed, and
the termination criterion is finally validated. The procedure is complete if the stopping
requirement is fulfilled; otherwise, it must be repeated. Many papers have examined the
efficacy of this approach for IMG energy management [129].

GA optimizes single and MO operations while keeping operational costs and emis-
sions to a minimum. Furthermore, a non-dominated sorted genetic algorithm (NS-GA) is
employed for the optimal design of an MG while considering the cost of power generation
and the life-cycle cost of the battery. The optimization is carried out in a general IMG
by investigating nine alternative situations and nine weighting factor combinations for
the multi-objective problem formulation [130]. The outcomes are compared against two
different standards, PSO and GA methods. The accuracies of the memory-based genetic
algorithm (MGA) and PSO are identical but much superior to the others. However, the
processing time in the PSO-based algorithms is nearly twice as long.

5.1.2. Ant Colony Optimization Algorithm

In 1992, Dorigo initially proposed this simple and fast heuristic optimizer. ACO is
motivated by the activity of ants when looking for food. These little insects often leave
pheromones behind them that their neighbors can identify. This pheromone-filled path,
known as the favored path, is used by posterior ants by increasing the strength of the
pheromone and finally converging on the shortest route, which is from the nest to the food
source [131]. ACO is also used as an IMG for ED and emission reduction. Finally, compared
to the gradient-based technique, the ACO method is more effective.

5.1.3. Particle Swarm Optimization Algorithm

Kennedy and Eberhart developed this technique in 1995. The behavior of social
organisms such as birds, ants, and fish influences PSO. The algorithm replicates how
members communicate information among themselves. The mathematical formulation
includes two components to describe each group member’s intellectual and social impact
in determining the best response. The PSO algorithm has been successfully applied for
ED to grid-connected IMGs with intense centralized distributed energy resources (CDER)
penetration. PSO is used with a deep recurrent ANN to estimate solar energy supply and
load demand.

The authors of [132] employed a supervised PSO method to restrict the velocity of the
particles. They provided a variable cost function for recharging with a penalty term when
the battery is not entirely restored by focusing on the grid-connected configuration. In [133],
the authors concentrated on multi-layer energy management systems of multi-microgrid
intelligent distribution networks. An evaluation of effectiveness in actual power losses
for energy management within units was presented. The demand response technique
was incorporated into the optimization procedure. In [134], the authors developed a
multi-objective optimal dispatch model for a standalone MG composed of wind turbines,
photovoltaics, diesel engine unit, load, and battery energy storage system. The economic
cost, environmental concerns, and power supply consistency were expressed via sub-
objectives with varying priorities. Then, the analytic hierarchy process algorithm was
employed to specify the weight coefficients of the sub-objectives reasonably.
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5.1.4. Simulated Annealing Algorithm (SA)

In 1983, Kirkpatrick, Gelatt, and Vecchi were the first to apply simulated annealing to
optimization problems. It is a random search approach that simulates the metal annealing
process. Metal is heated at extreme temperatures, then cooled and condensed to form a
crystalline condition using the least amount of energy. As a response, the metal produces
larger crystals with fewer defects within the metallic structure. The most important aspect
of the entire operation is temperature control. SA is less prevalent in hybrid system
scaling than GA or PSO. For a size problem in an HRES, the authors in [135] compared
SA to another metaheuristic approach termed the tabu-search algorithm. According to
the findings, SA was faster to converge but less efficient. In [136], the authors described
the Levy flight and fitness distance balance (FDB)-based coyote optimization algorithm
(LRFDBCOA) for improving the automated generation control (AGC) of three different
interconnected PV-based power systems.

5.1.5. Artificial Bee Colony Algorithm

In 2005, Karaboga introduced this method. ABC attempts to replicate the hunting
behavior of a bee colony. The bees are divided into three groups: (1) employed bees
account for half of the whole population, searching for food and relaying this message
to onlooker bees; (2) the other half of the population, the onlooker bees, is in charge of
picking the finest food that the hired bees locate; and (3) the third type of bee is the scout,
produced by a few working bees. These bees quit their usual food source in search of
new sources. This method was used to manage the energy of an IMG. Unfortunately,
this technique is sensitive to becoming trapped at a minimum and has poor stability in
significant optimization problems such as MG energy management. As a result, two
improvements to the conventional ABC optimization approach are presented to improve its
performance, including using a different probability function for the exploitation process
and a new search strategy [137].

5.1.6. Gravitational Search Algorithm

In 2009, Rashedi proposed this technique. GSA is based on the physical principles
of motion and gravity, with each agent representing the object’s mass and determining
the item’s performance. This procedure causes actual items to move, with a preference
to move towards the direction of the agents with heavier weights. The algorithm does a
comprehensive search since the more significant the mass, the slower the displacement.
By simulation, this approach is used to control the energy of an IMG. GSA-based EMS is
contrasted with PSO-based EMS. The results suggest that GSA is faster and saves a lot
of money. Several enhancements to the classic GSA are proposed. In [138], the authors
proposed that the starting estimations be compared against their opposite ones. As per
statistical inference, a guess will reflect the ideal answer better 50% of the time than its
equivalent opposing guess. Thus, applying this method using the best assumptions in
each iteration is preferable. This procedure will accelerate the convergence. To enhance
convergence characteristics and deal with energy availability, market rates, and load profile
uncertainties. In [139], the authors proposed using probability functions for uncertainty
modelling and a self-adaptive mutation technique for GSA to reduce the total operational
expenses of a regular grid-connected MG.

5.1.7. Teaching–Learning-Based Optimization Algorithm

The effectiveness of heuristic optimization methods is mainly determined by param-
eter tuning. To address this issue, in [140], the authors presented the TLBO method in
2011, which does not require unique parameter tuning. The flow process of communication
between a student and a teacher for sharing knowledge about a subject is the foundation
of TLBO. Initialization is a step in the algorithm process in which each control variable is
initialized with a vector of various values within the permissible limits. The average value
of every variable was determined, and the best population member is identified as the
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teacher of a corresponding cycle. Each parameter was moved between its average value
and the teacher’s corresponding value. Considering that the control parameters interact
with one another to strengthen their knowledge at this level [141]. Whenever a stopping
requirement is reached, the algorithm terminates. The TLBO method was used in an MG for
ED of CDERs and was compared to three gradient-based optimization techniques: regular
false, bisection, and the golden section. Hence, the TLBO is similar to gradient-based
algorithms, obtaining optimal operating points without complicated formulations. The
longer processing time is a disadvantage. In [142], the authors recommended that the
training phase of TLBO be modified to prevent obtaining trapped in a minimum and to
investigate more broadly in the global optimization space. In terms of processing time and
accuracy, the modified TLBO outperformed the others.

5.1.8. Grey Wolf Optimization Algorithm

Mirjalili initially reported this technique in 2013. GWO is influenced by grey wolf
hunting rules and their responsibilities in the group, which typically includes 5 to 12 wolves.
The group’s leader is alpha, while the second command is beta, which helps strengthen
the leader’s orders and provides feedback to the leader. The wolf at the bottom of the
hierarchy is known as the omega, and it is always required to remain submissive to all
others. Other wolves that do not belong to these groups are known as deltas and are
generally hunters. In [143,144] optimization issues, the best solution is commonly referred
to as alpha, while the second and third best solutions are referred to as beta and gamma,
respectively. When the outcomes are compared to other standard heuristic algorithms,
such as PSO, it is feasible to observe that GWO outperforms them regarding the number
of iterations needed to converge. Convergence is authorized under various test settings,
including communication systems and system architecture changes. GWO was used to
reduce the operating costs of a grid-connected MG. Furthermore, a grid-connected MG was
optimized using MOGWO, performed similarly to MOPSO but with an outside archive
to store dominant answers. In [145], the authors proposed the reconfiguration of DG of
techno-economic analysis of hybrid micro grids using crow search-grey wolf optimization
(CS-GWO) algorithms. In [146,147], the authors presented a novel expert fuzzy system-grey
wolf optimization (FL-GWO)-based intelligent metaheuristic method for battery sizing and
energy management. The proposed energy management operation was carried out by a
grey wolf optimizer (GWO) that helped to set the membership functions and rules of the
fuzzy logic expert system. The unit commitment issue, which is essential for the operation
of the isolated microgrid, was also considered.

5.1.9. JAYA Algorithm

In 2016, Venkata introduced this population-based technique. In Sanskrit, the term
JAYA signifies “victory”. This technique, similar to teaching learning-based optimization,
was recently developed for optimization without parameter adjustment (only the number
of generations, stop criterion, and population size is required). However, unlike TLBO,
which requires two stages in each cycle, JAYA requires one process. This heuristic approach
facilitates the optimal solution while rejecting the worst solution. Each parameter is
modified by inserting a term that leads to an optimal solution and eliminating another
word that leads to the worst solution [148]. This technique was used to control the energy
of grid-connected IMGs. Using the peak load pricing scheme in the load profile, JAYA
achieves the lowest cost of production with the least amount of computing time.

When the MG employs ESSs, the results indicated that JAYA is superior in terms of
overall energy cost and preparation time. However, reduced client satisfaction was reported
regarding the load waiting period. JAYA, PSO, a gradient-based algorithm, and ACO are
used in the MO economic load dispatch optimization. The results placed JAYA in first place.
In [149], The authors have proposed several improvements to increase its efficiency and
processing time. The traditional JAYA is modified in three ways: changeable population
size, searchability enhancement, and three mutations. Furthermore, the changed JAYA
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algorithm behavior was compared with TLBO, PSO and JAYA in a deterministic scheme;
the changed algorithm outperformed the others. So far, several heuristic methods and their
use in IMG operation optimization have been discussed.

5.2. Hybrid Optimization Techniques

The hybridization of several optimization algorithms has been suggested to enhance
the effectiveness of the EMS optimization issue. This mixture is dependent on the particular
problem requirements. For example, FL and GWO were proposed [150]. The FL method
was used to calculate the best battery size, while the GWO algorithm was used to calculate
the optimal ED. FL-GWO exceeded an RB approach and regular GWO in terms of economic
benefits. However, the percentage of renewable energy was limited, particularly during
the winter season. Using the mutation approach of GA in ABC, a MABC algorithm was
presented, which was applied to address a day-ahead ED challenge in an IMG in the RHC
architecture. PSO, ABC and GA were compared with the algorithm. The results indicated
that MABC is superior in terms of reliability but has the most significant processing time.

6. Discussions

Nowadays, the multi-objective optimization approach has become more popular than
single-objective optimization. The research issues in MOO are huge and can be found in
different areas of human life. Beyond this, there are many methods to determine MOO
problems. These problems do not require complex mathematical equations to solve and
produce compromise solutions. Reviewing all the papers shows that the main objectives
of these studies are minimum energy cost, minimum net present cost, a high percentage
of renewable fraction, low carbon emission and minimum operating cost. Multi-objective
optimization techniques with evolutionary algorithms include MOGA, MOPSO, MOGWO,
MOGOA etc. It can be seen that there is a possibility of using multi-objective hybrid
evolutionary algorithms to improve reliability and reduce the operating cost of the hybrid
AC/DC microgrid.

7. Conclusions

This article reviewed recent research articles on renewable energy sources with multi-
optimization with evolutionary algorithms for the optimal design of a hybrid AC/DC
microgrid. While numerous optimization methods of RESs exist with a single objective
optimization, only a few studies have addressed the multi-objective optimization of a stand-
alone HRES system. The multi-objective optimization algorithm provides a better optimal
design compared to single-objective optimization. A specific evolutionary algorithm with
multi-objective optimization was utilized for the specified region of the stand-alone HRES
system, including MOGA, MOPSO, MOGWO, and MOGOA optimization. Furthermore,
to enhance the performance of a hybrid AC/DC microgrid, there is a need to use hybrid
MO optimization methods. In this context, MOGA and MOPSO are the most valuable and
promising approaches in HRES design among the multiple MOEAs. Thus, employing other
combinations of multi-objective optimization may be preferable to increase the performance
of optimal stand-alone hybrid microgrid systems.
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Nomenclature

Symbols
m2 Meter Square
m/s Meter per Second
V Volts
% Percentage
Abbreviations
ABC Artificial Bee Colony
AC Alternating Current
ACS Annualized Cost of the system
ACO Ant Colony Optimization
AE Applied Energy
AGC Automatic Generation Control
Ah Ampere hour
AJK Azad Jammu and Kashmir
ANN Artificial Neural Network
ASCJ Applied Soft Computing Journal
BA Bat Algorithm
BESS Battery Energy Storage System
CDER Centralized Distributed Energy Resources
CEE Computers and Electrical Engineering
COE Cost of Energy
CO2 Carbon dioxide
DC Direct Current
DG Distributed Generation
DFIG Double-Fed Induction Generators
EA Evolutionary Algorithms
ECM Energy Conversion and Management
ED Energy Distribution
EMOGWA Enhanced multi-objective grey wolf optimization algorithm
EMS Energy Management System
EP Energy Programme
ESS Energy Storage System
EVs Electrical Vehicles
FDB Fitness Distance Balance
FL Fuzzy Logic
FOPID Fractional order frequency Proportional-Integral-Derivative
GA Genetic Algorithm
GSA Gravitational Search Algorithm
GWO Gray Wolf Optimization
HEV Hybrid Electric Vehicle
HMOMFO Hybrid multi-objective moth flame optimization
HOMER Hybrid Optimization Multiple Energy Resources
HPS Hybrid Power System
HRES Hybrid Renewable Energy Sources
hSA-GA Hybrid Simulated Annealing-Genetic Algorithm
IBA Improve Bat Algorithm
IBT Incline Black Tariff
IMOWCA Improved multi-objective water cycle algorithm
ISMODA Immune selection multi-objective dragonfly optimization algorithm
IMGs Islanded Micro Grid System
IABC Improved the artificial bee colony algorithm
JCP Journal of Cleaner Production
kV kilo Volts
LCE Life Cycle Emissions
LRFDBCOA Levy flight and Fitness Distance Balance-based coyote optimization
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Algorithm
LPSP Loss of power supply probability
MABC Mutation-based Artificial Bee Colony
MAS Multi-Agent System
MBA Mine Blast Algorithm
MG Micro Grid
MW Mega Watt
MO Multi-Objective
MOOP Multi-Objective Optimization
MODE Multi-objective differential evolution algorithm
MMODA Modify multi-objective dragonfly algorithm
MOALO Multi-objective ant lion optimization algorithm
MOFEPSO Multi-objective feasible enhanced particle swarm optimization
MO-MFEA-II Multi-objective multifactorial Evolutionary Algorithm.
MOCWCA Multi-objective chaotic water cycle algorithm
MOICA Multi-objective imperialist competitive algorithm
MOSCA Multi-objective sine cosine algorithm
MOBSFPA Multi-objective bat-search flower-pollination algorithm
MOMVO Multi-objective multi-verse optimization algorithm
MOWOA Multi-objective whale Optimization Algorithm
MOWDO Multi-objective wind-driven optimization
MOPSO Multi-objective particle swarm optimization
MOSBO Multi-objective satin bowerbird optimizer
MOEA Multi-Objective Evolutionary Algorithm
MOEA-DM Multi-objective evolutionary algorithm with decision-making
MOGOA Multi-objective grasshopper optimization algorithm
MOGWO Multi-objective grey wolf optimization
MOFMO Multi-objective moth-flame optimization
MSSA Multi-Objective Salp Swarm Optimization
MOBA Multi-Objective Bat Algorithm
MOGA Multi-Objective Genetic Algorithm
MIMO Multiple Input Multiple-Output
MPPT Maximum Power Point Tracking System
NSGA-II Non-Dominated Sorting Genetic Algorithm-II
NPC Net present cost
OPF Optimal Power Factor
PV Photo Voltaic
PSO Particle Swarm Optimization
PMSG Permanent Magnet Synchronous Generators
RB Risk-Based
R&D Research and Development
RDNs Radial Distribution Networks
RDS Radial Distribution System
RE Renewable Energy
RES Renewable Energy Sources
RHC Rural Health Clinic
SA Simulated Annealing
SBA Super Bat Algorithm
SCS Sustainable Cities and Society
SOC State of Charge
SPV Solar Photo Voltaic
TEG Thermoelectric generator
TLBO Teaching Learning-Based Algorithm
TOPSIS Technique for Order Preference by Similarity to Ideal Solution method
TS Tabu Search
UPF Unity Power Factor
WECS Wind Energy Conversion System
WT Wind Turbine
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