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ABSTRACT 

Taher, Ahmed A. Ph.D., Purdue University, December 2014.  Multi-Objective 

Optimization and Meta-Modeling of Tape-Wound Transformers.  Major Professors:  

Scott Sudhoff and Steven Pekarek. 

 

 

 

In the research presented herein, design models of tape-wound transformers to 

support component and system-level optimization are considered. As a basis for 

component optimization, a magnetic equivalent circuit (MEC) model is derived. The key 

components of the MEC model are the leakage permeances, which have been established 

using analytical techniques and validated using both 2D and 3D finite element analysis. 

To enable high frequency design, expressions that predict the winding AC resistance and 

the proximity effect loss are derived. In addition, a thermal equivalent circuit (TEC) 

model is established to predict the temperature throughout the transformer and to account 

for temperature impact on winding resistances. To predict transformer performance, the 

T-equivalent, MEC, and thermal models are coupled to determine the magnetic operating 

point and establish core loss, winding loss, voltage regulation, and inrush current given 

the core and winding geometries, material properties, input voltage, and rated load. The 

coupled MEC/T-equivalent and the TEC circuit-based performance evaluation is 

demonstrated within an optimization in which the goals are to minimize mass and 

minimize loss.   

To support system-level optimization, a scaling technique is derived in which 

transformer size/mass is predicted based upon rated power, specified current density, and 

frequency. Curve-fitting techniques are used to derive a meta-model for scaled mass and 

power loss. The meta-model is compared to designs obtained using detailed design code. 

A strong agreement between the results from the detailed design code and that predicted 

by the meta-model is achieved.  
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1. INTRODUCTION 

In this research, an objective is to establish tools that enable multi-objective design 

of tape-wound transformers. Tape-wound transformers are used in numerous 

applications, including power distribution, galvanic isolation, amplifiers, and dc-dc 

converters [1]-[12]. An advantage of tape-wound transformers is that there is no airgap in 

the core. In contrast, in stacked lamination designs, cores are typically assembled by 

bonding U or I segments together, which creates an effective airgap, which increases the 

MMF necessary to obtain a desired flux level in the core [1], [2].   

A first step in the design process is the derivation of a magnetic equivalent circuit-

based model. Within the model, MMF sources are used to represent the primary and 

secondary windings. To model the flux paths, the transformer core is divided into flux 

tubes. The permeance of each tube is expressed in terms of the tube dimensions and 

permeability.  A particular focus is on the derivation of the tubes used to model leakage 

paths, which are critical to accurately capture transformer performance.  To enable rapid 

calculation, symmetry is used to minimize the number of unknowns. The MEC model has 

been validated using comparisons with 2D and 3D Finite Element models. Therein, a 

specific focus was to establish techniques to isolate and compare leakage inductances. It 

has been found that the predicted values obtained from the MEC are in reasonable 

agreement with finite element (FE) based values.   

A second step is to derive expressions which represent the high frequency losses in 

the transformer windings. High frequency losses are caused by two phenomena. The first 

is the skin effect which occurs in a conductor carrying an AC current. The time changing 

flux density produced by the current induces a voltage between the conductor terminals 

which leads to a current density that is higher on the outside of the conductor than on the 

inside. By calculating the induced voltage and the current density throughout the 
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conductor and using the zero-order Bessel function [13], an expression of the conductor 

AC resistance is derived. This expression is then extended to derive the AC resistance of 

the transformer windings. The second phenomenon is often preferred to as proximity 

effect. Proximity effect occurs in a conductor when it is exposed to an external time 

changing flux density.  An expression of the proximity effect in the conductor is derived 

as a function of the normalized peak flux density [13]. At a frequency of 1 MHz, the 

winding loss of a transformer can be a hundred times higher than the DC loss [15], which 

explains the importance of considering the high frequency loss when the transformer 

performance is evaluated. 

As a third step, the transformer thermal equivalent circuit (TEC) is derived. Initially, 

the thermal equivalent circuit is derived for a cuboidal element. Then, the transformer is 

divided into 14 cuboidal elements and the TEC is evaluated for each element. Assuming 

thermal symmetry, only one-eighth of the transformer is analyzed which provide more 

rapid analysis. Since the transformer coils includes different materials (conductor, 

insulation, and air) surrounding each other, it is convenient to homogenize the coil to an 

equivalent anisotropic material [13]. It is noted that some of the cuboids are not 

rectangular; specifically, the core corner and the end winding curvatures. To resolve this 

issue, an effective rectangular element is derived such that the total surface area in each 

direction is held the same [13]. Using the Matlab based TEC toolbox [74], the nodal 

temperatures at the transformer cuboids are evaluated.  

A fourth step is to establish coupling between the MEC and a T-equivalent circuit 

which includes a core resistance to model core loss, to iteratively establish transformer 

performance from specified primary voltage and load impedance. To do so, the approach 

proposed in [13] is applied. Specifically, the MEC model is used to establish leakage 

inductances and an initial guess of the magnetizing inductance.  From these values, the T-

equivalent circuit is used to predict magnetizing and secondary voltages and currents, as 

well as the primary current. These values are then used to update the magnetizing 

inductance. In addition, the winding currents are input to the MEC model to calculate 

core flux densities, which are used to update the core resistance.  The final iteration is 

then used to obtain transformer performance, which includes voltage regulation, in-rush 
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current, core loss, and winding loss. Using the TEC model, the values of the winding 

resistances are updated. 

Within the design process, a multi-objective optimization process based on a tradeoff 

between the transformer total mass and total loss is performed. In this optimization 

process, the winding and core geometries and material properties are considered as free 

or arbitrary parameters. In order to obtain practical designs, constraints include limits on 

in-rush current, physical dimensions of the transformer, mass, voltage regulation, current 

density, bending radius, winding height, no-load voltage, and primary current amplitude 

are imposed. The total mass and total loss correspond to each set of free parameters are 

evaluated. The process is repeated to obtain a Pareto-optimal front that constitutes the 

trade-off between the transformer mass and loss. Herein, this process is highlighted for a 

5 kVA, 480/240 V, 60 Hz transformer.  

The MEC model enables component design. However, in system-level design 

studies, one cannot represent each component in great detail. Rather, there is a desire to 

capture the performance (i.e. size and efficiency) based upon specifications of power and 

voltage.  Herein scaling laws are considered on a path to develop a meta-model in which 

dimensions, parameters, and core loss are estimated based upon desired current density, 

power, and frequency [41]. The meta-model has been validated through comparison with 

results obtained using a detailed design process.     

Prior to proceeding, it is necessary to consider literature related to these topics. 

Single- and multi-objective design of transformers has been explored by several 

researchers [13]-[26]. The typical performance objectives have been to minimize loss, 

minimize mass, minimize production cost, and minimize operating cost. The uniqueness 

of the design approach considered herein is primarily the model upon which the 

optimization has been performed, and in particular the accuracy of the leakage inductance 

predictions, which are critical to ensure actual performance matches predicted 

performance. More specifically, in [14]-[26], analytical expressions that relate excitation 

and core flux density are used as a basis for design. The analytical expressions are 

derived under the assumption that leakage flux is negligible.  In [13], an MEC is used as 
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a basis for design and leakage permeances are included. However, the derivations are 

based upon a transformer with a rectangular core. 

  Related to the transformer modeling, several have considered methods to 

approximate transformer leakage inductance [27]-[39]. In [27] and [28] a technique was 

developed in which finite element methods are used to numerically solve for magnetic 

field within the transformer and surrounding air. Then the field solution is used to 

calculate the energy which is used to obtain the leakage and magnetizing inductances. 

Although interesting, a limitation of this method is that it is relatively expensive in terms 

of computational cost. Second, it requires overhead to establish and grid each new 

geometry and interface the FE model.  

Leakage inductances can be estimated using analytical techniques to solve for the 

magnetic vector potential in the regions within and surrounding the core. Popular 

methods of doing so involve using a Fourier-series basis function to represent the vector 

potential. The resulting vector potential is used to establish field energy, which is then 

used to compute inductance [29]-[34].  In a related effort, the method of images [35]-[37] 

has been proposed wherein the boundary conditions are replaced by an infinite set of 

image conductors. The vector potential is solved for this set of image conductors.  

Subsequently, the total magnetic energy is expressed as a function of the magnetic vector 

of each image conductor. For a core type transformer with interleaved windings, this 

method tends to be prohibitively involved. 

Historically, researchers have created generalized expressions for leakage paths 

around core-type transformers [38], [39]. It is difficult to find the original sources and 

derivations of these expressions, but they are often attributed to [40]. For example, 

Lebedev approximates the leakage inductance of a core type transformer as the sum of 

three parts: the first part is associated with the leakage flux path due to the coil segments 

inside the core window, the second part is related to the yoke leakage flux path, and the 

third part is used to represent the leakage flux path caused by the core segments exterior 

to the core. Since the two coil segments interior to the core window are analogous to the 

coils of a shell-type transformer then the first term of the leakage inductance can be 

calculated using the methods developed for estimating the leakage inductance of a shell-
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type transformer. The second term is approximated as a function of the number of 

primary windings and the core conductivity. An expression for the third term was 

obtained by treating the exterior winding segments as a winding bundle which wound 

around the core. The problem with this method is that its application is restricted to two 

winding transformers with each winding created using a single coil. Extending this 

method to transformers that have multiple coils per winding adds significant complexity.  

In this research, an analytical approach is used to obtain the leakage permeances 

associated with each coil using an approach similar to that proposed in [13]. 

Subsequently the leakage inductances are calculated using the magnetic equivalent circuit 

(MEC) [41]-[46]. The advantage of this method is that it is relatively straightforward to 

implement and is applicable to a wide range of transformer configurations. 

In the literature, various methods to model the high frequency effect on the winding 

loss are discussed [47]-[62]. Dowell’s method is used to evaluate a ratio between the AC 

and DC resistance [47]-[52]. To derive this ratio, the winding is divided into portions 

where each portion spans a region from zero mmf to a positive or a negative peak mmf. 

First, the DC resistance is obtained in terms of the transformer geometry. Then, a 

frequency dependent AC to DC resistance ratio is derived by calculating the induced 

voltage and the current density under the assumption that the leakage flux lines are 

parallel to the winding surface. This ratio is multiplied by the DC value to obtain the 

corresponding AC value. It should be noted that this method is derived for foil windings. 

To apply this method to round conductors, they need to be replaced by equivalent square 

conductors. The dimensions of the square conductors are calculated so that the DC 

resistance is kept the same. Then the square conductors are combined to form a foil 

winding; then the foil winding is stretched in the height direction until it has similar 

height to the core interior height. This increase in height is then compensated by a 

correction factor called the porosity factor. Drawback of this method is that it is only 

derived for two winding transformer and it is based on one-dimensional field analysis. In 

addition, replacing a round conductor by a square conductor tends to underestimate the 

AC resistance as frequency increases. Also, the correction factor makes the skin depth a 
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function of the transformer dimensions although the skin depth is typically defined a 

material and frequency related constant.  

Another analytical method called Ferreira method which can be applied directly to 

round conductors is used to predict the transformer skin and proximity effect [53]-[57]. In 

this method, it is assumed that the magnetic field due to proximity effect is uniform 

within the conductor. Based on that it has been proved that the proximity effect and the 

skin effect are orthogonal and thus decoupled. Using Kelvin functions, the AC resistance 

can be expressed in terms of the DC resistance. This expression is composed of two 

terms; the first term represents the skin effect and the second term represents the 

proximity effect. 

In a related method, a 2-D numerical simulation results is compared with the Dowell 

method and the Ferreira method [58]. Based on the simulation results, both methods are 

reasonably accurate for relatively low frequencies but the error in these methods can go 

up to 60% for frequencies in the MHz range. In addition, the Dowell method tends to be 

more accurate when the conductors are close to each other while the Ferreira method 

tends to be more accurate when the conductor are loosely packed. To compensate the 

error in the Dowell method, two coefficients were introduced to the Dowell function and 

their values are obtained using the curve fitting techniques. A good agreement with the 

simulation result was achieved using this modification.  

Many analytical methods explained above are based on one dimensional field 

analysis of eddy current effects which may not be accurate in predicting the performance 

of a magnetic device that has multiple windings, an air-gap, or a relatively short winding 

depth [47]-[57]. On the other hand, using the numerical eddy current analysis to predict 

the high frequency loss in the device is computationally expensive [58]. Another issue 

with the numerical methods is the length scale problem where the dimensions of 

conductors or strands are too small compared to the transformer overall dimensions. To 

resolve this issue, the proximity effect in the transformer winding is calculated using the 

square field derivative (SFD) method discussed in [59]-[62]. The SFD method can be 

used to calculate the proximity effect in round and litz-wire conductors and it can also be 

derived for rectangular conductors. A first step is to calculate the flux density throughout 
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each winding using numerical magnetostatic analysis. Then, field analytical analysis is 

used to derive frequency independent matrix (uniform field) [59],[62] or frequency 

dependent matrix (non-uniform field) [60], [61] which can be used along with the 

numerically calculated flux density to evaluate the proximity effect loss. Therefore, 

computationally expensive numerical eddy current analysis is not required. The SFD 

method is valid for predicting the proximity effect due to two and three dimensional field 

with an arbitrary winding excitation. It also proves to be reasonably accurate for 

predicting the proximity effect loss in inductors and transformers that have air-gap [62]. 

In [13], the flux density throughout the transformer coil segments is obtained 

analytically by applying Amare’s law to the leakage flux paths. In this research, a method 

similar to the one discussed in [13] is used to predict the transformer high frequency loss. 

An advantage of this method is that the proximity effect in some coil segments can be 

related to the leakage permeance associated with that segment which will be derived in 

Chapter 3. 

To account for the skin effect in the transformer windings, the AC resistance 

expression derived in [13] is considered. In [13], the AC resistance is first derived for a 

round conductor. Using Faraday’s law, Ampere’s law, and the material relationships, a 

differential equation which relates the current density in the conductor with an arbitrary 

radius is derived. This differential equation is solved using the zero order Bessel equation 

and the conductor boundary conditions. Then the solution of the current density is used 

along with the induced voltage to obtain the conductor AC resistance. This result is then 

used to obtain the AC resistance of the transformer winding. 

Performing the transformer thermal analysis is an important step in the performance 

evaluation. In previous literature, methods to predict the transformer transient and steady 

state temperature are discussed [62]-[68].  

 Finite element (FE) analysis can be used to perform the thermal analysis [63]-[65]. 

2-D FE model [63] may not be accurate and 3-D FE model [64] can be computationally 

expensive. In [65] a combination of 2-D and 3-D models is considered. Since the thermal 

transient is slower than the electromagnetic transit, it is assumed that the electromagnetic 

quantities reach steady state before any significant change in the thermal quantities. 
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Based on this assumption, 3-D thermal analysis is performed in time domain while 2-D 

electromagnetic analysis is performed in the frequency domain. This method may be 

sufficient for predicting the temperature of a specific design when the computation time 

is not an issue. However, when it is required to repeat the thermal analysis thousands or 

millions of times like in the case of the design optimization problems, it is convenient to 

use a fast model with much less number of elements.  

An alternative approach is a lumped parameter analytical model [66]-[68]. In [66], 

the 3-D thermal equivalent circuit was derived for a cuboidal element. The thermal model 

is derived in two steps. First the cuboidal element is analyzed with a zero internal heat 

source and then it is analyzed with a zero surface temperature. Using the boundary 

conditions, the heat equation is solved for each case and then the superposition concept is 

used to combine the results of the two cases.  

 In [13], the thermal equivalent circuit of an electromagnet is derived. The 

electromagnet is divided into several cuboidal regions. When a region, such as a coil, 

includes different materials, it is homogenized to an anisotropic material. Then the 

method in [66] is applied to each cuboid to obtain the thermal equivalent circuit of the 

whole device. The same approach is used to obtain the thermal equivalent circuit of a 

permanent magnet inductor [62], and of electric machines [67], [68]. 

Herein, similar approach to the one discussed in [13] is used to obtain the thermal 

equivalent circuit of the tape-wound transformer. 

The remainder of this thesis is arranged as follows. In Chapter 2, the transformer 

dimensions and the T-equivalent circuit are defined as the background of the transformer 

model derivation. In Chapter 3, the MEC model is derived. The key components of the 

MEC model are the leakage permeances which are calculated analytically and validated 

using 2D and 3D finite element analysis. Expressions that account for the skin effect and 

proximity effect on the winding are established in Chapter 4. To conduct the transformer 

thermal analysis, a TEC model is derived in Chapter 5. In Chapter 6, the MEC, the T-

equivalent circuit, and the TEC models are utilized to perform the operating point 

analysis and to predict the transformer resistive and core loss, voltage regulation, and 

inrush current. In Chapter 7, the stage is set for the transformer design process. After 



 

 

 

9 

defining the design space, constraints, and fitness function, a multi-objective optimization 

between mass and loss is performed using genetic algorithms. An example design is 

presented at the end of this chapter. In Chapter 8, a meta-model based scaling laws is 

developed for a two winding transformer. The meta-model is validated using a dedicated 

design code. Then, the scaling laws are extended to establish the meta-model for the tape-

wound transformer discussed in previous chapters without including the high frequency 

loss effects and the thermal model. Finally, the conclusion of this work and the 

suggestion of future work are presented in Chapter 9. 
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2. BACKGROUND 

Prior to deriving the MEC model, it is useful to define the dimensions of the 

transformer considered as well as the T-equivalent circuit that is used in concert with the 

MEC. A cross-sectional view taken from the front of a core-type tape wound transformer 

is shown in Fig. 2.1. The grey region is the core, the lighter orange region is the  -

winding and the darker orange region is the  -winding. The variables   and   are used 

to denote secondary and primary windings, respectively. As depicted in Fig. 2.1 the core 

corners are curved and not rectangular since the core considered herein is tape wound. 

The advantage of curvature is the reduction of saturation at the corners which may 

improve the transformer performance. The bending of a coil is accomplished at a certain 

radius which is proportional to the radius of the coil conductors as illustrated by the top 

cross-sectional view shown in Fig. 2.2. Thus, parallel conductors are generally used to 

reduce the bending radius. 
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Fig. 2.1 Front Cross-sectional View of Tape-wound Transformer 
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Fig. 2.2 Top Cross-sectional View of Tape-Wound Transformer 

As depicted in Fig 2.1 and 2.2, the   and   windings each have 2 coils that can be 

either series or parallel connected. To be more specific, as part of the design process, the 

cellular structure shown in Fig. 2.3 is used to construct each coil. The cellular structure 

consists of first defining the number of parallel conductors, 
xprN , used to establish a turn. 

From the dimensions of the conductor, a unit width xuw  is calculated using the diameter 

of the conductor. The cell height, xuh , is determined from the diameter of the conductor 

and number of conductors.  
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Fig. 2.3 Cell Construction 

Subsequently, a coil is formed by defining the number of unit cells 
xlN (turns) and 

the aspect ratio (coil height/coil width), which is a design parameter.  These are used to 

establish the number of unit cells placed in the width direction, 
xuwN , and unit cells 

placed in the height direction, xuhN .  An example is shown in Fig 2.4, wherein a coil with 

7xlN  and each turn composed of 3xprN  conductors, is created with 4xuwN , 

2xuhN . This corresponds to an aspect ratio of 1/2.  

As shown in Fig. 2.4, some unit cells remain unfilled with conductors; the number of 

the coil turns is equal to the number of cells that are filled.  In this research it is assumed 

that all coils used to create a winding are identical.  Each winding consists of connecting 

xcsN coils in series and then connecting the resulting series-connected coils 
xcpN  times in 

parallel. In this research, it is assumed that each winding has 1xcsN  and 2xcpN . 

Referring back to Fig. 2.1, this means two coils are connected in parallel to form the   

and   windings, respectively.   

xuh  

xuw  

3xprN
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Fig. 2.4 Coil Construction 

2.1. T-Equivalent Circuit Model 

The equivalent circuit shown in Fig. 2.5 is a relatively common electrical model of 

the transformer. As shown, r  and r  are the  -winding and the  -winding resistances 

respectively, lL  and lL  are the leakage inductances of each winding, 
mL  is the 

magnetizing inductance, and 
cR  is the core resistance which is used to represent the core 

loss. Using this circuit directly adds complication to analysis due to the presence of the 

ideal transformer (turns/ratio). Therefore, it is useful to utilize an alternative T-equivalent 

circuit model [13]. If m
 is the flux linking both windings, then by using Faraday’s law 

the induced voltages on both sides of the ideal transformer shown in Fig. 2.5 are 

  


 md
e N

dt
  

(2.1) 

  


 md
e N

dt
  

(2.2) 

Dividing (2.1) by (2.2) yields 
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Fig. 2.5 Transformer Equivalent Circuit 

Since the power on both sides of the ideal transformer must be the same, 

   me i e i i       (2.4) 

Substituting (2.3) into (2.4) one obtains 

  m

N
i i i

N


 



    
(2.5) 

Letting 

 ' N
i i

N


 



   
(2.6) 

one can express 

 
'

mi i i     (2.7) 

Applying Kirchhoff’s voltage law (K.V.L) to the right hand side of the transformer 

equivalent circuit, one obtains 

 
l

di
e v r i L

dt


         

(2.8) 

Substituting (2.3) into (2.8), the  -winding voltage equation can be related to the  -

winding induced voltage as 

 
l

N di
e v r i L

N dt

 
   



    
 

  
(2.9) 

From (2.6) and (2.9) the induced winding voltage can be expressed 
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2 2
'

'

l

N N N di
e v r i L

N N N dt

   
   

  

   
     

   
  

(2.10) 

Defining 
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v v
N


 



   
(2.11) 
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(2.13) 

a final form 

 
'

' ' ' '

l

di
e v r i L

dt


        

(2.14) 

is obtained, where '

v , '

r , '

i , and '

lL  are considered as the  -winding referred voltage, 

current, resistance, and leakage inductance, respectively. 

 One can use similar analysis to define referred load impedance in terms of actual 

load impedance as 

 

2

'

l l

N
Z Z

N





 
  
 

  

(2.15) 

Using (2.7), (2.14), and (2.15), the ideal transformer windings can be eliminated from the 

equivalent circuit, yielding the T-equivalent circuit model shown in Fig. 2.6. 

 

Fig. 2.6 Transformer T-Equivalent Circuit Model 
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2.2. Phasors 

Phasor analysis is used in some of the performance calculations outlined in later 

chapters. To set the stage for their use, it is convenient to briefly consider a time varying 

sinusoidal quantity of the form  

  2 cos   j j e fjf F t   (2.16) 

where 
jf  is a voltage, current, or flux linkage, and ‘ j ’ an ‘ ’ or ‘  ’, the phasor 

representation of this quantity is expressed 

 
 fjj

j jF F e   (2.17) 

The variables 
jF  and  fj

 are referred to as the magnitude and phase angle of the quantity, 

respectively. 
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3. MAGNETIC EQUIVALENT CIRCUIT (MEC) 

The development of a magnetic equivalent circuit (MEC) model enables efficient 

magnetic analysis and design. In this chapter, a model of a tape-wound core transformer 

is set forth. To set the stage for the MEC model, the transformer core is subdivided into 

several segments and an expression for the permeance of each segment is derived. 

Subsequently, an analytical approach set forth in [1] is used to obtain permeances for the 

leakage paths. Finite element method (FEA) is used to validate the MEC model.  

3.1. Core Permeances 

The transformer core is subdivided into eight flux tubes as shown in Fig. 3.1. The 

permeance of each tube is calculated as a function of the tube’s length and cross-sectional 

area and permeability. Permeability in the core is modeled as a function of the tube flux.  

3.1.1. Core Leg Permeances 

The permeance Pch
 is associated with the two horizontal core legs which lie between 

the nodes 2n  and 3n  and between 6n  and 7n  in Fig. 3.1. It may be expressed 

    cμ /
P


  c ch c

ch ch

ch

A A

l
  

(3.1) 

where ch  is the magnetic flux in the horizontal leg, cμ  is permeability of core material 

which is a function of the magnetic flux density in the tube, 
cA  is the core cross-sectional 

area, and chl  is the flux path length in the horizontal leg. The core cross-sectional area is 

calculated as 

 c c cA t d   (3.2) 
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Fig. 3.1 Core Permeance Segments 

where 
ct  is the core thickness and 

cd  is the core depth. The length of the horizontal leg is 

obtained using 

 2ch ci cil w r    (3.3) 

where ciw  is the width of the core interior window and 
cir  is the inner radius of the core 

corner.  

The permeance denoted Pcv  corresponds to the vertical core legs which lie between 

4n  and 5n  and between 8n  and 1n  in Fig.3.1. It is expressed as 

    cμ /
P


  c cv c

cv cv

cv

A A

l
  

(3.4) 

where cv
 is the magnetic flux in the vertical leg and 

cvl  is the flux path length in the 

vertical leg which can be expressed 

 2 cv ci cil h r   (3.5) 

where 
cih  is the height of the core interior window. 
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3.1.2. Core Corner Permeances 

The core corner permeances are those shown between nodes 1n  and 2n , 3n  and 4n , 

5n  and 6n , and 7n  and 8n  shown in Fig. 3.1. Since the magnetic field is a function of 

position on the corners, the flux lines will not be uniformly distributed within the region. 

To capture the saturation effect, it is useful to divide each corner into a number of parallel 

segments. As depicted within Fig. 3.2, each corner is divided into n parallel segments 

which have the same cross-sectional area but different tube lengths. As shown in Fig. 3.2, 

the most inner segment will be the first segment of the core corner to saturate since it has 

the shortest flux path length and hence the highest permeance while the most outer 

segment, which has the longest flux path, will be the last segment to saturate.  

 

Fig. 3.2 Core Corner Parallel Segments 

In order to derive a general expression for corner permeances, the differential 

permeance is expressed as a function of a differential radius 
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where 
,cc i  is the magnetic flux in the thi  segment of the core corner. In (3.6), it is 

assumed that the flux is uniformly distributed throughout the corner. The corner 

permeance of segment 1, 
,1Pco

 is obtained by taking the integral of (3.6) between 
cir  and 

 c
ci

t
r

n
 

 
 ,1

,1

2μ /
P

c
ci

ci

t
r

n
c cc c c

co

r

A d dr

r

n




    

(3.7) 

Integrating and simplifying (3.7) yields 

 
 ,1

,1

2μ /
P ln 1

c cc c c c
co

ci

A dn t

nr




 
  

 
  

(3.8) 

Similarly for segment 1n  

 
 

 
, 1

, 1

2μ /
P ln 1
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(3.9) 

From (3.7) and (3.9) a general expression for the permeance of a segment, can be 

obtained as 

 
 

 
,

,

2μ /
P ln 1 ,    1,....,

1

c cc k c c c
co k

ci c

A d t
k n

nr

n

k t




 
      

  
(3.10) 

In (3.10), the value of permeance goes down as k  goes up which is consistent with 

Fig. 3.2 where the flux path length increases as one moves outward. Increasing the 

number of parallel segments n  will help capture the saturation more accurately but it will 

increase the number of MEC meshes. In this research, three segments are used to 

represent the core corner. 

3.2. Leakage Permeances 

Leakage permeances are associated with the flux paths that do not have their 

complete path within the core. The leakage flux path is affected by whether the coil is 

inside or outside the core window and also by whether the coil is wound directly on the 

core leg or wound around another coil. To simplify analysis of the leakage paths, it is 

assumed the core is rectangular and infinitely permeable. Prior to establishing specific 
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leakage permeances for the   and   windings, it is convenient to derive expressions for 

the general leakage flux paths depicted in Fig. 3.3. In particular, from Fig. 3.3, one can 

see that general expressions are needed for the case in which a coil section is within the 

core window, when a coil section is outside the core window and adjacent to the core, 

and a coil section is outside the core winding and separated from the core.  

 

  
  

 

 

Fig. 3.3 Transformer Leakage Paths 

Prior to deriving these generalized expressions, it is useful to define several path 

lengths and highlight some additional geometric details. Within the model, the distance 

between the center-point of the bending radius and the core edges are defined by the 

variables bced  and bcew . These are shown in Fig. 3.4.   As shown, extending a horizontal 

line from the center-point of the bend radius to the coil provides the location where 

bending begins relative to the horizontal core edge. Similarly, extending a line vertically 

from the center-point of the bend radius to the coil provides the location where bending 

ends relative to the vertical core edge.  
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Fig. 3.4 Coils Interior and Exterior Sections 

Since each coil is divided into a part that is interior to the core window and another 

part that is exterior, it is convenient to define which part is considered to be interior and 

which is considered to be exterior. To do so, the dimensions of the top view cross-section 

shown in Fig. 3.4 are helpful. Therein, the section of the coil that is interior to the 

window is shown as a solid line and the section that is exterior is shown as a dashed line. 

The point that separates the interior and the exterior sections of the coil is assumed to 

occur when the coil centerline intersects from the core edge as shown in Fig. 3.4. The 

angle that is formed between this line that connects this point and the center of the 

bending arc and the horizontal line extending from the arc center is  
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(3.11) 

where the coil interior and exterior radii are calculated as 
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(3.12) 
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  jo ji jr r w   (3.13) 

where 
bcew  and 

bced  is the distance between the bending curve center and the core edge in 

the width and depth directions respectively. The length of the straight section of a coil is 

expressed 

 2 w c bced d d   (3.14) 

  The interior and the exterior length of the coil can be found as  

    ji w j ji jol d r r   (3.15) 

   2      je w we j ji jol d w r r   (3.16) 

where 
wew  the width of the end winding, 

jir  is the interior bending radius of winding j , 

jor  is the exterior bending radius of winding j . After defining the leakage paths and their 

lengths, expressions for the leakage permeances of the primary and secondary coils can 

be obtained. 

3.2.1. Interior coil leakage permeance 

The first leakage paths considered are those attributed to a coil that is interior to the 

core window. The two paths that form the basis of the derivation are shown in Fig. 3.5. 

As shown, there is a path within the coil window and one that is external to the coil 

window but is internal to the core.  To calculate the permeance associated with leakage 

flux within the coil window, an energy-based analysis is applied.   
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Fig. 3.5 Interior Coil Leakage Flux Paths 

Specifically, it is useful to express the energy stored inside the coil window in terms 

of the magnetic field: [13] 

 
21

2 V
E H dV    

(3.17) 

where H  is the magnetic field,   is the permeability, and V  is the volume of the coil 

window. The energy within the coil window volume can also be expressed in terms of 

coil current, number of coil turns, and the leakage permeance as [13] 
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(3.18) 

Applying Ampere’s law to the interior path shown in Fig. 3.5, assuming the 

magnetic field is uniform on the path, yields 
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p

p

w w

a
Hl Ni

w h
   

(3.19) 

where 
pl  is the path length and 

pa  the area enclosed by the path, respectively. These are 

calculated as 

  max2 8                 0    p w wl h w x x x   (3.20) 

 
2

max2 4            0    p w wa x h w x x x   (3.21) 

where max min ,
2 2

   
 

w wh w
x  

The differential volume of integration in (3.17) is expressed as 

 
p idV l l dx   (3.22) 

where in general 
il  represents the coil length interior to the core window. It is noted that 

when performing comparisons of the MEC with 2D FEA, this length is taken to be the 

depth of the core.   Using and (3.19)-(3.22) in (3.17) one can express 
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(3.23) 

Solving (3.23) and equating the result with (3.18) the leakage permeance associated with 

the internal leakage flux is expressed as [13] 
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(3.24) 

where  

 1 w wk h w    (3.25) 

  2 min ,w wk h w   (3.26) 

The leakage path exterior to the coil window but interior to the core is calculated by 

dividing the leakage path into two horizontal and two vertical flux tubes that are all series 

tied. The resulting permeance is obtained:  
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(3.27) 

  Finally, the total interior conductor leakage permeance of a coil is obtained as 

  li ili eliP P P   (3.28) 

3.2.2. Exterior leakage permeance of coil section external to the core window and 

adjacent to the core 

A diagram that depicts the leakage paths of a coil section external to the core 

window and adjacent to the core is shown in Fig. 3.6. To calculate the leakage permeance 

associated with the internal leakage flux path, the path length and area are expressed as 

 2 4p w wl h w x     (3.29) 

 
22 2p w wa x h w x     (3.30) 

 

Fig. 3.6 Exterior Adjacent Coil Leakage Flux Paths 
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Repeating the same argument made in describing (3.17)-(3.23) with the new path 

length and area in (3.29) and (3.30), that results due to neglecting H  in the iron, and 

using  max min ,
2

w
w

h
x w

   
 

, one can obtain the permeance associated with the coil 

exterior and adjacent to the core as [13] 
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(3.31) 

where  

 1 2w wk h w    (3.32) 

  2

1
min ,2

2
w wk h w   

(3.33) 

The leakage permeance of the path exterior to the coil window that is exterior and 

adjacent to the core is expressed as 
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(3.34) 

where   max min , e ex h w  and the path length is calculated as 

 2p w wl h w r     (3.35) 

Substituting (3.35) into (3.34) and solving yields 

  0 maxln 1
2
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w w

l x
P

h w
  

(3.36) 

The total exterior adjacent conductor leakage permeance associated with coil external to 

the core window and adjacent to the core is obtained as 

  lea ilea eleaP P P   (3.37) 

3.2.3. Exterior coil isolated from core leakage permeance 

By comparing Fig. 3.7 with Fig. 3.5, one can notice that the leakage flux path within 

the coil window is the same. Thus,  
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 ilei iliP P   (3.38) 

The leakage permeance representing flux external to the coil is expressed as 

 
max

0

0


 

x

ei
elei

p

l dr
P

l
  

(3.39) 

where 
max  ex w  and the path length is calculated as 

 2 2 2p w wl h w r     (3.40) 

Substituting (3.40) into (3.39) and solving yields 

  0 ln 1
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(3.41) 

The total exterior isolated conductor leakage permeance is calculated as 

  lei elei eleiP P P   (3.42) 

 

Fig. 3.7 Exterior Isolated Coil Leakage Flux Paths 

H
 

x  
wh

 

ww  

ℎ 𝑤−𝑤
𝑤 

ew  

H
 



 

 

 

30 

3.2.4. Leakage permeances of α-winding 

The permeances of the leakage flux paths shown in Fig. 3.8 are now considered 

using the results of the previous subsections. The leakage permeance of the  -winding 

lP  is divided into two parts, one which represents the leakage flux path that is interior 

with respect to the core window, liP , and one which represents the leakage flux path that 

is exterior with respect to the core window,  leP . The permeance liP  is obtained using  

    li i li e liP P P           (3.43) 

In (3.43), (3.24) and (3.27) are used to establish  
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where  

 1ik h w      (3.46) 

  2 min ,ik h w     (4.47) 

 

Fig. 3.8 Leakage Flux Paths 
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The permeance  leP , (which is associated with paths P3 and P4 shown in Fig. 3.8), is 

obtained using 

    le i le e leP P P           (3.48) 

 

In (3.48), the quantities 
i leP  and 

e leP  are obtained from (3.31) and (3.36); in particular 
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        (3.50) 

where  

 1 2   ek h w   (3.51) 

  2

1
min , 2

2
  ek h w   

(3.52) 

and 
coh  is the height of the core outer window. 

 It might occur to the reader that (3.43) should be added to (3.48) since they 

represent the leakage permeances of the interior and exterior segments of the same coil. 

However, the leakage flux paths of the exterior coil are coupled through the vertical core 

leg as illustrated in Fig. 3.8 and thus adding the two could lead to inaccuracy in the MEC 

model. 

3.2.5. Leakage permeances of β-winding 

the leakage permeances of the  -winding are now considered. The interior flux is 

evaluated based on the paths P5 and P6 shown in Fig. 3.8. Using the results in Section 

3.2.1, after the appropriate substitution of subscripts one can obtain 

    li i li e liP P P           (3.53) 
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In (3.53), (3.24) and (3.27) are used [13] 
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where  

 1 2ik h w c        (3.56) 

  2 min ,2ik h w c       (3.57) 

As shown in Fig. 3.8, the two interior coil segments of the  -winding are treated as a 

single winding bundle with a width of 2  w c . Although this might seem a crude 

approximation, it is justified by the fact that the two coils are carrying the same current 

and practically, the clearance between them is likely small compared to their widths.  

It should be noted that even though the two coils are treated as a single coil for the 

permeance calculation, two identical permeances are used to represent them within the 

MEC model. The reason is that one permeance is associated with the leakage flux caused 

by the current in the right hand side coil and the other is associated with the leakage flux 

produced by the current in the left hand side coil. Therefore, the result in (3.54) and 

(3.55) includes a factor of two. 

The exterior leakage permeance of the  -winding denoted  leP  is obtained by 

considering paths P7 and P8 in Fig. 3.8 and using the result in Section 3.2.3 for an exterior 

coil isolated from the core. Doing this yields 

    le i le e leP P P           (3.58) 

In (3.58), the results of (3.38) and (3.41) are applied, which yields [13] 
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where  

 1ek w h      (3.61) 

  2 min ,ek w h     (3.62) 

In this research the leakage flux due to the  -winding that is coupled to  -winding 

is neglected. This will lead to a slight overestimate of the leakage inductance. However, 

since the limit on the leakage inductance in the transformer design is typically an upper 

limit, the analysis presented will tend to a conservative value. Considering this 

approximation, the permeances due to the interior and exterior portion of the  -winding 

can be combined into a single permeance which is referred  lP  and which may be 

expressed as 

    l li leP P P   (3.63) 

3.3. Transformer Magnetic Equivalent Circuit 

The transformer MEC based on the work in the previous sections is depicted in Fig. 

2.11. The only components that have not been mentioned in the previous sections are the 

MMFs associated with the  -winding coils  cl cN i  and the  -winding coils  cl cN i , 

where clN  and clN  are the number of turns and ci  and ci  the currents of the  -

winding coils and  -winding coils respectively. The coil current 
jci  and the winding 

current 
ji  of winding  j are related using 

  j

jc

jcp

i
i

N
  

(3.64) 

where 
jcpN  is the number of parallel coils used to create the j -winding and ‘ j ’ may be ‘

 ’ or ‘  ’. 

In Fig. 3.9, the arrows are used to show that the relationship between flux and MMF 

is nonlinear. 
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Fig. 3.9 Transformer Magnetic Equivalent Circuit 

Taking advantage of the symmetry in Fig. 3.9, one can obtain the reduced magnetic 

circuit shown in Fig. 3.10. Mesh analysis is used to solve the reduced MEC where 1m ,

2m
, 

3m
, and 

4m
 denote the mesh fluxes. The flux through each core permeance is also 

defined since it is needed to obtain the value of the corresponding permeance and for core 

loss calculation. This will be discussed in more detail in Chapter 4 when the nominal 

design approach is considered. 
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Fig. 3.10 Reduced Magnetic Equivalent Circuit 

3.4. Leakage Inductances 

Leakage inductances are critical parameters in the T-equivalent circuit as discussed 

in Chapter 2. A leakage inductance may be defined as the inductance that is associated 

with the flux paths that do not have their complete path within the core. As previously 

mentioned, when the leakage paths are considered, the core is assumed to be infinitely 

permeable and thus the leakage inductances are constant. This assumption is reasonable 

provided the core is not highly saturated; which is unlikely in high performance designs.  

Since each winding consists of more than one coil, it is useful to relate the number of 

winding j  turns, 
jN , to the number of turns of the corresponding coils, 

jclN , as 

 j jcl jcsN N N   (3.65) 
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where 
jcsN  is the number of j -winding coils in series. Using the MEC in Fig 3.10 and 

the turns in (3.65), the  -winding and  -winding flux linkages can be expressed as 

  3 4        m m cl c liN N i P   (3.66) 

  3      m cl c lN N i P   (3.67) 

 To calculate leakage inductances, the magnetizing inductance is first considered. 

Due to saturation, the value of the magnetizing inductance depends on the magnetizing 

current. However, at low magnetizing currents, the anhysteretic B-H magnetizing curve is 

linear, and hence the magnetizing inductance is assumed constant. Using the T-equivalent 

circuit derived in Chapter 2, the magnetizing inductance in the linear region can be 

calculated as 
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(3.68) 

where 
, ti  is a test current applied to  -winding, which is taken to be small relative to 

the nominal magnetizing current.  

The leakage inductance of the  -winding is referred to the  -winding using the 

appropriate turns ratio. From the T-equivalent circuit, leakage inductances can be 

expressed as 
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(3.69) 
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(3.70) 

where the “prime” in (3.69) is used to denote referred variables. 

Typically, in the transformer T-equivalent circuit, the impedance of the magnetizing 

branch is relatively high compared to the impedance of the leakage branch. Therefore, as 

an approximate the magnetizing branch can be shifted to the left side, which makes the 

 -winding and the  -winding leakage inductance appears as a series connection. Thus, 

the aggregate leakage inductance is obtained 
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  '

l l lL L L     (3.71) 

3.5. Leakage Inductance Validation 

  Since the models of leakage permeance are different than ones developed 

previously in the literature [33]-[45], it is useful to validate the derivations presented. To 

do so, 2-D and 3-D finite element models for a transformer whose dimensions are shown 

in Table 3.1 were created. The dimensions in Table 3.1 are related to those of a design 

from the optimization process that is detalied in Chapter 4. The core material used in the 

design is M-19. Its anhysteretic BH and core loss properties are provided in [50].  

Table. 3.1 Transformer Dimensions for Leakage Inductance Validation. 

Parameter Value Parameter Value 

rci (mm) 1.276 cαc (mm) 2.5 

dc (m) 0.2594 cαβ (mm) 2.5 

hci (m) 0.1002 cββ (mm) 2.5 

wα (m) 0.01813 Nαcl 164 

hα (m) 0.09519 Nαcs 1 

wβ (m) 0.02324 Nαcp 2 

hβ (m) 0.09152 Nβcl 334 

xrw (m) 0.023205 Nβcs 1 

yrw (m) 0 Nβcp 2 

wwe (m) 0.0574   

 

Figures of the 2-D and 3-D geometries used in the FEA are shown in Fig. 3.11. To 

reduce the simulation time, it is useful to take advantage of the transformer symmetry. As 

shown in Fig. 3.11, one fourth of the transformer in the case of the 2-D and one eighth of 

the transformer in the case of the 3-D are sufficient to predict the transformer 

performance and reduce the simulation time significantly. The maximum allowed 

percentage error in the total energy was set to 0.001% in the 2-D case and 0.4% in the 3-

D case. To calculate the inductances using FEA, the energy in the system resulting from 

winding excitation is calculated. Analytically, the field energy can be expressed as [52] 

      ' '2 ' 21 1

2 2
l lm m lm m l lm mE L L L i L L i i L L L i               

(3.72) 
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In (3.72), the inductances '

lL , lL , and 
mL  are associated with previous analysis of the 

winding leakage and magnetizing inductances. The additional term 
lmL  is used to 

represent mutual leakage coupling that occurs between the windings, but has been 

neglected in the MEC model.   

To obtain values of '

lL  and lL  predicted from the FEA, the winding currents are set 

to '

ti I   and 
ti I i    . Substituting these values into (3.72), one can express the 

resulting energy as   

  2' 2 21 1 1

2 2 2
l t l t lmE L I i L I L i        

(3.73) 

where i  is a current increment. Using three current increments of 
1i , 

2i , and 
3i , the 

corresponding energies 
1E , 

2E , and 
3E  are used to determine the leakage and mutual 

inductances from 

 

 
 
 

1
2 2 2'

1 1 1

2 2 2

2 2 2

2 2 2
33 3

1

2

t tl

l t t

lm t t

I i I iL E

L I i I i E

EL I i I i






                             

  

 

(3.74) 

 

Fig. 3.11 Transformer FEA models: (a) 2-D Model and (b) 3-D Model 

(a) (b) 
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The comparison between the FEA and the MEC for the 2-D and the 3-D models are 

shown in Table 3.2 and Table 3.3, respectively. For both models, the leakage inductances 

are calculated using (3.69)-(3.71). In the 2-D MEC model, the interior and exterior 

leakage path lengths are both taken to be equal to the depth of the core. For the 3-D 

MEC, the interior and exterior leakage path lengths are calculated using (3.15) and 

(3.16), respectively. From the results in Tables 2.2 and 2.3 it is observed that the 

discrepancy between FEA and MEC results are within a reasonable range and in 

particular that the error in the total leakage inductance is within 10% for both 2-D and 3-

D cases. It is noted that the value of the leakage inductance obtained by the MEC is 

underestimated in the 2-D case and it is overestimated in the 3-D case. 

Table. 3.2 Comparison of Leakage Inductances from 2-D MEC and FEA Models. 

Parameter MEC FEA Error (%) 

Llβ (H) 0.7745 0.8013 -3.34 𝐿𝑙𝛼′  (H) 0.3840 0.4625 -16.97 

Ll   (H) 1.1585 1.2638 -8.33 

Table. 3.3 Comparison of Leakage Inductances from 3-D MEC and FEA Models. 

Parameter MEC FEA Error (%) 

Llβ (H) 1.1667 1.1239 3.808 𝐿𝑙𝛼′  (H) 0.5125 0.4559 12.415 

Ll   (H) 1.6791 1.5798 6.286 
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4. HIGH FREQUENCY LOSSES 

Developing a model of the transformer resistance requires consideration of high 

frequency losses. High frequency losses are caused by two phenomena. The first is the 

skin effect which leads to a current density on the outside of a conductor. The uneven 

distribution of current density leads to an increase in the conductor effective resistance 

which leads to additional loss. The second phenomenon is often referred to as proximity 

effect. When a conductor is exposed to an external time changing field, eddy currents 

within the conductor are induced which translate to loss. At low frequency, skin and 

proximity effect losses are negligible compared to the loss associated with the DC 

resistance. As frequency increases, it is required to account for skin and proximity effect 

losses to accurately predict the performance of an electromagnetic device. In this chapter, 

the high frequency loss model is derived for a cylindrical conductor. The model is then 

extended to predict the high frequency loss associated with transformer windings. 

4.1. Skin Effect 

When a conductor is carrying an AC current, a time-changing field is produced. This 

field causes the current density within the conductor to become larger on the exterior than 

on the interior of the conductor. This phenomenon is referred to as the skin effect. Due to 

the skin effect, the conductor resistance denoted as the AC resistance tends to be higher 

than the DC resistance.  

In this section, an expression for the AC resistance of a cylindrical conductor is 

derived. To do so, Fig. 4.1 is considered. According to Faraday’s law 

   
B

E
S

d
dl ds

dt
       

(4.1) 

Applying (4.1) around the voltage loop shown in Fig 4.1 yields 
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(4.2) 

Assuming that l R , where l  is the conductor length and R  is the conductor 

radius, one obtains 
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Fig. 4.1 Calculation of Skin Effect for a Cylindrical Conductor 

For a sinusoidal waveform, a phasor transformation can be applied to (4.3) which 

yields 

      
0

E E 0 B

r

z zr j dr     
(4.4) 

Taking the derivative of both sides of (4.4) with respect to r  yields 

   
E

Bzd
j

dr
   

(4.5) 
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Applying the material relationships 

   J Ez z   (4.6) 

   B H    (4.7) 

to (4.5) and simplifying yields 

   
J

H zd
j

dr
    

(4.8) 

By applying Ampere’s law around the circular path at radius r  shown in Fig. 4.1 
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2 H J 2

r

zr r r rdr     
(4.9) 

Taking the derivative with respect to r  yields 
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(4.10) 

For sinusoidal waveforms, a phasor relationship can be expressed 

   
     

H
H J z

d r
r r r r

dr


    

(4.11) 

By substituting H  obtained from (4.8) into (4.11), one obtains 

   
     

2

2

J J
J 0

z z

z

d r d r
r rj r

dr dr
     

(4.12) 

Letting 

   ˆ r
r

k
   

(4.13) 

where 

   
j

k


   
(4.14) 

and substituting (4.13) into (4.12) yields  

   
     

2

2 2

2

ˆ ˆJ Jˆ ˆ ˆ ˆJ 0
z z

z

d r d r
r r r r

dr dr
     

(4.15) 

It is noted that (4.15) is the same form as the zero order Bessel equation, which has the 

solution 
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        1 2
ˆ ˆ ˆJ J Yz B Br c r c r    (4.16) 

where 
1c  and 

2c  are constants determined by boundary conditions, and where  ˆJB r  and 

 ˆYB r  are the Bessel function of the first kind of order zero and the Bessel function of 

the second kind of order zero, respectively. These are expressed as 
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and 
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(4.18) 

where 
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1m

m

k

y
m k






   

(4.19) 

and 

    lim ln 0.5772m
m

y m


     (4.20) 

In order to solve (4.16), two boundary conditions are applied. The first is that 
yJ  

must be finite at any radius r . However, it is noted from (4.18) that when 0r   at which 

ˆ 0r  ,  Y 0B  is infinite. Therefore, 
2c  must be zero in order to satisfy this boundary 

condition. This reduces (4.18) to 

      1
ˆ ˆJ Jz Br c r   (4.21) 

Substituting the value of r̂  using (4.13) and then taking the derivative of (4.21) with 

respect to the radius and then setting r R  yields 

   
   '1

J
J /

z

B

d R c
R k

dr k
   

(4.22) 

In (4.22) 

      'J / J /
d

R k R k
dx

   
(4.23) 

According to Ampere’s law 
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2

I
H R

R
 

   
(4.24) 

From (4.8) and (4.24) 

   
 

2

zdJ R j I

dr R




   
(4.25) 

Equating the right side of (4.22) and (4.25) yields 

   
 1 '2 J /B

I
J

Rk R k
    

(4.26) 

By substituting (4.26) into (4.21), the conductor current density at radius r  is obtained 

   
 
 '

J /

2 J /

B

z

B

I r k
J

Rk R k
    

(4.27) 

In order to calculate the conductor internal impedance, Fig. 4.1 is considered. The 

voltage between the positive and negative node is expressed as 

    zV E R l    (4.28) 

From (4.6), (4.27), and (4.28), the conductor AC impedance is obtained 

   
 

 '

J /

2 J /

B

B

l r kV
Z

I Rk R k 
     

(4.29) 

4.2. Proximity Effect 

To derive an expression for the proximity effect, Fig. 4.2 is considered. As depicted 

in Fig. 4.2, the current is flowing into the page through an infinitely small band with 

width dy  and a distance y  below the center line of the conductor and it is flowing out of 

the page through a band with width dy  and a distance y  above the center line of the 

conductor. To neglect the conductor end effect, it is assumed that the conductor length 

into page is much greater than the conductor radius which is typically the case for many 

electromagnetic devices. 
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Fig. 4.2 Calculation of Proximity Effect for a Cylindrical Conductor 

As depicted in Fig. 4.2, the current flowing in the conductor is due to an external 

field and there is no voltage applied across the conductor terminals. Therefore, applying 

Kirchhoff’s voltage law around a loop beginning at the lower band, traveling into the 

conductor and returning through the upper band neglecting the voltage drop on the ends 

of the conductor yields 

    0
d

ri
dt


    

(4.30) 

where r  is the resistance of the conductor which is expressed as 

   
 
2

wc

l
r

y dy
   

(4.31) 

In (4.31),  w c y  is defined as 

     2 2w 2c cy r y    (4.32) 

Assuming a uniform field, the flux linking the conductor may be expressed as 

   2 xylB    (4.33) 

Substituting (4.31)-(4.33) into (4.30) and simplifying gives 

   2 22 x
c

dB
i y r y dy

dt
     

(4.34) 

The differential power loss in the differential loop caused by the proximity effect 

field can be calculated as 

   2dS i r   (4.35) 
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By substituting (4.31), (4.32), and (4.34) into (4.35) one obtains 

   

2

2 2 24 x
c

dB
dS l y r y dy

dt
    

 
  

(4.36) 

The total instantaneous power lost in the conductor is obtained by taking the integral of 

(4.36) as follows 
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(4.37) 

Solving (4.37) and simplifying yields 
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(4.38) 

The total average power is obtained by taking the time average of (4.38) using 
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(4.39) 

Due to the conductor symmetry, the results in (4.39) can also be applied if the external 

filed is in the -y direction, thus, 
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(4.40) 

For more general expression, it is assumed that 

   cosx pB B    (4.41) 

   siny pB B    (4.42) 

where 
pB  is the peak flux density at an arbitrary angle   which denotes the direction of 

the external field with respect to the -x axis. Substituting (4.41) into (4.39) and (4.42) 

into (4.40), the total average power due to the external field can be expressed as 
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(4.43) 

where 
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(4.44) 

Assuming that a winding w  with 
wN  conductors is uniformly distributed throughout 

a region r . The proximity effect associated with this winding may be expressed as 
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p
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dB
S N r l
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(4.45) 

In (4.45) 


 is the spatial average over a region   and it is defined as 

   
1

S

x xd

 
    

(4.46) 

where   could be length, area, or volume. 

4.2.1. Proximity Effect Loss in adjacent windings 

In a multi-winding device, the leakage flux associated with adjacent windings may 

be coupled which lead to proximity effect loss due to this coupling. To demonstrate the 

proximity effect caused by this coupling, two adjacent windings a  and b  are considered. 

Assuming that the -j component of the leakage flux density associated with each winding 

is 
ajB  and 

bjB  respectively, the proximity effect loss in the region inside the -w winding 

is expressed as 

   

2 2

,
2

aj aj bj bj

pwr wr j x y

wr

dB dB dB dB
S

dt dt dt dt




     
       

     
   

 

(4.47) 

where w  is a  or b  and x  and y  denote the -x  and -y component of the leakage flux 

density, and 

   4

4
wr w c cN r l

    
(4.48) 

It is convenient to represent the loss in terms of the winding current. To achieve this, 

the normalized flux density is defined as 
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(4.49) 

where 
wi  is the -w winding current. Substituting (4.49) into (4.47) yields 
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(4.50) 

The result in (4.50) can be expressed in matrix form as 

   
wr
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jwr D
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S r

dt dt
   

(4.51) 

where 

   [   ]T

a bi i i   (4.52) 

and 
wrDr  is the dynamic resistance in the region inside the -w winding which is defined as 
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(4.53) 

4.2.2. Expressing the Dynamic Resistance in terms of Leakage Permeance 

In order to calculate the dynamic resistance, it is required to obtain the value of the 

mean squared flux density which depends on the corresponding flux path. When the flux 

path associated with the proximity effect is similar to the flux path associated with the 

leakage permeance, the mean squared field can be related to the leakage permeance 

expression derived previously in Chapter 3. To obtain this relationship, an energy 

approach is used. The energy stored in a volume wrU  is expressed as 

   
1

2
wrU

E BHdU    
(4.54) 

where B  and H  are scalar components of fields directed along the assumed leakage path 

of the flux density and the field intensity within the volume. 

The energy in a volume that encloses a transformer coil may be expressed in terms of 

the leakage permeance P  as 
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   2 21

2
E N i P   

(4.55) 

Equating (4.54) and (4.55) yields 

   
2 2

r

p p

U

B H dU

P
N i




  

(4.56) 

By applying the normalization of (4.49) to (4.56), one obtains 

   

2

2

0

ˆ
r

p

U

B dU

P
N




  

(4.57) 

Applying the spatial average definition in (4.46) into (4.57) and simplifying yields 

   
2

2 0ˆ
p

r
r

N P
B

U


   

(4.58) 

The dynamic resistance may be expressed in terms of the leakage permeance by 

substituting (4.48) and (4.58) into (4.53) 

   

3 4

0

4r

c c
D

r

N r l P
r

U

  
   

(4.59) 

4.3. Transformer High Frequency Loss 

The expressions for the skin effect and the proximity effect losses which are derived 

in the previous sections can be applied to the tape-wound transformer considered in this 

research. First the skin effect is considered. From (4.29), the AC resistance of the -j coil 

may be expressed as 

   
 

 '

/
Re

2 /

jcl B jcjcl

jcl

jpr jc jcl B jc

U J r kN
r

N r A k J r k 

 
  
 
 

  

(4.60) 

where jcr  is the conductor radius of the -j coil and jclU  and jclA  is the volume and cross 

sectional area of the -j coil respectively. 

The transformer total resistive loss due to the AC resistance may be calculated as 

   
2

,

2se jcl jcl

j

S r i
 

    (4.61) 

It should be noted that (4.61) includes the loss due the DC resistance. 
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Prior to evaluating the proximity effect loss in the transformer windings, it is required to 

calculate the dynamic resistance associated with each coil segment. To do so, the flux 

paths shown in Fig. 4.3 are considered. To simplify analysis, it is assumed, as done in 

Chapter 3, that the core is rectangular and infinitely permeable. 

 

P1P2

P3

P4

P5

P6



 

Fig. 4.3 Proximity Effect Flux Paths 

4.3.1. Proximity Effect Loss in The Interior Segment of α-coil 

It is noted that path P1 in Fig. 4.3 is the same as path P1 in Fig. 3.8. Therefore, the 

mean squared flux density associated with this path can be expressed in terms of the 

leakage permeance as 

   

2
2 0ˆ cl i li

p
ir

cl

N P
B

U

 
 




   

(4.62) 

and the dynamic resistance associated with the inner segment of α-coil is expressed as 

   

3 4

0

4ir

cl c c i i li
D

cl

N r l P
r

U

    



  
   

(4.63) 

where c  and cr  are the conductivity and radius of the α-coil conductor and clU  is the 

α-coil volume. The permeance i liP  is calculated suing (3.44). 

The proximity effect loss in the inner segment of α-coil is expressed as 
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2

ir

c
p ir D

di
S r

dt




   
 

  

(4.64) 

4.3.2. Proximity Effect Loss in The Exterior Segment of α-coil 

As depicted in Fig. 4.3, there are two flux paths affecting the exterior segment of -

coil; path P2 is caused by the coil self-leakage flux and path P6 is due the flux produced 

by the exterior segment of - coil. Due to the coupling, the result in (4.51)-(4.53) is used 

to obtain the proximity effect loss associated with the exterior segment of - coil. To do 

so, the dynamic resistance associated with the exterior segment of - coil is expressed as 

    

2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆer

x y x x y y

D er

x x y y x y er

B B B B B B
r

B B B B B B


     


      


 


 

  

(4.65) 

To calculate the proximity effect loss in the exterior segment of - coil, it is required 

to evaluate the elements of (4.65). To do so, Fig. 4.4 is considered.  

2
h

w
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wcw

hh H

1P
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Fig. 4.4 Flux Paths Affecting the Exterior Segment of α-coil 
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Applying Ampere’s law around the path P1 in Fig. 4.4 yields 

    
cl c p

p

N i a
Hl

h w

  


 

   
(4.66) 

where 
pl   is the path length and 

pa   the area enclosed by the path, respectively. These 

are calculated as 

  max2 4                         0pl h w x x x         (4.67) 

 
2

max2 2                     0pa x h w x x x         (4.68) 

where max min ,
2

h
x w


   
 

. One may notice from the result in (4.67) that the clearance 

between the exterior segment of - coil and the core is neglected. This assumption 

simplifies the analysis but leads to slightly more pessimistic estimation of proximity 

effect loss in the coil segment. From (4.7), (4.49), and (4.66), the normalized flux density 

in the direction of the path is obtained 

    
0ˆ cl p

p

p

N a
B

h w l

 


  


   

(4.69) 

Prior to evaluating 2ˆ
x

er
B 

 and 2ˆ
y

er
B 

, the value of 2ˆ
p

er
B 

 is first obtained. By 

substituting (4.67) and (4.68) into (4.69) and applying the spatial average definition in 

(4.46) to the square of the result one obtains 

    
 
 

max

2
22 2

2 0

23 3 0

2 2ˆ
2 4

x
cl

p
er

x h w xN
B dA

h w h w x

 
 

   

  


 
   

(4.70) 

To evaluate 2ˆ
x

er
B 

, the differential area of integration in (4.70) is expressed as 

 2dA xdx   (4.71) 

Substituting (4.71) into (4.70) and integrating yields 

 

2 2 4
2 4 3 2 20 2 1

2 2 1 2 13 3

2 1

4 2

1 2 2 1

2

1

3 2ˆ 24 16 2 6
768 2 2

3 8 4 2
                                ln 1

4

cl
x

er

N k k
B k k k k k

h w k k

k k k k

k


 

 

 
     

 
    

  

 

(4.72) 
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where 

 1 2k h w     (4.73) 

  2

1
min ,2

2
k h w    

(4.74) 

To obtain 2ˆ
y

er
B 

 the differential area of integration in (4.70) is expressed as 

  2 2w wdA h w x dx     (4.75) 

Substituting (4.75) into (4.70) and integrating yields 

 


2 2

2 4 3 2 2 30
2 2 1 2 1 2 13 3

4 4 2

2 1 1 2 2 1

2

12 1

ˆ 24 32 2 18 6 2
768

3 2 3 8 4 2
                                ln 1

42 2

cl
y

er

N
B k k k k k k k

h w

k k k k k k

kk k


 

 


    

 
      

  

(4.76) 

To calculate ˆ ˆ
y y

er
B B  

, the path P6 depicted in Fig. 4.3 is considered. As depicted 

in Fig. 4.4, the path length can be expressed as 

  2 2pl h w y        (4.77) 

 where 

  y w c x      (4.78) 

Applying Ampere’s law around P2 in Fig. 4.4 and the material relationship in (4.7), 

the normalized flux density is obtained 

    
0ˆ cl

p

p

N
B

l







   

(4.79) 

Multiplying (6.69) by (6.79) and applying the spatial average definition in (4.46) to 

the result yields 

    
max

2

0

2 2 0

ˆ ˆ x pcl cl

y y
er

p p

aN N
B B dA

h w l l

 
  

   


    

(4.80) 

The negative sign in (4.80) is due to the fact that the two flux paths are in in opposite 

directions. Substituting (6.67), (6.68), (6.75), and (6.77) into (4.80) and integrating yields 
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2
20 2 2

2 1 2 1 12 2

1

2
3 2 2
1 1

1

ˆ ˆ 4 4 2 2 4 2
8 4

2 2
                                                  ln 1 16 2 ln 1

2

cl cl

y y
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N N
B B k k k k k k k

h w k k

k k
k k k k

k k

 
   

  

 





     


  
           

 

 

 

(4.81) 

where 

    1
k h w w c    

      
(4.82) 

The expression of 2ˆ
y

er
B 

, is obtained by substituting (4.77) into (4.79) and then 

applying the spatial average in (4.46) is applied to the square of the result 

    

 
2 2

02

2

1ˆ
4

c w
cl

y
cer

N
B dA

h w h w x

 




 

   








 
   

(4.83) 

From Fig. 4.4, the differential area in (4.83) can be expressed as 

 dA h dy   (4.84) 

Substituting (4.84) into (4.83) and integrating yields 

    
    

2 2

02ˆ
4

cl

y
er

N
B

h w c h w c w


 

      



 


    
  

(4.85) 

As shown in Fig. 4.3, the flux path due to - coil segment that couple the - coil 

segment has only -y component and thus  2ˆ
x

er
B 

 and ˆ ˆ
x x

er
B B  

 are equal to zero.  

Since all the parameters of 
erDr 

 are obtained, the proximity effect loss in the region 

inside the exterior segment of - coil can be calculated using 

   
er

T

p er D

di di
S r

dt dt    
(4.86) 

where 

   [   ]T

c ci i i    (4.87) 
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4.3.3. Proximity Effect Loss in The Interior Segment of β-coil 

To calculate the proximity effect loss in the inner segment of - coil, path P4 which 

depicted in Fig. 4.3 is considered. As shown, the path P4 is similar to the path P5 in Fig. 

3.8. and thus the mean squared flux density associated with this path can be expressed in 

terms of the leakage permeance as 

   
2

02ˆ cl i li

p
ir

cl

N P
B

U

 
 




   

(4.88) 

and the dynamic resistance associated with the inner segment of - coil is expressed as 

   
3 4

0

4ir

cl c c i i li

D

cl

N r l P
r

U

    



  
   

(4.89) 

where c  and cr  are the conductivity and radius of the - coil conductor and clU  is 

the - coil volume. The permeance i liP  is calculated using (3.54). As mentioned in 

Chapter 3, the permeance i liP  is only associated with one coil segment and thus it is 

equal to twice the value of the permeance associated with path P4 in Fig. 4.3. Then the 

proximity effect in the region inside the coil segment is obtained 

   

2

ir

c

p ir D

di
S r

dt




 
  

 
  

(4.90) 

4.3.4. Proximity Effect Loss in The Exterior Segment of β-coil 

As shown in Fig. 4.3, path P5 is associated with the leakage flux due to Exterior 

Segment of - coil and the path P3 is associated with the leakage flux due to the exterior 

segment of - coil. Similar to (4.66), the dynamic resistance is expressed as 

    

2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆer

x y x x y y

D er

x x y y x y er
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r

B B B B B B


     


      


 


 

  

(4.91) 

To evaluate the elements of (4.91), Fig. 4.5 is considered 
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Fig. 4.5 Flux Paths Affecting the Exterior Segment of β-coil 

Prior to evaluating 
2ˆ

x
er

B 
 and 

2ˆ
y

er
B 

 the value of 
2ˆ

p
er

B 
 is first obtained by 

considering the path P1 in Fig. 4.5. The normalized flux density can be obtained by 

applying Ampere’s law around this path 

    0ˆ cl p

p

p

N a
B

h w l

 


  


   

(4.92) 

where 

 2 2 8pl h w x       (4.93) 

 22 2 4pa x h w x       (4.94) 
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Substituting (4.93) and (4.94) into (4.92) and applying the spatial average definition 

to the result yields 

    
 
 

max

2
22 2

02

23 3 0

2 2ˆ
2 4

x
cl

p
er

x h w xN
B dA

h w h w x

 
 

   

  


 
   

(4.95) 

where 
max min ,

2 2

h w
x

  
  

 
. 

To evaluate 
2ˆ

x
er

B 
, the differential area of integration in (4.95) is expressed as 

 4dA xdx   (4.96) 

 By substituting (4.96) into (4.95) and integrating one obtains 

 

(4.97) 

where 

 1k h w     (4.98) 

  2 min ,k h w    (4.99) 

Similarly, 

 

(4.100) 

To calculate 
2ˆ

y
er

B 
, the path P2 depicted in Fig. 4.5 is considered. Assuming that 

the core is infinitely permeable, the path length can be expressed as 

 2pl h w y        (4.101) 

where 

 
2

w
y c x




 
   
 

  

(4.102) 

Applying Ampere’s law around P2 in Fig. 4.5 and the material relationship in (4.7), 

the normalized flux density is obtained 
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    0ˆ cl
p

p

N
B

l







   

(4.103) 

Multiplying (6.103) by (6.92) and applying the spatial average definition in (4.46) to 

the result yields 

    
2

0

2 2
ˆ ˆ c w pcl cl

y y
cer

p p

aN N
B B dA

h w l l

 



 
  

   

 
    

(4.104) 

The differential area of integration in (4.104) is expressed as 

  2 2 2dA h w x dx      (4.105) 

Substituting (4.93), (4.94), (4.101), and (4.105) into (4.104) and integrating yields 
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(4.106) 

where 

  1
2

2

w
k h w c


   

 
    

 
  

(4.107) 

The expression of 
2ˆ

y
er

B 
 is obtained by substituting (4.101) into (4.103) and then 

applying the spatial average in (4.46) is applied to the square of the result 
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(4.108) 

From Fig. 4.5, the differential area in (4.108) can be expressed as 

 dA h dy   (4.109) 

By substituting (4.109) into (4.108) and integrating one obtains 

    
    

2 2
2 0ˆ

2 2
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er

N
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h w c h w c w


 

      


 


    

  
(4.110) 
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As shown in Fig. 4.5, the flux path due to - coil segment that couple the - coil 

segment has only -y component and thus  
2ˆ

x
er

B 
 and ˆ ˆ

x x
er

B B  
 are equal to zero.  

The proximity effect loss in the region inside the exterior segment of - coil can be 

calculated using 

   
er

T

p er D

di di
S r

dt dt    
(4.111) 

where 

   [   ]T

c ci i i    (4.112) 

The total proximity loss effect is equal to the sum of the proximity effect in all coil 

segments. Since each winding has to coils, the total proximity effect loss in the 

transformer windings is calculated as 

    2pe p ir p er p ir p erS S S S S         (4.113) 

Finally, the transformer total resistive loss are calculated using 

   rl se peS S S    (4.114) 
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5. THERMAL EQUIVALENT CIRCUIT (TEC) 

When the design of electromagnetic devices such as a transformer is considered, it is 

desired to accurately predict the temperature within the device. In Chapter 7, constraints 

on temperature of the coil and core are imposed. In this chapter, a thermal equivalent 

circuit (TEC) is derived to predict the temperature throughout the transformer core and 

coils. 

5.1. Thermal Equivalent Circuit of Cuboidal Element 

To a TEC of a cuboid is first considered. To do so, the heat equation of the cuboidal 

element   shown in Fig. 5.1 is expressed as [13]  

   

2 2 2

2 2 2

   
   

  
   

  x y z

de T T T
p k k k

dt x y z
  

(5.1) 

where e  and p  are the thermal energy and power loss densities within the cuboid, 

respectively, xk , yk , and zk  are the thermal conductivities along the -x , -y , and 

-z  axes respectively, and T  is the temperature at an arbitrary location within the 

element. For simplicity, the heat flow is assumed to be independent in each axis and thus 

the solution of (5.1) is of the form [13] 

   
2 2 2

2 1 2 1 2 1 0       x x y y z zT c x c x c y c y c z c z c   (5.2) 
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Fig. 5.1 Cuboidal Element 

To begin the derivation, the mean temperature over the cuboid is defined as 

   
1

U
T T dU

U 
 



    
(5.3) 

where U  is the volume of the cuboid. Applying (5.3) to (5.2) yields 

   2 2 2

2 1 2 1 2 1 0

1 1 1 1 1 1

3 2 3 2 3 2
            x x x x y y y y z z z zT c l c l c l c l c l c l c   

(5.4) 

The mean temperature on the plane 0x  is obtained by applying (5.3) to (5.2) at 

0x ; thus, 

   2 2

0 2 1 2 1 0

1 1 1 1

3 2 3 2
        x y y y y z z z zT c l c l c l c l c   

(5.5) 

Similarly, the mean temperature at  xx l  is expressed as 

   2 2 2

2 1 2 1 2 1 0

1 1 1 1

3 2 3 2
            lx x x x x y y y y z z z zT c l c l c l c l c l c l c   

(5.6) 

From (5.4)-(5.6), one can show that 

   2

0 2 1

1 1

3 2
     x x x x xT T c l c l   

(5.7) 

and 
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   2

2 1

2 1

3 2
     lx x x x xT T c l c l   

(5.8) 

According to Fourier’s law, the heat flow in a material can be expressed as [13] 

   q a a ax x y y z z

T T T
k k k

x y z

  
  

   
       

  
(5.9) 

where a x , a y , and a z
 are unit vectors in the -x , -y , and -z  directions respectively. The 

thermal flux through a surface   is obtained using 

   q.
A

Q dA


     (5.10) 

where A  is the area of the surface  . 

Substituting (5.2) into (5.9) and placing the result in (5.10), the heat flux at the 

planes 0x  and  xx l  can be obtained  

   0 1    x x x y zQ c k l l   (5.11) 

    2 12      lx x x x x y zQ c l c k l l   (5.12) 

From (5.11) and (5.12) 

   0
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  x
x

x y z

Q
c

k l l
  

(5.13) 

   0
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 x lx

x

x x y z

Q Q
c

k l l l
  

(5.14) 

By substituting (5.13) and (5.14) into (5.7) and (5.8) one can obtain 

   0 0    x cx x xT T R Q   (5.15) 

and 

       lx cx x lxT T R Q   (5.16) 

where 
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x
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l
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(5.17) 

and 
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    0

1

3
cx x x lxT T R Q Q        

(5.18) 

Repeating along the -y axis yields   
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(5.19) 
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Q Q
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(5.20) 

The mean temperature on the plane 0y   and yy l  are 

   
0 0y cy y yT T R Q       (5.21) 

and 

   ly cy y lyT T R Q       (5.22) 

where 
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(5.23) 

and 

    0

1

3
cy y y lyT T R Q Q        

(5.24) 

and along the -z axis, it yields 
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(5.25) 
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z x y z

Q Q
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(5.26) 

The mean temperature on the plane 0z   and zz l  are 

   0 0z cz z zT T R Q       (5.27) 

and 

   lz cz z lzT T R Q       (5.28) 

where 
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2

z
z

z z

l
R

k A




 

   
(5.29) 

and 

    0

1

3
cz z z lzT T R Q Q        

(5.30) 

Using (5.13), (5.14), (5.19), (5.20), (5.25), and (5.26) in (5.2) and substituting into 

(5.1) yields 

    0 0 0

1
x lx y ly z lz

de
p Q Q Q Q Q Q

dt U


      



         
(5.31) 

Since e  is independent of position, the total time changing energy in the volume can be 

obtained by multiplying (5.23) by the volume 

   
0 0 0x lx y ly z lz

dE
P Q Q Q Q Q Q

dt


               

(5.32) 

where P  is the power dissipated in the cuboid and E  is the thermal energy. Since the 

thermal analysis is performed in steady state 

   0
dE

dt

    
(5.33) 

 Equations (5.15)-(5.18), (5.21)-(5.24), and (5.27)-(5.33) represent the basis of the 

thermal equivalent circuit of a cuboidal element that is illustrated in Fig. 5.2. Specifically, 

R  represents the resistance to heat flow, T  is analogous to electric potential, and Q  

(heat flow) is analogous to current. 
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Fig. 5.2 Thermal Equivalent Circuit of a Cuboidal Element 

5.2. Peak Temperature 

From Fig. 5.2 one can observe that given the power dissipated in a cube, cube 

dimensions, and the surface temperatures, T  and cxT , cyT , and czT  are readily 

obtained. However, it is often necessary to calculate peak temperature. Typically, it is 

desired to limit the peak temperature of an electromagnetic device. To do so, (5.2) is first 

expressed in a form: 

   0x y zT T T T c       (5.34) 

where 

   
2

2 1i i iT c i c i    (5.35) 

and , , or i x y z . 

To obtain 0c  in (5.34), one can use (5.4), (5.13), (5.14), (5.19), (5.20), (5.25), and (5.26). 



 

 

 

66 

 By taking the derivative of (5.34) and equating the answer to zero, one can yield 

   
1

2

2

 ,    0
2

i
e i

i

c
i c

c
     

(5.36) 

The extremum (minimum or maximum) value of iT  is obtained by substituting 

(5.36) into (5.35) which yields 

   
2

1
2

2

 ,    0
4

i
ei i

i

c
T c

c
     

(5.37) 

Considering that eiT  could be a minimum and 2ic  could be zero, the -i component of 

the cuboid peak temperature is expressed as 

   
    
 

0 2 2

i,

0 2

max ,  ,    0 or 0 and 0 or 

max , ,  ,    0 and 0  

i li i i e e i

pk

i ei li i e i

T T c c i i l
T

T T T c i l

  

  

     
  

  
(5.38) 

Using (5.38), the peak temperature along the -x , -y  and -z axis are evaluated and then 

the peak temperature of the cuboid is obtained  

   , , , , 0    pk x pk y pk z pkT T T T c   (5.39) 

5.3. Transformer Thermal Model 

In the previous sections, the thermal equivalent circuit of a cuboidal element was 

derived. In this section, this circuit will be used as the basis for deriving the transformer 

thermal equivalent circuit. To set the stage, the transformer is divided into 14 cuboids. 

Assuming thermal symmetry, only one-eighth of the transformer is analyzed as depicted 

in Fig. 5.3, Cuboids A, B, C, and F represent the transformer core, cuboids E, G, I, J, and 

K represent the - coil, and cuboids  D, H, L, M, and N represent the - coil. 

Prior to deriving the TEC, two issues need to be resolved. First, as illustrated in Fig. 

5.3, cuboids C, I, K, L, and M are not rectangular. However, the thermal equivalent 

circuit discussed in Section 5.1 was derived for a rectangular element. In addition, each 

transformer coil is composed of a conductor surrounded by an insulation and air which 

makes representing the transformer coils in the TEC a challenge. 
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Fig. 5.3 Cuboids of a Tape-Wound Transformer 
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5.3.1. Coil Homogenization 

When transformer coils are considered for thermal analysis, representing each 

material separately is a challenge. The reason is that each coil turn is composed of a 

conductive material with a thermal conductivity 
ck  surrounded by an insulating material 

with a thermal conductivity 
ik  in addition to the air with a thermal conductivity 

ak  which 

occupies the region between the conductors as shown in Fig. 5.4 (a). Therefore, prior to 

deriving its thermal equivalent circuit, homogenization of the coil is convenient [13].  

 

Fig. 5.4 Coil Homogenization 

To set the stage, the coil in Fig. 5.4 is considered. The width of the coil is assumed to 

be w  and the height is assumed to be h . The coil is assumed to have N  conductors, each 

with a radius of cr  and an insulation thickness of it . The basis of the homogenization 

process is to keep the areas of each material fixed. The cross-sectional areas of the 

conductor, insulation, and air are expressed as 

   
2c ca N r   (5.40) 

     2 2  i c i ca N r t r   
(5.41) 

   a c ia wh a a     (5.42) 
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The coil aspect ratio is defined as 

    
w

h
  

(5.43) 

The next step is to calculate the dimensions of an effective material shown in Fig. 5.4 

(b). These dimensions are calculated such that the area of each material is kept the same 

as the original coil (Fig. 5.4 (a)). Furthermore, the aspect ratio of each material must be 

equal to the aspect ratio evaluated using (5.43).  

The yellow rectangle shown in Fig. 5.4 (b) represents the effective dimensions of 

conductor material. In order to maintain the same conductor area and the coil aspect ratio, 

it is required that 

    c c cw h a   (5.44) 

and 

    c

c

w

h
  

(5.45) 

where ch  and cw  are the effective height and width of the conductor material 

respectively. By solving (5.44) and (5.45) one obtains 

    c cw a   (5.46) 

    


 c
c

a
d   

(5.47) 

Similarly, to keep the same area for the insulating material (the gray region in Fig. 

5.4 (b)) and the same aspect ratio, one can observe that 

      c i c i iw w h h a     (5.48) 

and 

    
i

i

w

h
   

(5.49) 

where ih  and iw  are the effective height and width of the insulation material 

respectively. Solving (5.48) and (5.49) yields 
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    2


  i

i c c

a
h h h   

(5.50) 

    i iw h   (5.51) 

Finally, the dimensions of the white region in Fig. 5.4 (b) which represent the 

effective area of the air can be obtained using 

      a c iw w w w   (5.52) 

      a c ih h h h   (5.53) 

where ah  and aw  are the effective height and width of the surrounding air respectively. 

Using (5.52) and (5.53) it can also be shown that the area and the aspect ratio of the 

effective air region is kept the same. 

Using (5.46), (5.47), and (5.50)-(5.53), the coil of Fig. 5.4 (a) is replaced 

geometrically with Fig. 5.4 (b).  

Since the aspect ratio is kept the same for all regions, the thermal conductivity of the 

homogenized region will be the same in the -x  and -y  directions. If the -x direction is 

considered then the three parallel thermal resistances of this effective material 

representation shown in Fig. 5.4 (b) can be calculated as 

    1   c i a
x

c c i c a c

w w w
R

k h l k h l k h l
  

(5.54) 

    2


 c i a

x

c i a i

w w w
R

k h l k h l
  

(5.55) 

    3 x

a a

w
R

k h l
  

(5.56) 

where l  is the coil length in the z-  direction. The parallel combination of the three 

thermal resistances is expressed as 

    

1 2 3

1

1 1 1


 
x

x x x

R

R R R

  
(5.57) 
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To further simplify and replace Fig. 5.4 (b) with a uniform material of Fig. 5.4 (c), 

the thermal conductivity of the homogenized material in the -x  and -y  directions is 

denoted xyhk , and the thermal resistance is expressed as 

    x

xyh

w
R

k lh
  

(5.58) 

Substituting (5.54)-(5.56) into (5.57) and equating the result to (5.58) yields, 

    
1 1 1

1
  


  

xyh
i a c i a

a ac i c a c i i a i

k
h h h h h h

k hk k h k h k h k h

  
(5.59) 

Although, the thermal conductivity is the same in the -x  and -y  directions, the 

homogenized material will be anisotropic. This is because the thermal conductivity in the 

-z  direction is different. As shown in Fig. 5.4 (b), the conductor material is continuous 

and thus the homogenized material will have a good thermal conductivity in the -z  

direction. This is because most of the heat flux will run through the conductive material. 

The thermal resistance of the homogenized material in the -z  direction is equal to the 

parallel combination of the resistances of the three different materials. Therefore, 

    
1


 

z
c c i i a a

R
a k a k a k

l l l

  
(5.60) 

If the thermal conductivity of the homogenized material in the -z  direction is 

denoted zhk , then the thermal resistance in the -z  direction can also be expressed as 

    z

zh

w
R

k wh
  

(5.61) 

After equating (5.60) to (5.61) and simplifying, 

    
 

 c c i i a a
zh

a k a k a k
k

wd
  

(5.62) 

Consequently, the coil shown in Fig. 5.4 (a) is replaced by anisotropic homogenized 

material shown in Fig. 5.4 (c) with a thermal conductivity xyhk  in the -x  and -y  

directions and a thermal conductivity of zhk  in the z-  direction. Now the stage is set for 

the derivation of the transformer thermal equivalent circuit (TEC). 
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5.3.2. Rounded Corner Element Representation 

As discussed earlier, some of the transformer cuboids are not rectangular. A 

relatively straight forward approach to tackle this problem is to represent these elements 

as effective rectangular cuboids. The effective cuboid is derived on the basis that the total 

surface area in each direction is maintained the same.  

To calculate the dimensions of the effective material, the corner element depicted in 

Fig. 5.5(a) is considered. This element is reflective of the elements labeled ‘I’, ‘K’, ‘L’ 

and ‘N’ in Fig. 5.4 (b). The area in the -y direction (direction into page) of the corner 

element is expressed as 

  
4

y o iA w r r


    
(5.63) 

As shown in Fig. 5.5(b), the area of the effective element in the -y direction is 

 
e eA wl   (5.64) 

where el  is the effective length. Since it is desired to keep the same area, then (5.63) and 

(5.64) must be equal; as a result, 

  
4

e o il r r


    
(5.65) 

 

Fig. 5.5 Corner Element Representation 
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As shown in Fig. 5.5, the cuboid area in the -z direction zA  is maintained the same, 

in the -x direction the total area is maintained 

 2ro ri xA A A    (5.66) 

where xA  is the area of the effective cuboid in the -x direction, riA  is the area of the 

corner element in -x direction at the winding inner radius, and roA  is the area of the 

corner element in the -x direction at the winding outer radius as depicted in Fig. 5.5. The 

result in (5.66) means that the contact area between the element and the ambient is the 

same for the corner element and the effective element which is the desired result. 

For element ‘C’, a similar result can be obtained. This is done by considering Fig. 

5.5 and assuming that the -x axis is in the angular direction, the -y axis is in radial 

direction, and the -z axis is into the page; Thus, 

 
z eA wl   (5.67) 

and 

 2ro ri yA A A    (5.68) 

5.3.3. Transformer Thermal Equivalent Circuit (TEC) 

Using the results in the previous sections, the transformer thermal equivalent circuit 

depicted in Fig. 5.6 is derived. Each cuboid is thermally represented by the equivalent 

cuboidal circuit of Fig. 5.2. To simplify representation, following the notation of [13] 

each cuboid is replaced by a rectangle that shows the cuboid name and nodes as shown in 

Fig. 5.6.   

As shown in Fig 5.6, some cuboids are thermally connected to each other through 

air. This is accomplished using a thermal resistance (gray rectangles in Fig. 5.6) which 

depend on the contact area ijA  and the clearance ijc  between cuboids i  and j ; where 

both i  and j  could be any cuboid ‘A’ through ‘N’. The thermal resistance between 

cuboids i  and j  is expressed as 

   
ij

ij

ij a

c
R

A k
   

(5.69) 
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where ak  is thermal conductivity of air. 

To be specific, the 0y  node of ‘A’ is connected to the ly  node of ‘D’ through ADR . 

The resistance ADR  can be obtained using (5.69) by setting AD vc c . The contact area is 

selected to be the average area between the two cuboids, i.e., 

 0.5( ) 2 / 4AD cA c c w d     . 

Similarly, the 0y  node of ‘B’ is connected to the ly  node of ‘E’ through BER . By 

setting BE vc c  and  0.5 2 / 4BE c ci cA c c w r d      , BER  is obtained. 

The 0x  node of ‘F’ is connected to the lx  node of ‘E’ through EFR . The resistance 

EFR  is obtained using (5.69) by setting EF cc c  and the contact area is expressed as 

  / 8EF ch cA l h d  . It is noted that the resistance FGR  which connects nodes 0x  and lx  

of cuboids ‘G’ and ‘F’ respectively is equal to EFR . 

The 0z  node of ‘F’ is connected to the lx  node of ‘J’ through FJR . The resistance 

FJR  can be obtained using (5.69) by setting FJ ec c  and the contact area is expressed as 

   / 8FJ c we chA t w l h   . 

The 0x  nodes of ‘E’, ‘G’, ‘I’, ‘J’, and ‘K’ are connected to the lx  nodes of ‘D’, ‘H’, 

‘L’, ‘M’, and ‘N’, through DER , GHR , ILR , JMR , and KNR  respectively. These thermal 

resistances are calculated using (5.69) with the clearance is set to c  for all resistances. 

The contact areas between cuboids ‘E’ and ‘D’ and between ‘G’ and ‘H’ are set to 

  / 8DE GH cA A h h d    . The contact area between ‘I’ and ‘L’ and between ‘K’ and 

‘N’ is expressed as    /16IL KN o iA A r r h h       . The contact area for cuboids 

‘J’ and ‘M’ is expressed as   / 4JM weA w h h   . 

Some nodes of the cuboidal elements are in contact with the ambient as shown in 

Fig. 5.6. This contact is represented by a temperature source aT  with a value equal to the 
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ambient temperature in series with a thermal resistance jaR  with a value depends on the 

contact area jaA  and the heat transfer coefficient jah  between cuboid j  and ambient. 

Thus, 

   
1

ja

ja ja

R
A h

   
(5.70) 

By applying (5.70) to the TEC in Fig. 5.6, the thermal resistances to ambient shown 

in Table 5.1 are obtained. 

Table. 5.1 Thermal Resistances to Ambient. 

Elements A-C: 

   

   

   

0

0

0

1 2
                    

0.5( ) 0.5( )

1 2
                 

0.5 0.5

8 8
           

A za Alya

ca c ca c

B za Blya

ca c ci c ca c ci c

C ya Clya

ca co ci c ca co ci c

R R
h c c w t h c c w d

R R
h c c w r t h c c w r d

R R
h r r d h r r d

     

     

 

 
   

 
     

 
   0

4
            C za

ca co ci c

R
h r r t




  

Elements D-H: 

2 2 4
                       Glya Hlya Hlxa

ca c ca c ca c

R R R
h w d h w d h h d  

    

Elements I-K: 

4 1 4
                       

( ) ( )
Ilya Jlya Klya

ca o i ca we ca o i

R R R
h r r w h w w h r r w       

  
 

 

Elements L-N: 

0 0 0

4 1 4
                       

( ) ( )

4 2 4
                       

Llya Mlya Nlya

ca o i ca we ca o i

L xa M xa N xa

ca o ca we ca o

R R R
h r r w h w w h r r w

R R R
h r h h w h h r h
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Fig. 5.6 Transformer Thermal Equivalent Circuit 
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6. PERFORMANCE EVALUATION 

In the previous chapters, a transformer MEC and T-equivalent circuit model were 

developed and the leakage inductances were validated using a finite element-based 

model. In addition, expressions of the transformer high frequency losses were derived. In 

order to predict the temperature within the transformer windings and core, a transformer 

TEC model was established. In this chapter, the transformer design is considered in 

which the T-equivalent, MEC, and thermal models are used together to establish the 

transformer performance including voltage regulation and magnetizing and inrush 

currents. The transformer thermal analysis is conducted using the TEC. 

6.1. Transformer Mass and Volume 

The calculation of transformer dimensions is first considered starting with winding 

geometry. In the design process, the conductor area is determined. The calculated 

conductor area may not exactly match the conductor area from a standard wire gauge 

(SWG) list. Therefore, the round operator is used to select the closest conductor area 

from the SWG list as  

 

*

jt

jc SWG

jpr

a
a round

N

 
   

 
  

(6.1) 

In (6.1), 
*

jta  is the total area required for the parallel conductors of a single coil turn. 

From the conductor area one can obtain the radius of a cylindrical conductor using 

 
jc

jc

a
r


   

(6.2) 

The winding bending constant is defined as 

 ji

jbd

jc

r
k

r
   

(6.3) 
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The bending constant is used in the design process to help ensure the feasibility of 

forming the radius of the end winding curvature. 

The constant jbk  is defined as the winding build factor. From Chapter 2, the width 

and height of a unit cell of a coil is calculated as 

 2ju jc jbw r k   (6.4) 

 2ju jc jpr jbh r N k   (6.5) 

 j ju juww w N   (6.6) 

 j ju juhh h N   (6.7) 

The coil area is obtained as 

 jcl j jA w h   (6.8) 

and the packing factor is defined as 

  jc jpr jcl

jpf

jcl

a N N
k

A
   

(6.9) 

The volume of a coil is calculated 

     2 2 2jcl j jo ji j w weU h r r w d w      (6.10) 

where the dimensions in (6.10) are shown in Fig. 2.1 and Fig. 2.2.  

Finally, the winding mass is computed 

 j jcp jcs jcl jpf jcM N N U k    (6.11) 

where jc  is the conductor mass density.  

To determine the core and clearance dimensions, the width and height of the core 

interior window are first calculated as  

 2 2 2 2ci cw w w c c c           (6.12) 

   * *max 2 , 2ci v vh h c h c        (6.13) 

the vertical clearance between the α-winding and the core and between the β-winding and 

the core is obtained 
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  1

2
v cic h h     

(6.14) 

  1

2
v cic h h     

(6.15) 

After computing the core interior width and height, the core exterior width and 

height are determined 

  2co ci cw w t    (6.16) 

  2co ci ch h t    (6.17) 

The core volume is calculated as 

     2 2 2c c co ci c cv chU d r r t l l      (6.18) 

The core mass is determined using 

 c c cM U    (6.19) 

where c  is the core mass density. 

In some cases, there is a limit on the transformer total volume. Thus, it is useful to 

compute the total depth, width, and height of the transformer as 

 2T w od d r    (6.20) 

  2T co cw w c w c w          (6.21) 

 T coh h   (6.22) 

It is also useful to calculate the total mass as 

 T cM M M M      (6.23) 

6.2. Transformer Performance 

The transformer performance can be predicted using the T-equivalent circuit shown 

in Fig. 2.6, in conjunction with the MEC model which was set forth in Chapter 3. The 

transformer TEC is then used to perform a transformer thermal analysis and to update the 

transformer resistances. Prior to describing how this is done, it is convenient to first 

consider winding resistance.  
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6.2.1. T-equivalent Circuit Parameters 

The resistance of the j -winding is expressed as 

 jcs

j jcl

jcp

N
r r

N
   

(6.24) 

where jclr  is the resistance of the j -winding coil which is calculated using (4.58). It 

should be noted that for the  -winding, the referred resistance is obtained from the 

actual value using (2.12). A method to obtain the core resistance will be discussed when 

the operating point analysis is considered. 

Also it is useful to include the dynamic resistances obtained in Section 4.3 in the T-

equivalent circuit model. To do so, the sum of the dynamic resistances of the coil 

segments is expressed as 

    
D D

D

D D

r r
r

r r

 

 

   
 

(6.25) 

Substituting (6.25) into (4.51) yields 

    

22

2pe D D D

di didi di
S r r r

dt dt dt dt  

            
     

  

(4.26) 

 Using the T-equivalent circuit, the derivative of magnetizing current squared can be 

related to the winding currents as 

    

2 22 ' '

2m
di didi di di

dt dt dt dt dt

                   
        

  

(6.27) 

From (2.6), (4.26), and (4.27), one can yield 

    

2 22'
'

m

m
pe D D D

didi di
S r r r

dt dt dt 

          
    

  

(6.28) 

where  

 
mD D

N
r r

N 





 
  
 

  
(6.29) 
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2

'

mD D D

N
r r r

N 





 
  
 

  

(6.30) 

    
mD D Dr r r

 
    (6.31) 

Assuming sinusoidal currents, the result in (6.28) can be represented using the T-

equivalent circuit by adding a resistance 
2 '

e Dr 
  in series with the - winding impedance, 

a resistance 
2

e Dr 
  in series with the - winding impedance, and a resistance 

2

me Dr  in 

series with the magnetizing branch impedance as depicted in Fig. 6.1. 
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Fig. 6.1 High Frequency T-Equivalent Circuit Model 

6.2.2. Voltage Regulation 

The winding resistances and leakage inductances are sources of a voltage drop such 

that load voltage is dependent on the load current. The variation of the load voltage is 

typically limited since many loads are sensitive to voltage variation. Therefore, to set 

limits within the design, it is useful to define voltage regulation as 

 
, ,

,

fl nl

nl

V V

V

 






   

(6.32) 

In (6.32) , flV  and ,nlV  are the phasor representations of the full-load and no-load load 

voltages, respectively. Using the T-equivalent circuit model illustrated in Fig. 6.1, the no-

load and the full-load voltages can be calculated as 
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, 2 '

m
nl

e D m e l

Z N
V V

r r Z j L N



 

   


  
  

(6.33) 

  22

' 2 ' ' '

, ,2 2

m e D e l
m

fl e D e l fl

e D m e l e D m e l

Z r r j LZ N N
V V r r j L I

r r Z j L N r r Z j L N





 

  
    

     

 
 

   

                     
 

(6.34) 

 

where 

 
2

m

e m c
m e D

c e m

j L R
Z r

R j L





 


  

(6.35) 

Substituting (6.33) and (6.34) into (6.32) and simplifying yields  

 
2 '

,' 2 ' ' 21
e D e l fl

e D e l e D e l

m

r r j L I
r r j L r r j L

Z V



 

  
   



 
    

  
       

 
 

 
(6.36) 

6.2.3. Operating Point Analysis 

The high frequency T-equivalent circuit in tandem with the MEC form the basis for 

the operating point analysis using the procedure set forth in [13]. It is assumed that the 

analysis is performed under normal loading conditions which means that the load current 

varies between no-load and full-load. The leakage inductances are assumed to be 

constant; however, the magnetizing inductance and core loss resistance are a function of 

load current. It is also assumed that the input voltage V  and the referred load impedance 

'

lZ  are constant. A numerical method is used to compute the steady-state operating point. 

This method utilizes the T-equivalent circuit along with the magnetic equivalent circuit 

and the TEC model. A Pseudo-code illustrating the operating point analysis is shown in 

Table 6.1. A discussion at each step will follow. 
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Table 6.1 Operating Point Analysis Pseudo-Code 

1. express magnetizing current as a function of magnetizing flux linkage (6.38) 

2. initialization 

1 11 and Ak T T   (ambient temperature) 

initialize core resistance (6.39) and magnetizing inductance (6.40) 

initialize magnetizing current component in core resistance (6.41) 

3. solving the T-equivalent circuit 

evaluate the electrical resistivity of coil cuboids (6.42) 

evaluate the electrical resistances of cuboids (6.43) 

evaluate winding resistances (6.44) and dynamic resistances (6.29)-(6.31) 

evaluate impedances (6.45)-(6.49) 

calculate magnetizing voltage and referred  –winding voltage (6.50)-(6.51) 

calculate referred  –winding current (6.52) 

4. magnetizing current 

evaluate magnetizing flux linkage (6.54) 

calculate magnetizing current (6.55)- (6.56) 

5. update magnetizing branch parameters 

calculate  –winding current (6.57) 

use the MEC and the MSE to compute core loss, 
k

clS  

update core resistance (6.58) 

update magnetizing inductance (6.60)- (6.63) 

6. update the cuboid temperatures 

calculate power lost in each winding cuboid (6.65) 

use the TEC model to update the cuboid temperatures 

7. check convergence 

calculate me , the magnetizing branch parameters error (6.66) 

calculate Te , the temperature error (6.67) 
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Table 6.1 (Continued) 

if T Tmxae e  or m mmxae e  

1k k   

return to Step 3 

end 

8. final calculations 

evaluate voltage regulation (6.36) and winding power loss (4.114) 

calculate transformer total power loss (6.68) 

end 

 

 

The steps of this method are as follows: 

Step 1 – Magnetizing Current as a Function of Magnetizing Flux Linkage 

In order to perform the operating point analysis it is useful to express the 

magnetizing current as a function of the magnetizing flux linkage. To obtain this function 

using the MEC, the  –winding current is set to zero and test currents between zero and 

a multiple of the expected value of the magnetizing current are applied to the  –

winding. The magnetizing flux linkage corresponding to a test current mi  is calculated as 

 
0, /m

m i i N i N   
 

 
   (6.37) 

From this data, a magnetizing current function is generated. This function may be 

represented as 

  mL im mi F    (6.38) 

Step 2 – Initialization 

Since transformer electrical and thermal parameters are interrelated, it is required to 

conduct an electro-thermal analysis. The effect of the temperature on the core loss is 

neglected and thus the value of the power source of elements ‘A’, ‘B’, ‘C’, and ‘F’ in the 

thermal model shown in Fig. 5.4 is only a function of the core parameters at a nominal 
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temperature. Due to the coupling between the electrical and thermal models, an iterative 

approach is used to conduct this analysis. The process is initialized with the iteration 

index 1k  . The initial temperature is assumed to be equal to the ambient temperature. 

 The initial estimate of the magnetizing inductance and the core resistance are: 

 
1

cR     (6.39) 

 
1

0m mL L   (6.40) 

Also from (6.39) the component of the magnetizing current that flows in the core 

resistance is initialized to 

  
1 0mRi    (6.41) 

Step 3 – Solving the T-equivalent 

The resistivity (the reciprocal of the conductivity) of each of the coil cuboidal 

elements depends on temperature. The relationship between the resistivity and the 

temperature of element   is approximated as 

   
0

Tn
k

k

T T

T
k b

T
 


 
  

 
  

(6.42) 

where 
kT  is the mean temperature of element at iteration k , 0T  is the temperature at 

which the nominal value of the resistivity is measured, and Tk , Tn , and Tb  are 

temperature coefficients of resistivity. 

Using the result in (4.60), the partition of the coil resistance associated with element 

  is expressed as 

   
 
 '

/
Re

2 2 /

k

B jcjclk

jpr jc B jc

U J r kN
r

N r A kJ r k




 




 
  
 
 

  
(6.43) 

where U  , A , and jcr  are the volume, area, and the conductor radius of element  ; 

where   may be the ‘D’, ‘E’, or ‘G’ through ‘N’ cuboids.  

After obtaining the resistance of all conductor cuboidal elements, the -j winding 

resistance can be calculated as 
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4 jcsk k

j j
jcp

N
r r

N


    
(6.44) 

The resistivity obtained in (6.42) is also used to update the value of the dynamic 

resistance of the -  and - coil segments derived in Section 4.3 after replacing the length 

of the coil segment with the length of the cuboid and then dividing the result by two. The 

division by two is due to the fact that the height of the cuboids associated with the 

transformer windings is equal to half of the corresponding coil segment height. Then the 

value of 
m

k

Dr , 
'k

Dr 
, and 

k

Dr 
 are obtained using (6.29)-(6.31). 

As expressed in (6.38), saturation is represented by expressing the magnetizing 

current as a function of the magnetizing flux linkage. To solve the T-equivalent circuit, it 

is helpful to define some equivalent impedances. The impedance at the magnetizing 

branch is defined as: 

 2

m

k k
k ke m c
m e Dk k

c e m

j L R
Z r

R j L

 


 


  
(6.45) 

the α-winding branch impedance and referred β-winding branch impedance are defined as 

 
2k k k

e D e lZ r r j L
         (6.46) 

 
' ' 2 ' 'k k k

e D e lZ r r j L
         (6.47) 

the series combination of 
'kZ  and 

'k

lZ  is expressed 

 
' ' 'k k

l lZ Z Z     (6.48) 

And finally, the parallel combination of 
'k

mZ  and 
'k

lZ  is expressed 

 
'

'

k k
k m l
m l k k

m l

Z Z
Z

Z Z









  
(6.49) 

Using the impedances of (6.45)-(6.49), the magnetizing voltage and the referred 

voltage and current at the load side are calculated 

 
k

k km l
m k k

m l

Z
V V

Z Z




 




  
(6.50) 
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'

'

' '

k kl
mk

l

Z
V V

Z Z







  
(6.51) 

 
'

'

'

k
k

l

V
I

Z


    

(6.52) 

The voltage across the magnetizing inductance is calculated as 

 
2

m

k k

m e Dk k

mL mk

m

Z r
V V

Z


   

(6.53) 

Step 4 – Magnetizing Current 

Due to the non-linear magnetizing characteristic, the magnetizing current may not be 

sinusoidal. Therefore, one cannot utilize phasor analysis to obtain its value. In this step, 

the analysis is performed in the time domain, using the magnetizing voltage whose 

phasor value is obtained step 4. Specifically, it is assumed magnetizing voltage is 

sinusoidal and has a form 

  2 sink k k

mL mL e vmLv V t     (6.54) 

where 
k

mLV  and 
k

vmL  are obtained using (6.54). One may object to the assumption that the 

magnetizing voltage is sinusoidal. However, in general the voltage drop across the 

leakage inductances and winding resistances is small. In addition, the magnetizing 

current compared to the load current is also small. Therefore, one can argue that the 

influence of the harmonics of the magnetizing current on the magnetizing voltage is 

negligible. Under this approximation, the magnetizing flux linkage obtained from the 

magnetizing voltage using Faraday’s law is expressed: 

  
2

cos

k

mLk k

m e vmL

e

V
t  


    

(6.55) 

 Using (6.38), the current through the magnetizing inductance is obtained 

     
mL

k k

im mi t F t   (6.56) 

The total magnetizing current is then calculated as 

      
m mL mR

k k ki t i t i t    (6.57) 
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Step 5 – Updating the Magnetizing Branch Parameters 

In this step, the magnetizing inductance and the core resistance for the following 

iteration are calculated. First the β-winding current is calculated 

      '

m

k k ki t i t i t
 

    (6.58) 

Now since both winding current are known, the flux density in the core tubes is 

obtained from the MEC. Then MSE is used to compute core loss of the core cuboids, 
k

clS  

[13]. 

Then, the core resistance is updated 

 
 2

1

k

mLk

c k

cl

V
R

S

    

(6.59) 

The current in the core resistance for the next iteration is thus computed as 

 1

1

k
k mL
mR k

c

v
i

R


   

(6.60) 

Next, the Fourier series is used to obtain the fundamental component of the current 

through the magnetizing inductance. To do so, Fourier series coefficient are expressed as 

    
/2

1

0

4
cos

T

k

mL mL ea i t t dt
T

    
(6.61) 

    
/2

1

0

4
sin

T

k

mL mL eb i t t dt
T

    
(6.62) 

The rms value of the magnetizing current through the magnetizing inductance is 

computed as 

  2 2

1 1

1ˆ
2

k

mL mL mLI a b    
(6.63) 

In (6.63), the notation ‘^’ is used to indicate that only the fundamental component of the 

magnetizing current is considered. Subsequently, magnetizing inductance for the next 

iteration is updated as 

 1

ˆ
k

k mL
m k

e mL

V
L

I
    

(6.64) 
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Step 6 – Updating the Temperatures of each Cuboid 

To update the cuboid temperatures, the power loss of each cuboid is calculated at the 

next iteration using 

   
1 2 2 1k k k T k

jcl e DS r i i r i


 
     (6.65) 

In (6.65), Dr 
denotes the dynamic resistance of element   at iteration 1k   which is 

calculated using the expressions derived in Section 4.3 and the electrical resistivity in 

(6.42). The core loss of each core cuboid, 
k

clS , is evaluated by multiplying the core loss 

obtained in Step 7 by the volume of the cuboid and dividing the result by the volume of 

the core. 

After evaluating the power loss of each cuboid, the temperature at iteration 1q   

which is denoted 
1qT 

  is obtained using the TEC. 

Step 7 – Checking Convergence 

The error metrics associated with the magnetizing branch are defined 

 

1 1

1 1
max ,

k k k k

c c m m
m k k

c m

R R L L
e

R L

 

 

  
   

 
  

(6.66) 

The error associated with the cuboid temperature is defined as 

    1max q q

Te 
  T T   (6.67) 

Finally, if 
maxT Te e  or 

mmaxme e  , where 
maxTe  and mmaxe  are the corresponding 

maximum allowed errors, then the algorithm converges and the performance evaluation 

process proceeds to the final step ; otherwise, the iterative process is repeated starting at 

Step 3. 

Step 8 – Final Calculations 

Once convergence is established, the transformer voltage regulation and the winding 

power loss are evaluated using (6.36) and (4.105) respectively. The total power loss is 

then calculated as 

 l rl clS S S    (6.68) 
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6.2.4. Inrush Current 

In addition to steady-state behavior, some aspects of transient performance are 

crucial and must be considered in the transformer design. One key metric is transformer 

inrush current which occurs when a transformer is connected to a voltage source. 

To determine inrush current, it is assumed that at time t = tc a sinusoidal voltage 

source vβ is applied to the β-winding side. If the winding resistances are neglected then 

the β-winding flux linkage can be calculated as 

    
c

t

t

t v t dt      
(6.69) 

If  2 cos    e vv V t , solving the integral of (6.69) yields 

       2
sin sine v e c v

e

V
t t t


      


      

(6.70) 

The maximum possible value of the magnetizing flux linkage occurs when the 

second term in (6.70) is equal to -1. This happens when 

 
2

e c vt 
      

(6.71) 

As a result, the worst case scenario of the peak magnetizing flux density will be twice its 

nominal value, i.e.  

 
,

2 2
wcs

e

V
 

   
(6.72) 
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7. NOMINAL DESIGN APPROACH 

A transformer detailed model was derived in previous chapters. Now the stage is set 

to set forth the transformer design process. In this section, the design space, constraints, 

and fitness function are defined in a manner similar to [13]. Then, a multi-objective 

optimization between mass and power loss is performed using GOSET which a Matlab 

based toolbox [71]. In this algorithm the number of generation was selected to be 1000 

with a population size of 1000. The result of this optimization process is a set of non-

dominated designs referred to as the Pareto-optimal front. Finally, a design from the 

Pareto-optimal front is presented. 

7.1. Transformer Analysis Organization 

One may notice that the transformer involves a large number of parameters and two 

coupled models that form the basis of analysis. It is useful to organize these parameters 

into categories. The variables that are related to the transformer configuration are 

organized into four vectors: vector ‘ C ’ which contains the core variables, ‘ G ’ which 

contains gap (or clearance) values, and the last two, W  and W  which are related to 

the  -winding and the  -winding respectively. It is useful to divide each vector into 

two sets, one that corresponds to the independent variables denoted by the subscript ‘ I ’ 

and one that corresponds to the dependent variables denoted by the subscript ‘ D ’. The 

sets which are related to the independent variables are defined as  

     
T

I c ci c cm r t dC   (7.1) 

  * *         G
T

I v vc c c c   (7.2) 

 * a   N      
T

I t b pr uh uw cl cs cpm k N N N N N            W   (7.3) 
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 * a   N      
T

I t b pr uh uw cl cs cpm k N N N N N            W   (7.4) 

where cm , m , and m  are indices which correspond to the material type of the core,  -

winding, and the  -winding, respectively. Also the dependent variable sets are defined 

as 

            
T

T

D c ci ci co co co cv cv ch ch c ch w h w r A l A l U M   C P   (7.5) 

  
_        G

T

D c bc mn v vc c c c   (7.6) 

            
T

T

D c c bd u u cl pf cla r k w h w h A k U M               W P   (7.7) 

            
T

T

D c c bd u u cl pf cla r k w h w h A k U M               W P   (7.8) 

where _bc mnc  is the minimum clearance between the α-winding bending curvature and the 

core and cP , P , and P  are vectors that carry a material related information on the core, 

 -winding, and the  -winding, respectively. Expanded, they are expressed 

         
T

c c r h h h ek k           P   (7.9) 

 
,  

T

c c mxaJ       P   (7.10) 

 
,  

T

c c mxaJ       P   (7.11) 

In (7.9), ρc is the core material mass density,  ,  , and   are the anhysteretic curve 

parameters, and hk , h , h , and ek  are parameters associated with the MSE loss model. 

In (7.10) and (7.11), c  and c  are the mass density for the  -winding, and the  -

winding, c  and c  are the conductivities of the winding conductors, and ,mxaJ  and 

,mxaJ  are the maximum allowed current density for the corresponding winding. Within 

the design program, the independent set parameters are used to calculate the parameters 

of the dependent set. They are then merged into the corresponding vectors 

     C C C
T

T T

I D
  (7.12) 

   
T

T T

I D
   G G G   (7.13) 
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T

T T

I D     W W W   (7.14) 

  
T

T T

I D     W W W   (7.15) 

Within the design program, it is convenient to merge all vectors and parameters that 

are related to the transformer description into a single structure as follows 

        
T

T T T T

D T T T Td w h M    T C G W W   (7.16) 

Similar to the sets that are related to the transformer geometry and material selection, it is 

useful to define the vector of the electrical parameters as 

 
' ' '

0         
T

D D l mN N r r r r L L L
          E   

(7.17) 

A vector which contains the operating point analysis denoted O  is divided into input 

set IO  and output set OO  and they are defined as  

   
T

I L eV Z    O   (7.18) 

           ,1 ,2 ,3             
T

O rl cl l m c ch cv co co co m mxI V P P P L R B t B t B t B t B t i t T    O  (7.19) 

An operating point vector which contain both sets is then expressed 

  
T

T T

I O
   O O O   (7.20) 

Some of the variables that are related to the transformer dimensions are fixed. For 

example the clearances between the windings and between windings and core are fixed 

since they depend on the maximum allowed voltage stress which is typically specified. 

Also, the number of coils connected in series and parallel are held constant in this 

research. The build factor of each winding can also be approximated to be a constant 

value. Therefore, a design vector which contain these fixed parameters is defined as 

 * *

_                        D
T

fp c mn v v b cs cp b cs cpc c c c c k N N k N N   (7.21) 

where _c mnc  is the minimum clearance between α–winding and core. When the fitness 

function is defined this vector is considered as part of the design specification. 

7.2. Design Space 

As part of the design process, a design input vector is specified using some of the 

independent variables identified in the previous section. It is defined as  
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* * * * * * * *                
T

c w c bce bce es ci t pr cl hw t pr N hwm d c h w w r m a N N R m a N R R             θ  (7.22) 

One may question why many of the independent variables highlighted in the previous 

section are not used in the design vector. It is often the case that the independent 

variables are fixed by design specifications. For example, the clearance between the alpha 

and beta windings may be set by the manufacturer. Similarly, the beta winding voltage, 

frequency, and load impedance are often specified. In (7.22), the parameters denoted by 

the ‘*’ notation are desired values. Exact desired values may not be achievable in 

practice.  For example, 
*

ta  may not correspond to a standard wire gauge.  In these cases 

corresponding actual values are defined to be those that are closest to the desired values. 

The actual values are then used within the performance evaluation of a design.  

From the design and fixed parameter vectors, most of the independent variables of 

the vector T are identified. However, some of the independent variables associated with 

IC , IG , IW , and IW  must be defined using additional operators. These include 

  *roundpr prN N    (7.23) 

  *roundcl plN N    (7.24) 
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(7.25) 
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(7.26) 

  *roundpr prN N    (7.27) 

 
*

max 1,round
cl cs

cl

N cs

N N
N

R N

 


 

  
       

  

(7.28) 
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(7.29) 
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 ceil cl
uw

uh

N
N

N






 
  

 
  

(7.30) 

where ceil is an operator that rounds the input to the upper most integer, and round is an 

operator that rounds the input to the closest integer. 

7.3. Design constraints and fitness functions 

To ensure that the obtained designs from the optimization process are all feasible, 

design constraints are imposed. Before considering the design constraints, it is convenient 

to define the less-than and the greater-than function as 

  
1                     

lte , 1
  

1

mx

mx

mx

mx

x x

x x
x x

x x


    

  

 

(7.31) 

  
1                     

te , 1
  

1

mn

mn

mn

mn

x x

g x x
x x

x x


    

  

 

(7.32) 

The less-than function is used when the constraint is on an upper limit mxx  while the 

greater-than function is used to impose the constraint on a lower limit mnx . 

The first constraint is imposed on the minimum clearance between and core 

  1 _te , c mn mnrc g c c   (7.33) 

where mnrc  is the minimum required clearance. 

Typically, it is desired to limit the total dimensions of the transformer which yields 

the constraints   

  2 lte ,T Tmxac d d   (7.34) 

  3 lte ,T Tmxac w w   (7.35) 

  4 lte ,T Tmxac h h   (7.36) 

Also, another constraint regarding dimensions is imposed on the design of the 

transformer. First the aspect ratio of the transformer is defined as 
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max , ,

min , ,

T T T

T

T T T

d w h

d w h
    

(7.37) 

Subsequently, the constraint on the aspect ratio is imposed 

  5 lte ,T Tmxac     (7.38) 

To keep the total mass of the transformer within a practical range and to reduce the 

search space, the maximum allowed mass is constrained. This yields the constraint 

  6 lte ,T Tmxac M M   (7.39) 

Since the  -winding coils are wound around the  -winding coils, it is 

recommended practice that the height of the  -winding coils is less than the height of 

the  -winding coils. Thus 

  7 lte ,c h h    (7.40) 

The bending radius of a conductor depends on the conductor radius. Therefore, 

constraints on the bending factor are considered 

  8 gte ,bd bdmnrc k k   (7.41) 

  9 gte ,bd bdmnrc k k   (7.42) 

where bdmnrk  is the minimum required bending radius factor. 

The evaluation of some constraints can only be performed if the MEC converges.  

Therefore, a constraint 10c  is used to check MEC convergence. If the MEC solver does 

not converge, the design is considered infeasible.  If the MEC converges, the constraint 

on the voltage regulation is evaluated using 

  11 lte , mxac     (7.43) 

The inrush current is limited implicitly by imposing a constraint on the magnetizing 

flux linkage. To evaluate, within the MEC the  -winding current is set to be the 

maximum allowed inrush current while the  -winding current is set to zero. Since the 

MEC is used in this test, a constraint 12c  is imposed to check the MEC convergence. 

Provided the convergence of MEC, the calculated  -winding flux linkage i  is 
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compared to the magnetizing flux linkage defined as the worst case scenario in (4.61). If 

the calculated flux linkage is greater than the worst case scenario flux linkage then the 

worst case scenario magnetizing current will be less than maximum allowed inrush 

current. This is archived by imposing the constraint on the  -winding flux linkage as 

   13 lte ,i wcic      (7.44) 

The operating point analysis described in Chapter 4 must be performed for each 

member of the population. The first step in the operating point analysis requires the 

calculation of a magnetizing current versus magnetizing flux linkage curve for each 

design.  A constraint 14c  is used to check the convergence of the MEC in the construction 

of this relationship. If convergence occurs then the operating point analysis proceeds.  

Within the design process, the operating point analysis is conducted for three load 

conditions: no-load, half-load, and full-load. A design constraint 15c  is imposed on the 

convergence of the operating point analysis for the no-load case. If the operating point 

analysis converges, constraints on the β-winding maximum current and the range of the 

α-winding voltage are imposed as 

  16 ,1 ,lte , nlmxac I I    (7.45) 

  17 ,1 ,gte , nl mnrc V V    (7.46) 

  18 ,1 ,lte , nl mxac V V    (7.47) 

For the remaining load-conditions, it is useful to use the subscript ‘ k ’ to denote the 

operating point number, where 1k   for half-load case and 2k   for full-load case. 

Similar to the no-load case, a constraint 17 2kc   is imposed on the convergence of each 

operating point analysis. A constraint on the transformer maximum temperature is also 

defined as  

  18 2 lte ,Tk mx mxac T    (7.48) 

Considering the weight function w , the weighted loss is a function of the loss at 

every operating point which is calculated as 
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T

l lP  w P   (7.49) 

where lP  is a vector that contains the total loss corresponding to all operating points. The 

constraint on the total loss is obtained as 

  19 2 lte ,K l lmxac P P    (7.50) 

where K  is the number of operating points without including the no-load case, i.e., 

2K   and lmxaP  is the maximum allowed loss. 

Before defining the fitness function, it is convenient to define the design 

specifications dsD  as follows 

 

0

, ,

        i  ..

                     ...

                  

ds e nlmxa nlmnr nlmxa fl mxa imxa wcs

l lmxa Tmxa Tmxa Tmxa Tmxa lmxa bdmnr

T

mxa mxa t t impt tpt emxa imxa

f V V V I I

P M d w h k k

T i i N N O O

      



 

  



 



e

D

V Z ω W   

 

(7.51) 

where V , Zl , and eω  are vectors of  -winding voltage, load impedance, and radian 

frequency values for different load conditions. 

For more convenience, the design information vector defined in (7.21) and (7.51) are 

combined in one vector as 

  
T

T T

fp ds
   D D D   (7.52) 

Finally, the fitness function is expressed as 

  
 

1 1
    1

,  

( 1) 1 1    1

T
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(7.53) 

where  

 
1

1 nc

i

ic

c c
n 

    
(7.54) 

where cn  is the number of constraints. 
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7.4. Example Design 

As an example design, a single-phase tape-wound core-type transformer with a rated 

α-winding voltage _ 480ratedV   V and a rated β-winding _ 240ratedV   V with a rated 

load of 5ratedS  kVA and an operating frequency of 20 kHz was considered. The design 

specifications and fixed parameters are shown in Table 7.1.  

Table 7.1 Transformer Design Specifications and Fixed Parameters. 

Parameter Value Parameter Value 

f (Hz) 400 bdmnrk  12 

e (rad/sec) 2.51*103 mxa  3 

0V (V) _ ratedV  mxaT ( Ko) 600 

nlmxaV  (V) 1.02 _ ratedV  , ti (nA) 1 

nlmnrV  (V) 0.98 _ ratedV  , ti (nA) 1  

nlmxaI (A) 0.1 _ ratedI  imptN  25 

 flI (A) _ ratedI  tptN  25 

mxa  0.05 emxaO  10-3 

iimxa (A) _2 2  ratedI  imxaO  10 

 wcs (V.s) _2 2 / rated eV  c (mm) 2.5 

V (V)  _ 1  1 ratedV  c (mm) 2.5 

Zl (Ω)  _ 2  1l ratedZ  
*

vc (mm) 2.5 

eω (rad/sec)  1  1e  
*

 vc (mm) 2.5 

W   0.1  0.4  0.5  bk  1.2 

lmxaP (W) 200 csN  1 

TmxaM (kg) 60 cpN  2 

Tmxad (m) 1 bk  1.2 

Tmxaw (m) 1 csN  1 

Tmxah (m) 1 cpN  2 
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In Table. 7.1, the rated currents are calculated as 

 _

_




 rated
rated

rated

S
I

V
  

(7.55) 

 _

_




 rated
rated

rated

S
I

V
  

(7.56) 

and the rated load impedance is expressed as 

 _

_

_





 rated

l rated

rated

V
Z

I
  

(7.57) 

The transformer design space parameters are coded as genes as shown in Table 7.2. 

The range of each gene is set by defining minimum and maximum limits. The limits are 

based on practice and can be flexibly changed as desired. As shown, the gene type is 

defined as integer ‘int’ when the parameter represents a material type. The gene type is 

defined as linear ‘lin’ when the parameter represent a fraction and it is defined as 

logarithmic ‘log’ when the parameter vary within a large range such as the transformer 

dimensions. 
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Table. 7.2 Transformer Design Parameters 

No. Par. Description Min. Max. Type 

1 cm  Core material 1 5 int 

2 wd  Depth of winding (m) 10-4 1 log 

3 cc  - winding to core clearance (m) 2*10-3 10-2 log 

4 bceh  
Vertical distance between bending 

center and core edge (m) 
10-4 2*10-1 log 

5 bcew  
Horizontal distance between 

bending center and core edge (m) 
10-4 2*10-1 log 

6 esw  Coil straight length on end (m) 10-4 10-1 log 

7 cir  Core inner radius (m) 10-5 2*10-2 log 

8 m  - winding material 1 2 int 

9 
*

ta  
Desired area of - winding 

conductors (m2) 
10-6 10-3 log 

10 
*

prN  
Desired number of - conductors in 

parallel 
1 5 int 

11 
*

clN  Desired Number of - coil turns 10 103 log 

12 
*

hwR  Desired - coil height to width ratio 0.2 5 log 

13 m  - winding material 1 2 int 

14 
*

ta  
Desired area of - winding 

conductors (m2) 
10-6 10-3 log 

15 
*

prN  
Desired number of - conductors in 

parallel 
1 5 int 

16 
*

NR 

 

Desired - winding to - winding 

turns ratio 

_

_

0.95
rated

rated

V

V




 

_

_

1.05
rated

rated

V

V





 

lin 

17 
*

hwR  Desired - coil height to width ratio 0.2 5 log 

 

To establish the design, GOSET [1] was applied with a population size of 1000 over 

1000 generations. The resulting Pareto-optimal front (POF) which show a trade-off 

between total mass and total loss is shown in Fig. 7.1. Design 100 which is highlighted 

by red circle is selected from the POF to be presented in details. The parameter 

distribution plot is illustrated in the Appendix. 
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Fig. 7.1 Transformer Design Pareto-Optimal Front 

The top and front cross-sectional views of design 100 are depicted in Fig. 7.2. As 

shown, the bending starts before the core tip which leads to minimizing the clearance 

between the coil and the core in the depth direction. Also as enforced by one of the 

constraints, the height of the  -winding coils are less than the height of the  -winding 

coils. The parameters of this design are shown in Table 7.2 and the electrical parameters 

are shown in Table 7.4. 
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(a) Front View (b) Top View

 

Fig. 7.2 Transformer Cross-sectional View 
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Table 7.3 Parameters of Design 100 

Core - winding - winding 

Par. Value Par. Value Par. Value 

Material Hiperco50 Material Copper Material Copper 

cd  6.93 cm AWG 16 AWG 19 

coh  12.84 cm cr  6.45 cm2 
cr  4.56 cm2 

cow  12.24 cm csN  1 csN  1 

cih  7.03 cm cpN  2 cpN  2 

ciw  6.43 cm prN  4 prN  4 

ct  2.91 cm uwN  8 uwN  11 

cir  1*10-5 m uhN  10 uhN  14 

cA  20.12 cm2 w  1.3 cm w  1.28 cm 

cU  725 cm3 h  6.48 cm h  6.53 cm 

cM  5.69 kg ir  2.09 cm ir  0.56 cm 

  or  3.39 cm or  1.84 cm 

  pfk  49.8 % pfk  48.01 % 

  bdk  32.41 bdk  12.24 

  M   2.64 kg M  1.84 kg 

Table 7.4 Electrical Parameters 

Par. Value Par. Value Par. Value 

:N N   80 : 154 r  45.48 mΩ  
'r  34.4 mΩ  

0mL  2.38 H  lL   135.5 H  '

lL  56.4 μH  

 

The  -winding flux linkage versus current is depicted in Fig. 7.3. As shown the 

inrush current (plotted in green) is less than the allowed inrush current (plotted in red) 

which satisfies the design requirement. 
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Fig. 7.3  -winding Flux Linkage versus Current 

The parameters of the operating point analysis are shown in Table 7.5. From these 

parameters there are several observations. For one, the core loss is almost independent of 

the load current and it represents nearly all of the transformer total loss at the no-load 

case. The winding loss depends directly on the load current and they represent about 23% 

of the total loss at half-load and about 57% at the full-load case. Over an operation cycle, 

the transformer load condition varies between no-load, when there is nearly only a core 

loss, and full-load, when the winding loss becomes higher than core loss. Therefore, both 

transformer losses are significant and it is desired to minimize their net. As one may 

expect the transformer maximum temperature correlate to winding currents. A difference 

of about 96 Co between no-load and full-load case is observed. The thermal analysis is 

performed under the assumption that the ambient temperature is assumed to be 20 Co. 

One may expect that the transformer maximum temperature should be equal to the 

ambient temperature at no-load case. However, due to core loss, the maximum 

temperature at no-load case is equal to 61 Co.  
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Table 7.5 Operating Point Data 

Par. No Load Half Load Full Load 

 (V)V  240 0o  240 0o  240 0o  

 (Hz)f  400 400 400 

 ( )LZ     92.16 0o  46.08 0o  

 (A)I  0.15 38.3o  9.73 1.66o  19.24 2.48o  

 (V)V  461.9 0.0085o  460.19 1.12o  457.79 2.21o  

 (A)I  0  4.99 178.88o  9.93 177.79o  

 (m )r   48.85 50.33 56.4 

'  (m )r   37.14 38.91 46.37 

 (W)rS  0.0011 4.8 21 

 (W)rS  0 3.62 17.06 

 (W)clS  28.343 28.2 28 

 (W)lS  28.344 36.63 66.06 

 (k )cR   2.032 2.033 2.035 

 (H)mL  1.025 1.028 1.031 

2 (A/mm )J  0.0144 0.93 1.84 

2 (A/mm )J  0 0.956 1.9 

 (C )o

mxT  61 77.85 157.38 

 

The flux density in the core vertical leg, horizontal leg, and the corner segments at 

no-load are shown in Fig. 7.4. As shown, the peak value of the flux density in the interior 

segment of the core corner is higher than the peak value of the flux density in the other 

core regions. In addition, the variance in the flux density levels between the corner 

segments proves the importance of dividing the core corner into several parallel 

segments. It is also noted that the flux density waveforms in the vertical and horizontal 

core legs are almost identical which is expected since they have the same cross-sectional 

area and their corresponding permeances can be considered as being series connected if 

the leakage flux is neglected. 
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Fig. 7.4 No-load Flux Density 

The transformer maximum temperature versus mass is depicted in Fig. 7.5. It is 

noted that as the mass increases, the maximum temperature goes down. 
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Fig. 7.5 Maximum Temperature Versus Mass at Full Load 
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8. SCALED DESIGN APPROACH 

The objective of the research presented in this chapter is to develop meta-model 

based scaling laws for the tape wound transformer model derived in the previous 

chapters. Prior to doing so, the possibility of developing the meta-model based scaling 

laws is initially explored using a simplified two winding transformer. The purpose of 

considering this simplified transformer is mainly to develop and validate the scaling laws. 

Therefore, some crude approximations are initially made to simplify analysis such as 

neglecting the leakage inductances and eddy current loss and assuming linear 

magnetizing curve. Subsequently, the meta-model is derived for the tape wound 

transformer in great details.  

As will be discussed in this chapter, scaling laws enable one to approximate key 

performance metrics, i.e. loss and mass, based upon device power ratings without 

requiring one to perform a detailed component optimization [41]. Often, large degree of 

freedom component-level optimization within the context of a system-level optimization 

is intractable.  

To explore scaling laws, a simplified two winding, core type transformer shown in 

Fig. 8.1 is initially considered. The - winding (lighter orange) is wound on the left leg 

and the  -winding (darker orange) is wound on the right leg. For simplicity, the two 

windings are assumed to have the same dimensions and the clearances between the 

windings and the core are neglected; therefore, 

 
2

ciw
w w     

(8.1) 

and 

 
2

cih
h h     

(8.2) 
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where w , w , and 
ciw  are the widths of - winding, - winding, and core interior 

window respectively and h , h , and 
cih  are the heights of - winding, - winding, and 

core interior window respectively. It should be noted that when the scaling of the tape-

wound transformer is considered in Section 8.6, the winding to winding and winding to 

core clearances will not be neglected and the winding heights and widths do not have to  

be equal.   

 

Fig. 8.1 Two Winding Core Type Transformer Cross Section 

(a) Front View 

(b) Top View 

 

    

 
 

ciw

lw w w cih

lw
cd
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Prior to considering scaling, it is useful to define and describe several key parameters 

of the transformer.  The rms current density for winding j  is expressed as 

 j j

j

j pf

N I
J

A k
   

(8.3) 

where jN  and jI  are the -j winding number of turns and rms current respectively, pfk  is 

the winding packing factor, and jA  is the area of the -j winding. The winding area is 

represented by 

 j j jA w h   (8.4) 

In Section 8.6, the current densities of both windings do not have to be the equal but 

initially for the simplified model, the  -winding and  -winding rms current densities 

are assumed to be equal 

 J J J     (8.5) 

The mass is another quantity of interest and is given by 

  
,

2 2c l ci ci l c pf j jc

j

M d w w h w k U
 

 


       (8.6) 

where c  and jc  are the mass density of core material and j -winding conductor 

respectively and jU  is the volume of winding x  which is calculated by  

   2j j j c l jU h w d w w     (8.7) 

As shown in previous chapters, it is convenient to utilize a T-equivalent circuit when 

analyzing transformers. Initially for the simplified model, the T-equivalent circuit shown 

in Fig. 8.2 is considered. As shown, the leakage flux is neglected and it is assumed that 

the magnetizing curve is linear. In Section 8.6, leakage inductances will be included in 

the T-equivalent circuit to account for the leakage flux and the operating point analysis 

will be performed to evaluate the magnetizing branch parameters due to the non-linearity 

of the magnetizing curve. Within the circuit, the referred (primed)  -winding rms 

voltage, rms current and resistance are expressed as 
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Fig. 8.2 Transformer T-equivalent Circuit 

The flux path inside the core is assumed to be the average path. The peak flux 

density is expressed 

 
2 m

pk

c

N I P
B

A

   
(8.11) 

where mI  is the rms magnetizing current, cA  is the core cross-sectional area, and P  is 

the core permeance which is calculated using the relationship  

 c

p

A
P

l


   

(8.12) 

In (8.12),   is the core material permeability and pl  is the flux path average length 

inside the core which is expressed as 
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  2 2p ci ci ll w h w     (8.13) 

Neglecting the core loss resistance and the voltage drop on the resistance of the  -

winding, r ; the rms magnetizing current can be approximated 

 
m

e m

V
I

L




   

(8.14) 

where V  is the rms value of the  -winding terminal voltage, e  is the angular 

frequency of the sinusoidal primary voltage, and mL  is the magnetizing inductance which 

is defined as 

 
2

mL N P   (8.15) 

Using (8.3), (8.12)-(8.15) and (8.11) and simplifying one can approximate the peak 

flux density using: 

 
2 r

pk

r c e pf

S
B

J A A k
   

(8.16) 

where rP  and rJ  the transformer rated power and rated current density respectively. 

Typically, the magnetizing current is required to be much less than the rated current. 

This can be achieved by enforcing this constraint 

 r
m m

S
I k

V

   
(8.17) 

where mk  is a constant which is much less than 1. Substituting equations (8.3), (8.14), 

and (8.15) into (8.17) and simplifying yields 

 
2

2 2

r

e m pf

S
J

k A k P



   

(8.18) 

It is very interesting to consider (8.17) and (8.18). Although the magnetizing current 

is equal to the sum of the  -winding and the  -winding currents as in Fig. 8.2, its 

upper limit can be enforced by setting a lower limit on the  -winding current density. 
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8.1. Normalization Base 

The objective of this section is to set the stage for the normalization process by 

defining the normalization base. The goal is to scale all quantities tied to ratings (i.e. 

dimensions) and not those that are rating independent (i.e. flux density and field 

intensity) [41].   

One can note from the previous section that many of the key constraints can be 

expressed in terms of current density. This makes the current density a good candidate to 

be a parameter in the scaling laws (in addition to power and frequency). Another 

advantage of selecting the current density as a parameter is that it is a general quantity. In 

other words, a particular value of the current density may correspond to a wide range of 

transformer sizes, power ratings, and voltage levels.  

8.1.1. Geometrical Quantities 

To establish the meta-model, the linear dimensions are scaled as [41] 

 ˆ /x x D   (8.19) 

In (8.19), the notation ‘^’ denotes the scaled quantity and D  is the normalization base. 

The area and volume are scaled accordingly using [41] 

 2ˆ /a a D   (8.20) 

 3ˆ /U U D   (8.21) 

Substituting (8.19) and (8.21) into (8.6), normalized mass is expressed as 

  
,

ˆ ˆˆ ˆˆ ˆ ˆ2 2c l ci ci l c pf j jc

j

M l w w h w k U
 

 


       (8.22) 

where 

 3ˆ /M M D   (8.23) 

8.1.2. Electrical Quantities 

It is desired not to scale the flux density when deriving the meta-model. Considering 

(8.11), (8.12), (8.19), and (8.20), to keep mB  unscaled the current must be scaled as [41] 

 ˆ /i i D   (8.24) 

From (8.3), (8.20), and (8.24), the current density is expressed 
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 Ĵ JD   (8.25) 

The flux linkage associated with winding j  is expressed as  

 
j

j j
S

N B ds     
(8.26) 

where jS  is the surface. 

Since the flux density is not scaled [41], then from (8.20), the scaled flux linkage can 

be expressed 

 2ˆ / D    (8.27) 

The instantaneous voltage associated with winding j  is calculated 

 j j j

j j

j

l N d
v i

a dt




    
(8.28) 

where j  and ja  are the winding j  wire length and area respectively, ji  is winding j  

instantaneous current and   is the winding conductor material conductivity. 

If time is scaled as [41] 

 2ˆ /t t D   (8.29) 

then from (8.19), (8.20), (8.24), and (8.27), the voltage can be expressed in terms of 

scaled quantities as [41] 

 

ˆ ˆ
ˆ

ˆˆ
j j j

j j

j

l N d
v i

a dt




    

(8.30) 

From which one can observe that voltage is not scaled. 

The frequency is the reciprocal of time and therefore, from (8.29) the frequency is 

scaled as 

 
2f̂ fD   

(8.31) 

Since the relationship between the angular frequency and the frequency is 

 2 f    (8.32) 

then 

 2ˆ D    (8.33) 

From (8.16), (8.19), (8.25), and (8.33), the flux density is expressed in terms of the 

scaled quantities as  
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(8.34) 

where the scaled rated power is defined as [41] 

 ˆ /r rS S D   (8.35) 

From (8.12), (8.19), and (8.20) the scaled permeance is 
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ˆ
c
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l


   

(8.36) 

where 

 ˆ /P P D   (8.37) 

the constraint on current density (8.18) can be expressed in terms of scaled quantities 

 2

2 2

ˆˆ
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r

e m pf

S
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(8.38) 

8.1.3. Voltage Regulation 

As mentioned in Chapter 6, due to the winding resistances and leakage inductances, 

the secondary voltage of a transformer varies with load condition. It is desired in practice 

to keep this variation within a specified margin which depends on the type of the load and 

its sensitivity to voltage variations. During normal operation of a transformer, the largest 

variation in the secondary voltage occurs when the load condition changes from no-load 

to full-load. Thus, the voltage regulation is defined as the absolute difference between the 

secondary voltage at full-load and the one at no-load relative to the voltage at no-load: 
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(8.39) 

To simplify analysis, the leakage inductances are neglected in the initial scaling 

derivations as shown by the transformer electric equivalent circuit in Fig. 8.2. The 

leakage inductances will be accounted for in Section 8.6. In addition, the voltage drop on 

the primary resistance is neglected at no-load since the magnetizing impedance is 

relatively large compared to the primary resistance. The magnetizing current is neglected 
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at full-load since it is much smaller than the rated load current as enforced by (8.17).  

Therefore, the transformer voltage regulation can be approximated as 

  
'

' I
r r

V


 



     
(8.40) 

Using (8.3), (8.9), (8.10), and (8.40) the voltage regulation can be expressed as 
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(8.41) 

Although voltage is not scaled, the voltage regulation can be expressed in terms of 

scaled quantifies 
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(8.42) 

8.1.4. Loss 

Transformer power loss is comprised of transformer winding electrical resistance 

loss and core loss. The resistive power lost in winding j  is calculated using 

 2 2

_ 2

j

loss j j j

pf j

U
S I N

k A 
   

(8.43) 

From (8.3) and (8.43) the resistive power lost due to winding j  may be formulated in 

terms of the rms current density as 

 

2

_

j pf j

loss j

U k J
S


   

(8.44) 

It is noted that the resistive power loss in both windings are equal since the current 

density and the winding dimensions are assumed to be the same for both windings. Thus, 

the total resistive loss is twice that in (8.44). Expressed in terms of scaled quantities 

using, (8.21), (8.25), and (8.35) to (8.44) yields 

 

2

_

ˆ ˆ
ˆ j pf j

loss j

U k J
S


   

(8.45) 

Core loss includes hysteresis loss and eddy current loss. To demonstrate the 

hysteresis loss, Fig. 8.3 is first considered. At each cycle, the flux density follows the 
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lower path when it is increasing and it follows the upper path when it is decreasing. 

Therefore, the trajectory of the flux density forms a loop and the area of this loop 

represents energy lost in the core in form of heat. This lost energy is referred to as 

hysteresis loss. Typically, the flux density waveform is not a pure sinusoidal function due 

to the effect of saturation. Initially, the flux density waveform is assumed to be sinusoidal 

by neglecting the saturation effect but in Section 8.6, the flux density waveform may not 

be sinusoidal due to saturation. Thus the hysteresis loss is initially estimated using MSE 

[13] 

 max
h h

h h cS k B f U
    (8.46) 

where hk , h , and h  are the hysteresis loss constants. 

 

Fig. 8.3 Magnetizing Curve for a Soft Magnetic Material 

The eddy current loss is initially approximated using MSE [13] 

Br 

H 

B 

Hc 

Bmax 



 

 

 

118 

 
2 2

maxe e cS k B f U   (8.47) 

where ek  is the eddy current loss constant. 

The total core loss is the sum of the hysteresis and eddy current loss; thus, 

 cl h eS S S    (8.48) 

To enable scaling of the hysteresis loss in (8.46), the constant h  must be an integer. 

Typically h  is very close to 1 and thus it is herein approximated to be 1. The hysteresis 

loss is thus modeled 

 max
h

h h cS k B fU
   (8.49) 

Applying (8.21), (8.31), and (8.35) to (8.49) yields a scaled loss 

 max
ˆˆ ˆh

h h cS k B fU
   (8.50) 

To obtain the scaled eddy current loss, (8.21), (8.31), and (8.35) are substituted in 

(8.47) which yields 

   (8.51) 

8.1.5. Nominal Design Performance 

Before starting the scaled design process, it is useful to explain how one can apply 

the equations derived thus far to a specific design. If the voltage of winding  and 

transformer rated power are defined, then the winding  rated current is calculated using 

   
(8.52) 

If the winding  current density is defined and the winding dimensions are known, then 

the number of turns for the corresponding winding is calculated using (8.3). After 

calculating the current density, the transformer performance equations can be evaluated. 
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8.1.6. Normalization Base Selection 

The selection of the normalization base is a very crucial step. Since transformers are 

typically defined in terms of the rated power, the base of normalization is selected to be 

the rated power; thus, 

   (8.53) 

8.2. Simplified Two Winding Transformer Design Process 

Prior to considering the tape-wound transformer detailed design process, the design 

process of the simplified two winding transformer is considered. Using, the scaled model 

defined by equations (8.19)-(8.51), transformer design is considered to establish Pareto-

optimal fronts from which a meta-model can be proposed.   

The first step in the design process is to define the design vector as  

   
(8.54) 

where the ratios , , and  are defined as 

   
(8.55) 

   
(8.56) 

   
(8.57) 

The second step is to implement the design constraints. The less-than and greater-

than functions discussed in Chapter 7 are used to represent the scaled design constraints.  

The first constraint is the constraint on the current density 

   (8.58) 

where the minimum required current density  is  

   

(8.59) 

The second constraint is imposed on the voltage regulation as 
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   (8.60) 

In the analysis used to develop the scaled model, the magnetic material is assumed to 

be linear. Therefore, a constraint is imposed on the flux density as 

   (8.61) 

A final constraint is imposed on the total power loss  as follows 

   (8.62) 

The fitness function used for the performance evaluations is defined as 

   

(8.63) 

where is defined as  

   
(8.64) 

and  is the number of constraints.  

The fitness function is calculated using the Pseudo-code as illustrated in Table 8.1. 
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Table 8.1 Multi-Objective Optimization Pseudo-Code  

1. define , , the material parameters, ,and  

2. determine the parameters of the design vector in (8.54) 

evaluate transformer dimensions 

evaluate  using (8.42) and  using (8.34) 

calculate  using the RHS of (8.38). 

3. evaluate , , , and  using (8.58) and (8.60)-(8.62). 

evaluate  using (8.64) 

4. calculate  using (8.22) 

calculate  using (8.45) 

calculate  using (8.50) 

evaluate the total loss  

use (8.63) to evaluate the fitness function 

return to step 2 

end 

 

To define the search space of the multi-objective optimization process, the range of 

the scaled parameters is defined as follows: AW/m2,   

m/W, , , and , where , , , and  are unit-less. 

The packing factor  is selected to be 0.6, the maximum allowed ratio between the 

magnetizing and the rated current  is chosen to be 0.05, the maximum voltage 

regulation  is set to 0.05, the upper limit on the flux density is 1.4 T, the winding 

conductor is selected to be copper which has a conductivity  of 5.959*107 S/m and a 

mass density of 8890 Kg/m3, and the steel material is chosen to be linear with relative 

permeability  that is equal to 5000, mass density of 7402 Kg/m3, and the hysteresis 

loss constants are chosen to be 64.064 J/m3 for  and 1.7991 for .  
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Based on the result in (8.51), the scaled eddy current loss is a function of the nominal 

frequency which is undesired in the scaling process. Initially, this problem can be 

addressed by neglecting the eddy current loss and only considering the scaled hysteresis 

loss defined in (8.50) to represent the total core loss. This may be acceptable in the low 

frequency range where the hysteresis loss is the dominant core loss. Therefore, to make 

the model valid for higher frequencies, a better approach than neglecting the scaled eddy 

current loss should be used. In Section 8.6, an assumption will be made to enable scaling 

the eddy current loss. 

After defining the design parameters, specifications, and constraints, a multi-

objective optimization is conducted with a population size of 2000 and for 2000 

generations.  

8.3. Multi-Objective Optimization Results of the Two Winding Transformer 

Using the range of the scaled design parameters and the fixed parameters defined in 

the previous section and defining the scaled frequency, a multi-objective optimization is 

performed to obtain the Pareto-optimal front which relates the normalized mass to the 

normalized loss. The normalized loss versus normalized mass when the normalized 

frequency is 3.75*1010 HzW2 is shown in Fig. 8.4. This value corresponds to a nominal 

frequency of 60 Hz at rated power of 25 kW. As shown in Fig. 8.4, the relationship 

between normalized loss and normalized mass is composed of two linear regions in the 

log-log scale. Typically, transformers tend to operate around the knee of the 

magnetization curve. Since the steel material is initially assumed to be linear for the 

simplified two winding transformer, the operating point of the transformer will tend to be 

against the upper flux density limit. Therefore, the region where the designs are against 

the upper flux density limit (plotted in red) is selected to obtain the meta-model based 

scaling law. The gene distribution plot is shown in the Appendix. 
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Fig. 8.4 Normalized Pareto-Optimal Front 

In order to construct meta-model based scaling laws that relate normalized mass and 

normalized loss to normalized frequency and normalized current density, the multi-

objective optimization is conducted at several values of the normalized frequency. Then 

the values of  at each frequency is evaluated and used to obtain plots of the normalized 

mass versus normalized current density and normalized loss versus normalized current 

density at each normalized frequencies. These are depicted in Fig. 8.5 and Fig. 8.6 

respectively. 

8.4. Meta-Model of the Two Winding Transformer 

By using curve fitting techniques, a meta-model based scaling law can be 

constructed from the results shown in Fig. 8.5 and Fig. 8.6. The goal is to express the 

normalized mass and loss as functions of normalized frequency and current density. 

Relationships of the form 

   (8.65) 

   

(8.66) 

are considered herein. 
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Fig. 8.5 Normalized Mass Versus Normalized Current Density 

 

Fig. 8.6 Normalized Loss Versus Normalized Current Density 
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The parameters of the meta-model expressed by (8.66) and (8.67) are calculated using 

curve fitting techniques and listed in Table 8.2 The resulting curves are plotted with the 

original data in Fig. 8.5 and Fig. 8.6. Comparing values, one can see that the meta-model 

obtained by the curve fitting techniques represents the normalized mass and loss for 

different values of normalized frequency and current density very well. 

Table 8.2 Meta-Model Parameters. 

Parameter Value Parameter Value 

 4.0298*104 
 1.9054*105 

 -0.7656  1.5276 

 -0.7251  -0.5142 

 3.5328*10-10 
 -0.1069 

 

In practice, it is most useful to express the meta-model in terms of the physical 

quantities. This can be achieved by applying (8.25), (8.33), (8.35), and (8.52) to (8.65) 

and (8.66) 

   
(8.67) 

   
(8.68) 

Equations (8.67) and (8.68) can be used to generate the pareto-optimal front for 

transformers where specified power rating, (low) operating frequency, and current 

density. Therefore, for any transformer with a defined operating voltage, rated power, and 

frequency, the pareto-optimal front for that transformer can be obtained by sweeping the 

desired range of the current density values.  This will be shown in the next section. 

8.5. Validation Using Dedicated Design Code 

In order to validate the meta-model obtained in (8.67) and (8.68), it is compared with 

the results obtained using a dedicated design code. The dedicated design code was 

obtained using the steps explained in Section 8.1.5. Using this code, the pareto-optimal 

fronts for two design specifications were obtained. To validate the meta-model, a design 

MC Jlb

fMn Jln

JMn 1fln

lC 2fln

   3 3 fM JM
n n

M r r rM C P fP JP

    1 22 2
Jl

fl fl
n

n n

l l r r r Jl rP C P JP fP b fP 



 

 

 

126 

from each pareto-optimal front was used as follows:  Design 1 is a 240/240 V, 10 kW, 60 

Hz transformer and Design 2 is a 500/500 V, 50 kW, 400 Hz transformer. In both 

designs, the power factor is assumed to be unity. A multi-objective optimization between 

mass and power loss is conducted for these two designs with the following range of 

parameters: A/m2,  m, , , and 

. In this design code the number of turns is considered to be a design 

parameter instead of current density. The current density is calculated using (8.3) and 

since the transformer voltage is defined then the rated current of winding x is calculated 

using (8.52). It is assumed that the -winding and the -winding voltages are equal and 

thus the α-winding and the -winding currents are also equal.    

The Pareto-optimal fronts are compared to the meta-model as shown by Fig. 8.7 and 

Fig. 8.8. As shown, there is a good agreement between the results from the dedicated 

design code and that predicted by the meta-model.  

 

Fig. 8.7 Pareto-Optimal Front for 240 V, 10KW, 60 Hz transformer 
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Fig. 8.8 Pareto-Optimal Front for 500 V, 50KW, 400 Hz transformer 

Now the stage is set for constructing a meta-model of the tape-wound transformer 

detailed model. In the next section the scaling laws are used to derive a meta-model of 

the tape-wound transformer detailed model. 

8.6. Tape-wound Transformer Scaling 

In the previous sections, scaling of a simplified two-winding transformer was 

considered. Using the curve fitting techniques, a meta-model was derived and validated 

by comparing it to a dedicated design code which showed that the meta-model is 

reasonably accurate. This is a motivation to extend the work to much more involved 

transformer configuration with more detailed model.  

In this section, the meta-model of a tape-wound transformer is derived. The objective 

is to apply the scaling laws derived in the previous sections to the transformer model 

derived in Chapters 3-5. It should be noted that the high frequency loss model and the 

thermal model are not included in the scaling process. Including these models may be of 

interest for future research. 

In the following sub-sections, evaluating transformer performance is considered. 

Prior to doing, it is useful to derive the per-unit T-equivalent circuit. Also, some of the 
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expressions derived in Chapter 6 need to be re-defined in terms of the desired parameters 

in the scaling process. In addition, an assumption is made to make scaling of the eddy 

current loss possible.  

8.6.1. Per Unit T-equivalent Circuit 

In the previous chapters, the T-equivalent circuit parameters were expressed in terms 

of current and number of turns. Since defining current and number of turns is not desired 

in the scaling process, these expressions need to be modified and expressed in terms of 

the desired design parameters such as current density. To achieve that, the current density 

in the -winding is expressed as 

   
(8.69) 

By applying KCL to the MEC depicted in Fig. 3.10, it can be shown that  

   (8.70) 

   (8.71) 

Substituting (8.69) into (8.70) and then into (8.71) yields 

   (8.72) 

   (8.73) 

It should be noted that  in (8.69) is replaced by  in (8.72) and by  in (8.73). 

The magnetizing inductance in the linear region can be evaluated using 

   

(8.74) 

Applying (8.69) to (8.74) yields 

   

(8.75) 

where in (8.75) 
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(8.76) 

From the T-equivalent circuit, leakage inductance of -winding can be expressed as 

    

(8.77) 

Substituting (8.69) and (8.75) into (8.77) yields 

   

(8.78) 

The leakage inductance of  -winding can be expressed as 

   

(8.79) 

By substituting (8.75) and (8.76), into (8.79) one obtains 

   

(8.80) 

The winding resistances are obtained using 

   
(8.81) 

   
(8.82) 

where  and  are the conductivities of the  and the winding conductors 

respectively. It should be noted that the resistance obtained in (8.81) is the referred 

quantity of the winding to the winding side. 

It is noted that the T-equivalent circuit resistances and inductances remain expressed 

in terms of the number of the number of turns which is not desired. To eliminate this 

dependency on the number of turns, per unit (p.u) quantities are defined. The per unit 

value  which correspond to an actual quantity  is calculated as 
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(8.83) 

where  is the base quantity and  can be  voltage, current, power,  impedance, or 

flux.  

To set the stage for the derivation of the per unit quantities, the base impedance is 

defined as 

   
(8.84) 

In (8.84),  and  are the base power and current which are equal to the 

corresponding rated values. After substituting (8.69) into (8.84) one can obtain 

   
(8.85) 

where  is the base current density which is expressed as  

   
(8.86) 

Now the per-unit values correspond to the T-equivalent circuit resistances and 

inductances can be evaluated by applying (8.83)-(8.85) to (8.75), (8.78), and (8.80)-

(8.82) which yields 
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(8.89) 

The winding resistances are obtained using 

( . ) p u

base

f
f

f

basef f

2

ˆˆ
ˆ

base
base

base

S
Z

I


ˆ
baseS b̂aseI

 
2

2

ˆˆ
ˆ ˆ

base
base

pf cl base cs cp

S
Z N

k A J N N


   



ˆ
baseJ

ˆ
ˆ

ˆ
base

base

jpf cs cp jcl

N I
J

k N N A



 



,
ˆ ˆ ˆ,J 0( . )

0

,

ˆ
ˆ ˆ

ˆˆ
t

c J Jp u pst

m b

cs cp t pf cl

L Y
J k A

  

    



 
 



, ,
ˆ ˆ ˆ ˆ ˆ ˆ0,J ,J 0( . )

, ,

ˆ ˆ
ˆ ˆ

ˆ ˆˆ ˆ
t t

l

c cJ J J Jp u pst

b

cs cp t pf cl cs cp t pf cl

L Y
J k A J k A

     



 

         

 

   
   

 
   
 
 

, ,
ˆ ˆ ˆ ˆ ˆ ˆ,J 0 ,J 0( . )

,

ˆ ˆ
ˆ ˆ

ˆˆ
t t

c cJ J J Jp u pst

l b

cs cp t pf cl

L Y
J k A

     
 


    

 

 
   

    
 
 



 

 

 

131 

   
(8.90) 

   
(8.91) 

where  is the base conductance per square turn which is defined as 

   

(8.92) 

It is noted that both the actual resistance and inductances of the T-equivalent circuit 

and the base impedance are multiplied by . As a result, the per-unit quantities are not 

functions of the number of turns. 

8.6.2. Magnetizing Flux 

As will be discussed later, the magnetizing curve is represented as a relationship 

between magnetizing flux and current density. Therefore, deriving an expression for the 

magnetizing flux is required. To achieve that, the relationship between the p.u. flux and 

flux linkage is considered 

   
(8.93) 

In order to obtain the actual value of the magnetizing flux, the base value of the flux 

linkage need to be defined. From the definition of p.u. inductances, it can be noted that 

the base flux linkage is equal to the base voltage 

   (8.94) 

Using (8.69), (8.83), (8.93) and (8.94), the actual value of the magnetizing flux can 

be expressed as 

   
(8.95) 
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8.6.3. Core Loss 

In order to evaluate the core loss  using the MSE [13], calculating the flux density 

in the core tubes is required. The flux density in the core tubes can be evaluated using the 

MEC depicted in Fig. 3.10. As shown, the mmf source of the winding is expressed as  

   
(8.96) 

As mentioned earlier in this chapter, the winding currents and number of turns are 

not defined in the scaling process. Therefore, the winding mmf is re-derived in terms of 

the current density. Applying (8.69) to (8.96) yields 

   
(8.97) 

Scaling eddy current loss is another challenge in the scaling process as discussed in 

Section 8.1.4. Therein, this issue was resolved by neglecting the eddy current loss. 

However, this assumption can lead to significant error for high frequencies. In this 

section, an assumption is made to make scaling of the eddy current loss possible. 

Specifically, if  is held constant then (8.51) can be expressed only in terms of the 

scaled frequency as 

   (8.98) 

where . 

Typically, when the transformer operating frequency increases, the thickness of the 

transformer core lamination is reduced. Since  is proportional to the transformer 

lamination thickness then holding  constant may be justified.   

8.6.4. Voltage Regulation 

The transformer voltage regulation can be expressed in terms of the per unit 

quantities as 
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8.6.5. Operating Point Analysis 

The operating point analysis is conducted using a numerical method similar to the 

method applied in Chapter 6. A difference is that the T-equivalent circuit and the MEC 

are expressed in terms of the p.u. quantities instead of the actual quantities. It is assumed 

that the analysis is performed under normal loading conditions with the assumption that 

the input voltage  and the referred load impedance  are constant. 

The steps of the numerical method are as follows: 

Step 1 – Magnetizing Current Density as a Function of Magnetizing Flux 

Since it is not desired to specify currents and number of turns, the magnetizing curve 

is constructed as a relationship between the magnetizing current density and the 

magnetizing flux. To obtain this relationship using the MEC, the –winding current 

density is set to zero and test current densities between zero and multiple of the nominal 

are applied to the –winding. The magnetizing flux corresponding to a test current 

density  is calculated as 

   
(8.100) 

From this data, the current density 

  ˆ ˆ
ml Jm mJ F    (8.101) 

is generated. 

\Step 2 – Initialization 

The p.u. magnetizing inductance, core resistance, and the magnetizing current 

component in the core resistance are initialized to 

   (8.102) 

   (8.103) 

Also from (8.102) the component of the p.u. magnetizing current that flows in the 

core resistance is initialized to 
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In order to solve the T-equivalent circuit, the p.u. values obtained in the previous 

section are used. From the T-equivalent circuit, the per unit impedance at the magnetizing 

branch is calculated as: 

   
(8.105) 

The per unit values of the α-winding branch impedance and the referred β-winding 

branch impedance are defined as 

   (8.106) 

   (8.107) 

The series combination of  and  is expressed 

   (8.108) 

And finally, the parallel combination of  and  is expressed 

   
(8.109) 

Using the impedance expressions derived in (8.105)-(8.109), the p.u magnetizing 

voltage and the voltage and current at the load side are calculated 
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It is noted form (8.86) that the p.u current and current density are equal, thus 

   (8.113) 
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(8.114) 

The p.u magnetizing flux linkage obtained from the magnetizing voltage using Faraday’s 

law is expressed: 

   

(8.115) 

From (8.95)  

   
(8.116) 

Substituting the value of the magnetizing flux obtained using (8.116) into (8.101) 

yields the corresponding magnetizing current density then the p.u. magnetizing current is 

calculated as, 

   
(8.117) 

The total p.u. magnetizing current is then calculated as 

   (8.118) 

Step 5 – Updating the Magnetizing Branch Parameters 

In this step, the p.u. magnetizing inductance and the core resistance for the following 

iteration are calculated. First the winding current is calculated 
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The current density of the β-winding is then calculated as 

   
(8.120) 

Using the MEC depicted in Fig. 3.10 with the winding mmfs are defined as in (8.97), 

the flux density in the core tube is obtained. Then the MSE is used to compute the core 

loss ,  [1] 
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(8.121) 

Next, the p.u. core resistance is updated 

   

(8.122) 

The p.u. current in the core resistance for the next iteration is thus computed as 

   
(8.123) 

Next, the Fourier series is used to obtain the fundamental component of the p.u. 

current through the magnetizing inductance. To do so, Fourier series coefficient are 

expressed as 

   
(8.124) 
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The p.u. rms value of the magnetizing current through the magnetizing inductance is 

computed as 

   
(8.126) 

Subsequently, p.u. value of the magnetizing inductance for the next iteration is 

updated as 

   
(8.127) 

Step 6 – Checking the Convergence 

To check the convergence, the error metrics are defined 
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In (8.128), if the error is less than the maximum allowed error, , then the 

algorithm proceeds to the final calculation step. Otherwise, the iterative process is 

repeated starting at step 3. 

Step 7 – Final Calculations 

 Once convergence is obtained, the transformer total power loss is computed. The 

resistive power loss is calculated as 

   (8.129) 

The p.u. total power loss is 

   (8.130) 

From (8.83), the actual value of the total power loss can be obtained 

   (8.131) 

The current density in the -winding is also calculated using 

   (8.132) 

8.6.6. Inrush Current Density 

The inrush current behavior discussed in Chapter 6 is addressed herein by defining 

the maximum allowed inrush current density instead of the inrush current. By applying a 

test current density that is equal to the maximum allowed inrush current density to the -

winding while setting the -winding current density to zero, the corresponding value of 

the magnetizing flux is obtained. This value is then compared to the worst case scenario 

flux which is expressed as 

   
(8.133) 

where  is the p.u. worst case scenario flux linkage which is defined as 

   
(8.134) 
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If the value of the flux corresponds to this test current density is greater than the 

worst case scenario flux, then the worst case scenario magnetizing current density will be 

less than the maximum allowed inrush current density and the constraint will be met. 

8.7. Scaled Design Process of a Tape-Wound Transformer 

The scaled quantities correspond to the tape-wound transformer performance derived 

in Section 8.6 are used as the basis of the design process.  

8.7.1. Transformer Analysis Organization 

As mentioned in Chapter 7, it is useful to organize these parameters into categories. 

First, the variables that are related to the transformer configuration are defined. The 

independent sets of the core, clearance, and winding parameters are defined as  

   
(8.135) 

    
(8.136) 

   
(8.137) 

   
(8.138) 

and the dependent sets are defined as 

   
(8.139) 

    
(8.140) 

   
(8.141) 

   
(8.142) 

The structure of the transformer description is then defined as 

   
(8.143) 

The vector of the electrical parameters is also defined as 
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   (8.144) 

The vectors which contains the operating point analysis input set  and output set 

 are defined as  

   
(8.145) 

   

(8.146) 

Finally, the design vector which contain the fixed parameters is defined as 

   
(8.147) 

where  and  are the packing factors of  and coils respectively. 

8.7.2. Design Space 

Using the independent variables identified in the previous section, the design space 

vector is defined as 

   
(8.148) 

where  is scaled height of the coil and the ratios , , , , , and  

are defined as 

   
(8.149) 
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(8.153) 

   
(8.154) 

where  is the scaled width of the coil,  and  are the scaled height of the coil, 

and , , and  are the scaled winding depth, the scaled straight width of end-

winding, and the scaled core radius, respectively. 

8.7.3. Design constraints and fitness functions 

The design constraints are imposed using the less-than and the greater-than functions 

defined in (7.31) and (7.32). The first constraint is imposed on the scaled minimum 

clearance between and core 

   (8.155) 

where  is the scaled minimum required clearance. 

As mention in Chapter 7, it is desired to limit the ratio between transformer total 

height, width, and depth. First the aspect ratio of the transformer is defined as 

   

(8.156) 

Subsequently, the constraint on the aspect ratio is imposed 

   (8.157) 

A constraint is imposed to ensure that the scaled height of the -winding coils is 

less than the scaled height of the -winding coils. Thus 

   (8.158) 

Another constraint on the transformer dimensions is imposed to ensure that the 

scaled lengths of the core vertical and horizontal legs are greater than zero 

   (8.159) 
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 The MEC in conjunction with the p.u. T-equivalent circuit are used to calculate the 

voltage regulation. First, a constraint  is imposed to check MEC convergence. If the 

MEC solver does not converge, the design is considered infeasible. If the MEC 

converges, the constraint on the voltage regulation is evaluated using 

   (8.160) 

The scaled inrush current density is limited implicitly by imposing a constraint on 

the scaled magnetizing flux. To evaluate, within the MEC the scaled -winding current 

density is set to be the maximum allowed scaled inrush current density while the -

winding current density is set to zero. The maximum allowed inrush current density is 

calculated by multiplying the p.u. of the maximum allowed current by the scaled base 

current density. Since the MEC is used in this test, a constraint  is imposed to check the 

MEC convergence. Provided the convergence of MEC, the calculated -winding scaled 

flux  is compared to the magnetizing flux defined as the worst case scenario in 

(8.133). If the calculated scaled flux is greater than the scaled value of the worst case 

scenario flux then the scaled value of the worst case scenario magnetizing current density 

will be less than scaled maximum allowed inrush current density. This is archived by 

imposing the constraint on the -winding scaled flux as 

    (8.161) 

A constraint  is used to check the convergence of the MEC in the construction of 

the relationship between the scaled magnetizing current and the scaled magnetizing flux. 

If convergence occurs then the operating point analysis proceeds.  

Similar to Chapter 7, the operating point analysis is conducted for three load 

conditions: no-load, half-load, and full-load. A design constraint  is imposed on the 

convergence of the operating point analysis for the no-load case. If the operating point 

analysis converges, constraints on the p.u. values of the β-winding maximum current and 

the range of the α-winding voltage are imposed as 

   (8.162) 
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   (8.163) 

   (8.164) 

For the remaining load-conditions, constraints  and  are imposed to check the 

MEC convergence for both half-load and full-load case. 

Considering the weight function , the scaled weighted loss is a function of the 

scaled loss at every operating point which is calculated as 

   (8.165) 

where  is a vector that contains the scaled total loss corresponding to all operating 

points. The constraint on the scaled total loss is obtained as 

   (8.166) 

where  is the scaled maximum allowed loss. 

The design specifications  as follows 

   

 

(8.167) 

Where , , and  are vectors of -winding p.u. voltage, p.u. load 

impedance, and scaled radian frequency values for different load conditions. 

Finally, the fitness function is expressed as 

   

(8.168) 

8.7.4. Design Setup 

Prior to performing the multi-objective optimization, the design specifications and 

the search space are defined. The design specifications and fixed parameters are shown in 

Table 8.3.  
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Table 8.3 Transformer Design Specifications and Fixed Parameters. 

Parameter Value Parameter Value 

 1  100 

 1.02  50 

 0.98  10-3 

 0.1  10 

 1  10-9 

 0.05  10-9 

   10-9 

 0.05  10-9 

   10-9 

   0.6 

   20.6 

   2 

 0.1  1 

   2 

 10-3  1 

 10-3   

 

To define the search space of the multi-objective optimization process, the range of 

the scaled parameters is defined as depicted in Table 8.4. It I noted that the range of the 

parameters that represent the winding and core material types is defined as an integer 

while the range of the parameters that represent the transformer dimensions is defined as 

a logarithmic. After defining the design parameters, specifications, and constraints, a 

multi-objective optimization is conducted with a population size of 2000 and for 2000 

generations.  
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Table 8.4 Design parameters encoding 

Number Parameter Minimum Maximum Type 

1  1*108 1*1014 Logarithmic 

2  1 4 Integer 

3  1 2 Integer 

4  1*10-7 10 Logarithmic 

5  0.1 20 Logarithmic 

6  1 2 Integer 

7  0.1 20 Logarithmic 

8  0.1 20 Logarithmic 

9  0.1 20 Logarithmic 

10  0.01 10 Logarithmic 

11  1*10-4 1*10-3 Logarithmic 

8.7.5. Results 

A multi-objective optimization is conducted between the normalized loss and the 

normalized mass. Similar to the process in Section 8.8, the multi-objective optimization 

is conducted at several values of the normalized frequency. The normalized mass versus 

normalized current density and normalized loss versus normalized current density at each 

normalized frequencies are depicted in Fig. 8.9 and Fig. 8.10 respectively. The gene 

distribution plot when the scaled frequency is 3.75*1010 Hz.W2 is shown in the 

Appendix. 
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Fig. 8.9 Normalized Mass Versus Normalized Current Density 
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Fig. 8.10 Normalized Loss Versus Normalized Current Density 
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By using curve fitting techniques, a meta-model based scaling law can be 

constructed from the results shown in Fig. 8.9 and Fig. 8.10. Using (8.65) and (8.66), the 

normalized mass and loss as functions of normalized frequency and current density are 

obtained. 

The parameters of the meta-model expressed by (8.65) and (8.66) are calculated 

using curve fitting techniques and listed in Table 8.5. The resulting curves are plotted 

with the original data in Fig. 8.9 and Fig. 8.10. It can be seen that the meta-model is 

reasonably accurate in predicting the relationship between normalized mass and loss for 

different values of normalized frequency and current density. 

Table 8.5 Meta-Model Parameters. 

Parameter Value Parameter Value 

 9.218*105 
 2.907*104 

 -0.9155  1.098 

 -0.6892  -0.5345 

 2.993*10-7 
 -0.1137 

 

The parameter distribution plot is depicted in Fig. 8.11. As shown, each parameter 

tends to almost converge to a specific value except  which seems to have less 

significant contribution to the loss Meta-model equation.   
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Fig. 8.11 Distribution Plot of Meta-Model Parameters 

Using (8.67) and (8.68), the meta-model can be expressed in terms of the physical 

quantities. When power rating, current density, and frequency are specified, the meta-

model defined in (8.67) and (8.68) can accurately predict the Pareto-optimal front for that 

specific design. Since the transformer eddy current loss is included, the obtained meta-

model may be valid for relatively high frequency. 

The Pareto-optimal fronts of 240 V, 25 kW, 60 Hz transformer and 500 V, 5kW, 400 

Hz transformer are compared to the meta-model as shown in Fig. 8.12 and Fig. 8.13. As 

shown, there is a good agreement between the results from the dedicated design code and 

that predicted by the meta-model.  
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Fig. 8.12 Pareto-Optimal Front for 240 V, 25KW, 60 Hz transformer 
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Fig. 8.13 Pareto-Optimal Front for 500 V, 5KW, 400 Hz transformer 

 



 

 

 

149 

9. CONCLUSION AND FUTURE WORK 

9.1. Conclusion 

In this research, the magnetic equivalent circuit (MEC) of a tape wound core 

transformer was derived. The MEC elements are core permeances, leakage permeance, 

and coil MMFs. To accurately predict the flux level in the magnetic material; the core is 

subdivided into several tubes. The permeance associated with each tube is expressed in 

terms of the tube dimensions and the core material. Since they tend to saturate faster than 

any other part in the core, the core corners are represented by three parallel permeances. 

Using the approach described in [13], the leakage flux paths were predicted based on the 

position of the coil with respect to the core window. Using these paths, expressions for 

the leakage permeances were derived. The coil MMF’s were defined as a function of coil 

current and number of turns. Performing the leakage test on the defined MEC, the 

leakage inductances of both windings were obtained. The leakage inductances calculated 

by the MEC are compared to the ones calculated using a finite element method (FEM). 

The difference between the leakage inductances predicted was shown to be relatively 

small which provides confidence in the MEC model. 

In order to accurately predict the performance of high frequency designs, modeling 

the skin effect and the proximity effect was considered. The skin effect was accounted for 

by calculating the winding AC resistance. By analytically performing electromagnetic 

analysis, a second order differential equation that relates the current density to the radius 

of a cylindrical conductor was obtained. This differential equation which has the same 

form as the zero order Bessel function was solved by applying the conductor boundary 

conditions to the solution of the zero order Bessel function. Using this result and the 

voltage across the conductor terminals, an expression of the conductor AC resistance was 

derived. This expression was then extended to obtain the AC resistance of the transformer 
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winding. To model the proximity effect, a frequency independent expression referred to 

as the dynamic resistance was derived for each coil segment. The dynamic resistance 

which is a function of the winding parameters and the normalized leakage flux density is 

a two-by-two matrix when there is a coupling between the leakage fluxes of two coil 

segments; otherwise, it is only a single element. The normalized flux density was 

evaluated by applying Ampere’s law and the stored energy approach to the leakage paths 

and then applying the normalization defined in [13] to the result. 

A thermal equivalent circuit (TEC) was derived to predict the temperature 

throughout the transformer. First, the thermal equivalent circuit was derived for a 

cuboidal element. To achieve rapid analysis of the transformer thermal model, a thermal 

symmetry was assumed and thus only one-eighth of the transformer was considered for 

the thermal analysis. This portion of the transformer is divided into 14 cuboidal elements 

and then the TEC is evaluated for each element. Cuboids which have non rectangular 

surface areas such as the coil end curvature and the core corner were replaced by 

effective cuboids that have the same total surface areas. Using the coil homogenization 

method discussed in [13], an equivalent anisotropic material was used to represent each 

transformer coil. 

To conveniently calculate the transformer performance, the T-equivalent circuit was 

developed. The parameters of the T-equivalent circuit such as magnetizing inductance 

and core resistance were determined numerically using the operating point analysis. 

These analyses were also used to predict the winding currents. These current waveforms 

were used as inputs to the MEC in order to obtain the flux density in the core and the core 

loss. Some transformer performance such as voltage regulation and inrush current were 

also calculated. 

Using the machine model, an optimization based design was conducted. The design 

space which contains the independent parameters is defined. In order to ensure feasible 

designs, constraints were imposed on the transformer dimensions and performance. 

Fitness functions which are defined as the reciprocal of the competing objectives i.e. 

mass and loss were computed. A set of non-dominated designs called the Pareto-optimal 
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front was obtained. The details of one of the designs in the Pareto-optimal front were 

presented.  

Finally, scaling laws that establish the performance of the tape wound transformer 

was derived in terms of the transformer ratings. By doing so, the degrees of freedom in 

the design search space are reduced dramatically. Initially, two winding rectangular 

transformer was considered. Using the curve fitting techniques, a meta-model which 

expresses the transformer total mass and loss as a function of transformer power rating 

was derived. The performance predicted by the meta-model was compared to 

performance predicted by traditional design code and there was strong agreement 

between them. The scaling laws are then applied to the tape-wound transformer model 

derived earlier. However, the high frequency loss model and the thermal model were not 

included in the scaling process. A meta-model which relates the tap-wound transformer 

total mass and total loss to the current density, frequency, and rated power was derived. 

The parameters of the meta-model were obtained using the curve fitting techniques. 

9.2.  Future Work 

 In chapter 4, the high frequency model of a tape-wound transformer was derived. In 

Chapter 5, the transformer thermal model was established by deriving the thermal 

equivalent circuit (TEC). However, none of these two models was validated. To have 

more confidence in the analytical model, the high frequency and the TEC models may be 

validated using numerical analysis. Based on the results obtained using the numerical 

method, adjustments can be made to the analytical model.  

In addition, one of the designs obtained using the analytical method-based 

optimization can be used to achieve a hardware design of a tape-wound transformer. By 

doing so, the transformer performance predicted by the analytical model can be compared 

with measurement. 

Finally, including the high frequency loss model in the scaling process can make the 

transformer meta-model to be valid for higher frequency range. Also it would be useful to 

include the TEC model within the scaled design process.      
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A. GENE DISTRIBUTION PLOTS 

The gene distribution plot for the tape-wound transformer nominal design approach 

discussed in Section 7.4 is shown in Figure A 1. 
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Figure A 1 Gene Distribution Plot for the Result in Section 7.4 

The gene distribution plot for the two-winding transformer scaled design approach 

discussed in Section 8.3 is shown in Figure A 2. 
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Figure A 2 Gene Distribution Plot for the Result in Section 8.3 

The gene distribution plot for the tape-wound transformer scaled design approach 

discussed in Section 8.7.5 is shown in Figure A 3. 
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Figure A 3 Gene Distribution Plot for the Result in Section 8.7.5 
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