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Genetic algorithm is widely used in multi-objective mechanical structure optimization. In
this paper, a genetic algorithm-based optimization method for ladle refractory lining
structure is proposed. First, the parametric finite element model of the new ladle
refractory lining is established by using ANSYS Workbench software. The refractory
lining is mainly composed of insulating layer, permanent layer and working layer.
Secondly, a mathematical model for multi-objective optimization is established to
reveal the functional relationship between the maximum equivalent force on the ladle
lining, the maximum temperature on the ladle shell, the total mass of the ladle and the
structural parameters of the ladle refractory lining. Genetic algorithm translates the
optimization process of ladle refractory lining into natural evolution and selection. The
optimization results show that, compared with the unoptimized ladle refractory lining
structure (insulation layer thickness of 0 mm, permanent layer thickness of 81mm, and
working layer thickness of 152 mm), the refractory lining with insulation layer thickness of
8.02 mm, permanent layer thickness of 76.20mm, and working layer thickness of
148.61mm has the best thermal insulation performance and longer service life within
the variation of ladle refractory lining structure parameters. Finally, the results of the
optimization are verified and analyzed in this paper. The study found that by optimizing the
design of the ladle refractory lining, the maximum equivalent force on the ladle lining, the
maximum temperature on the ladle shell and the ladle mass were reduced. The thermal
insulation performance and the lightweight performance of the ladle are improved, which is
very important for improving the service life of the ladle.

Keywords: genetic algorithm, multi-objective optimization, thermal insulation performance, ladle refractory lining,
service life

1 INTRODUCTION

Refractory lining is an important part of the ladle, mainly including working layer, permanent
layer and insulation layer, and its thickness affects the ladle shell temperature and ladle lining
force. The structural composition of the refractory liner affects the ladle lightweight performance
and insulation performance. The greater the thickness of the working layer, the lower the
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temperature of the ladle shell, but at the same time it will
increase the weight and production cost of the ladle. In order to
ensure that the ladle shell temperature and lining stress are
within the permitted range, the thickness of the working layer
cannot be too large or too small, and a balance point needs to be
found between the two. At present, some scholars have reported
on the optimal design of the ladle in order to improve the service
life of the ladle, but they mainly focus on the use of the lining
material, which is not only cumbersome, but also costly. There
are few introductions about improving the service life of the
ladle by optimizing the lining structure. The emergence of the
bionic intelligent algorithm provides a new idea for the
optimization of the refractory lining structure, which
transforms the solution process into an optimization problem
of finding the optimal solution, which not only simplifies the
solution process, but also improves the solution efficiency.
Multi-objective genetic algorithm (MOGA) has the
advantages of high accuracy, fast solution speed and stronger
applicability in multi-objective problem solving and parameter
optimization. Many groups of Pareto optimal solutions are
obtained by multi-objective optimization, but not all Pareto
optimal solutions meet the actual design requirements.
Therefore, it is necessary to find the optimal solution from
these optimal solutions. Biological evolution is a very magical
process. It produces excellent species through the laws of nature
such as selection, elimination, and mutation. Genetic Algorithm
(GA) is a computer abstracted from the selection and evolution
process of nature. This paper is based on ANSYS finite element
analysis software to optimize the design of ladle refractory
lining, which is an organic combination of mechanical design
and computer simulation technology (Dhaduti and
sarganachari, 2020; Mysore and patil, 2021). The parametric
solid modeling of the ladle is performed using ANSYS
Workbench software, and the model is imported using the
seamless connection between the software (Nimbagal and
Banapurmath, 2021; Patil and Bano, 2021). The ANSYS
software allows direct input of structural geometry and finite
element meshing, as well as direct input of constraints and load
data, which makes the tedious task of filling in data files directly
intuitive and easy, and makes it easy to detect errors in the input
process and correct them in time. It can be applied to various
fields of structural analysis and coupling between fields (Patil
and Banapurmath, 2019; Patil and Banapurmath, 2020).

Aiming at the optimization problem of ladle refractory lining
structure, this paper proposes an optimization design method
based on multi-objective genetic algorithm, which has the
following innovations:

1) In this paper, a multi-objective genetic algorithm is
introduced to solve the optimization problem of the ladle
refractory lining structure, and the genetic algorithm
transforms the optimization process of the ladle refractory
lining into natural evolution and selection. The effects of
different working layer thicknesses, permanent layer
thicknesses and insulating layer thicknesses on the
temperature field of the ladle shell and the stress field of the
ladle lining are analyzed, and find the optimal solution for the
thickness of the working layer, the permanent layer thickness and

the insulating layer thickness. This method of finding the optimal
solution is faster and more accurate.

2) In this paper, the response surface method and genetic
algorithm are combined to optimize the structural dimensions of
the ladle lining. The method retains the characteristics of the
theoretical calculation method, constructs the parameters of the
thickness of the working layer, the thickness of the permanent
layer and the thickness of the insulating layer, and outputs the
response surface function of the natural frequency. The response
surface function is used to replace the original finite element
model, and then the implicit relationship between the size
parameters of the lining components and the output natural
frequency is converted into a simple fitting polynomial, so that
the optimization algorithm avoids the need to find the optimal
solution. The repeated iterative calculation of the entire model
saves calculation time while ensuring the solution accuracy.

The remainder of this article is described below. Section 2
introduces the current research status of multi-objective
optimization at home and abroad, the research status of the
lightweight performance of the ladle and the research status of the
thermal insulation performance of the ladle. Section 3 provides a
detailed description of the process of finite element model
establishment, selection of material parameters, setting of
boundary conditions and thermal stress analysis of the ladle.
Section 4 introduces the process of ladle lining optimization
design, the selection of response surface experimental design
method and the establishment of response surface model.
Section 5 uses the multi-objective genetic algorithm to
optimize the response surface model, obtains the optimization
results, and conducts verification analysis. Compared with the
data before optimization, it can be seen that this method achieves
the optimization effect. Finally, the conclusion part of this paper
is introduced.

2 RELATED WORK

Multi-objective problems have been studied for decades. Since the
late 1980s, the research on multi-objective genetic algorithm
MOGA has entered a flourishing period in academia (Cheng
et al., 2021; Hao andWang, 2022). In the past 10 years, papers on
multi-objective genetic algorithms have emerged one after
another (Cheng et al., 2020; Sun and Yang, 2021). The reason
why MOGA research has such a good momentum is mainly
because of its broad application prospects in engineering fields
(Shi and Huang, 2022b; Wu and Jiang, 2022). On the one hand,
the theory of genetic algorithm used to solve multi-objective
problems has becomemore andmore mature (Luo and sun, 2020;
Liu and Xu, 2022a); on the other hand, with the rapid
development of science and technology, many practical
problems are the joint optimization problems of multiple
objectives, and there are contradictions between the sub-
objectives relationship (Li and Li, 2020; Liu et al., 2022b), the
problem is more high-dimensional and complex (Tao and Liu,
2022a; Liu and Li, 2022c). The parallelism of the genetic
algorithm in solving, the superior global optimization of the
algorithm and the fact that the algorithm itself is not limited
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by the continuity of the function determine that it can be well
used in solving high-dimensional complex problems (Alqaili and
Qais, 2021; Panagant and pholdee, 2021).

Multi-objective optimization is when multiple objectives need
to be achieved in a single scenario (Szlapczynska and
szlapczynski, 2019), and optimizing one objective is often at
the expense of degrading the others due to the inherent
conflict that easily exists between the objectives (Sun and Hu,
2020a; Tong Ma, 2022). Therefore, it is difficult to get the unique
optimal solution (Sun and hu, 2020b; Tian and cheng, 2020).
Instead, it is necessary to coordinate and compromise among
them to make the overall goal as optimal as possible. In practical
engineering optimization problems, many design problems do
not have only one design index requirement (Li and Li 2016; Bai
et al., 2022; Liu et al., 2022d). For example, when designing a new
type of ladle, it is usually hoped that the ladle has light weight,
corrosion resistance, good thermal insulation performance, and
long service life (Tan and sun, 2020; Tao andWang, 2022b; Wang
and Huang, 2022). This kind of problem that requires multiple
design variables to achieve optimality is a multi-objective
optimization problem (Santos and Moreira, 2018; Srivastava
and chattopathyay, 2021). In recent years, the multi-objective
optimization problem has been paid more and more attention by
scholars at home and abroad. The application of multi-objective
genetic algorithm in the optimization design of some mechanical
fields is also increasing (Chen and Yin, 2021a; Chen and jin,
2022a). Many complex optimization problems in engineering can
be solved by multi-objective optimization theory (Sun and weng,
2020c).

MOGA is widely used in various fields: scientific field,
economic field, engineering field, etc (Jiang et al., 2019a; Sun
and tian, 2022a). And has also made good progress, such as robot
path planning, optimal control (Ma and Zhang, 2020; Qi and
Jiang, 2020), mechanical structure case optimization design,
mobile network planning, humanoid robot hub Design of
neural motion controller, optimal design of solid rocket motor
(Jiang et al., 2019b; Sun and Zhao, 2022b), optimal design of
postman path, optimal design of multi-sensor multi-object
tracking data association problem, flexible multi-objective
scheduling problem (Chen and peng, 2021b; Chen and Rong,
2022b), vehicle scheduling, etc.

The density-based multi-objective evolutionary algorithm is
proposed by researchers. The main idea of the algorithm is to
quantify the degree of mutual influence between any two
individuals in the population (Chang et al., 2018; Jiang and Li,
2021a), so as to define the degree of aggregation between
individuals, and to maintain the diversity of the population
(Jiang kong, 2006; Jiang and Li, 2021b). The simulation test of
the numerical example verifies the effectiveness of the method
(Liao and Li, 2020; Liu and jiang, 2021; Najm and EL-Hassan,
2021). In view of the fact that the Pareto optimal solution
obtained by multi-objective genetic algorithm in solving some
complex high-dimensional multi-objective optimization
problems is easily affected by the disturbance of design
parameters (Yu and Li, 2020; Yang and Jiang, 2021; Yun and
sun, 2022), the concept of robustness and the proposal of an
improved robust multi-objective optimization method are used

by some scholars proposed (Li and Kong, 2012; Li and Liu, 2015a;
Jiang et al., 2019c). On the basis of the classical fitness function
expectation and variance, the expectation and variance are
effectively combined, and the particle swarm algorithm is
integrated at the same time (Yu and Li, 2019; Sun and xu,
2020d). The simulation case results verify that the Pareto
optimal solution obtained by this method is more robust
(Chen and Qiu., 2022c).

In the field of ladle, due to the rapid development of traditional
manufacturing, the role of ladle is no longer just a container for
transporting and casting molten steel (Li and Liu, 2015b; Li and
Jiang, 2019), it also plays a role in thermal insulation of molten
steel and guarantees for subsequent operations (Boikov et al.,
2019; Bilen, 2020). Due to the many steps of steelmaking and the
overload (Mazumdar and Guthrie, 2020; Kadam and brooks,
2021), the molten steel needs to stay in the ladle for a longer time,
and the operation of the ladle is increased during the turning
process when the molten steel is attacked (Liu and Jiang, 2022f; Li
and Kong, 2006; Li et al., 2017). The molten steel time and casting
time in the ladle increase exponentially, and a better lining
refractory and thermal insulation lining structure is needed to
withstand the erosion of high-temperature molten steel.
Insulating refractory materials are used to achieve the super
thermal insulation performance of the ladle (Li et al., 2015; Li
and Qu, 2013). The ladle cover is also used by some scholars to
analyze the influence on the thermal insulation performance of
the ladle (Zhang and zho, 2020; Liu and Jiang, 2021), and it is
found that the addition of the cover can effectively improve the
thermal insulation performance of the ladle (Chakraborty and
sinha, 2019; Choi and kim, 2019), and can effectively increase the

FIGURE 1 | Ladle lining structure composition.
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temperature of the molten steel during tapping. Although the
thermal insulation of the ladle has been analyzed and studied in
detail by the above-mentioned researchers (Sun and tian, 2020a;
Weng and sun, 2021), the longevity and lightweight performance
of the ladle have not been considered. Some scholars even
sacrifice these two aspects to achieve the effect of thermal
insulation (Xiao and Li, 2021; Yan and conejo, 2022). In line
with the requirements of contemporary development, it will also
bring hidden dangers to steelmaking and cause safety accidents
(Zhu, 2013; Zhang and Nie, 2017).

The optimal design of the ladle has been reported by many
scholars, but it mainly focuses on the use of lining materials (Zeng
and Wang, 2022; Zhang and Wang, 2022). After parametric
modeling of the ladle, the response surface method in finite
element optimization design is used to optimize the size of the
working layer, permanent layer and insulating layer of the
refractory lining based on MOGA, thereby improving the use
of the ladle life. This research work is of great significance.

3 FINITE ELEMENT ANALYSIS OF STEEL
LADLE
3.1 Structure and Physical Parameters of
Steel Ladle
The composition of the ladle lining structure is shown in Figure 1 (Li
and kong, 2012). Themain function of the upper part of the shotcrete
is to strengthen the ladle and play a supporting role. The wall impact
brick and bottom impact brick are set to reduce the damage of steel to
the ladle bottom and ladle side walls during transportation. In order
to improve the speed and ensure the accuracy of optimization of ladle
lining, this paper simplifies the ladle lining by ignoring the upper
shotcrete, wall impact brick and bottom impact brick.

In the optimization analysis of each structure of the refractory
lining of the new ladle, this paper uses ANSYS Workbench
software to establish a parametric model of the new ladle, as
shown in Figure 2, which is the finite element analysis software
version 2020 R2. In the figure, H1, H2 and H3 are the design

variables to be optimized, H1 is the thickness of the insulation
layer, H2 is the thickness of the permanent layer and H3 is the
thickness of the working layer. The ladle height is 4917 mm, ladle
shell thickness is 40 mm, ladle width is 2409 mm, waistband
trunnion upper waistband thickness is 150 mm, upper waistband
lower edge is 3780 mm from the bottom of the ladle, waistband
trunnion lower waistband thickness is 150 mm, lower waistband
lower edge is 2005 mm from the bottom of the ladle, ladle initial
mass is 58192 kg, and volume is 14.35 m3. Supplementary Table
S1 shows the variation range of the dimensions of the three design
variables.

The working layer is the temperature load bearing object, the
ladle shell is in contact with the surrounding air, the permanent
layer is located between the working layer and the insulating layer,
and the insulating layer is located between the permanent layer and
the ladle shell. Due to the high lining temperature of the working
layer and the low temperature of the ladle shell, the heat will be
transferred from the working layer to the lining of the permanent
layer and the ladle shell, and the heat transfer mode is conduction.
The ladle shell dissipates heat to the surrounding air by convection
and radiation. Themain purpose of increasing the permanent layer
and insulating layer is to reduce the temperature of the steel
cladding and prevent the high-temperature creep deformation
of the steel cladding. With the prolongation of use time, cracks
and damage will occur, reducing the service life of the ladle.

When performing numerical simulations of temperature and
stress fields in ANSYS, it is necessary to specify the physical
parameters of the material and the boundary conditions of the
model, which are crucial for the accuracy of the calculation
results. Physical parameters of materials such as thermal
conductivity and specific heat are temperature dependent and
their values change with temperature. However, since the
experimental data of thermal conductivity of materials at high
temperature are not easy to obtain. Therefore, it is treated as a
constant in this thesis, and the thermal conductivity is considered
as a constant independent of temperature. In the thermal stress
analysis, the physical parameters involved mainly include
material density, thermal conductivity, specific heat, elastic

FIGURE 2 | New parametric model of steel ladle.
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modulus, and Poisson’s ratio, as shown in Table 1 (Li and Qu,
2013; Li and Liu, 2015c). The ladle shell material is selected as
15CrMoR (Zhang and zhong, 2019).

3.2 Cell Selection and Mesh Division
During the temperature field analysis of the ladle, the mesh
division takes symmetry to improve the computational
efficiency because the simplified ladle model is
symmetrical. Set the contact type as friction contact and
the friction coefficient as 0.2. The selected cell type is
Quad4 Node55 cell in Thermal Solid, and the cells selected
for the contact area are CONTA175 cell and TARGE169 cell.
When dividing the mesh, the control cell size is 0.1m, mainly
tetrahedral. Because tetrahedral meshes adapt well to complex
geometries, they are mostly used for free meshing and can
generate meshes quickly. A total of 163,094 units and 263,305
nodes are divided, and the mesh division model is shown in
Supplementary Figure S1. As can be seen from Figure 3, the
grid cell aspect ratio is above 0.3, basically in the range of
1.16–5. The grid cell quality is high and meets the
requirements of solution accuracy.

3.3 Thermal Analysis of Ladle
Different forms of heat transfer occur during drying,
preheating and casting of the ladle. According to the heat
transfer mechanism distinction, it can be divided into heat

conduction, heat convection and heat radiation. Heat
conduction mainly occurs between the refractory lining of
the ladle and between the lining and the ladle shell. Convection
heat transfer as well as radiation heat transfer occurs between
the ladle shell and air, and between the refractory liner and the
steel (Li and Qiu, 2013).

1) Heat conduction

Inside the same object or between different objects there is a
temperature difference, heat transfer along the object from the
high temperature part to the low temperature part of the way
called heat transfer, the essence is the thermal movement of
microscopic particles (Li and Jiang, 2019). The formula for heat
conduction is shown in Eq. 1.

Φ � λAΔT/δ (1)
Where: Φ is the heat flow through a uniform plane of the object,
W; ΔΤ is the temperature difference between the two sides of the
object, oC; λ is the thermal conductivity, W/(m ·K); δ is the
thickness of the plate, m; A is the area of the plate, m2.

2) Thermal convection

Thermal convection is the phenomenon of heat transfer in space
using the hot particles of the flowing medium. Convective heat

TABLE 1 | The main physical parameters of the ladle.

Refractory Coefficient of
Expansion

(α × 10−6K−1)

Elastic
Modulus (MPa)

Poisson’s
Ratio

Density
kg/mm−3

Specific heat
(J/kg k)

Thermal
conductivity
(w/m · k)

Working layer (aluminum
magnesium carbon)

8.5 6300 0.21 2.95e-6 1200 1.6

Permanent layer (high aluminum) 5.8 5700 0.21 2.8e-6 1320 0.9
Slag line layer (magnesium carbon) 15 8000 0.3 2.9e-6 1080 1.55
Ladle shell 13 206000 0.3 7.85e-6 600 31
Insulation layer 3 2000 0.01 0.26e-6 919 0.122

FIGURE 3 | Mesh metric aspect ratio.
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transfer often occurs between fluid andfluid, fluid and solid surface (Li
et al., 2019). The equation of thermal convection is shown in Eq. 2.

Φ � AαΔΤ (2)
Where: Φ is the heat flow through a uniform plane of the object,
W; ΔΤ is the temperature difference between the two sides of the
object,K;A is the surface area of convective heat transfer,m2; α is
the surface convective heat transfer coefficient, W/(m2 ·K).

3) Thermal radiation

Heat radiation is in the form of electromagnetic waves to achieve
the transfer of heat, does not require a medium, belongs to the non-
contact heat transfer. Heat radiation exists between the ladle
components and between the ladle and air. When the ladle is
subjected to transient heat transfer analysis, the temperature field
T (x, y, z) satisfies the differential equation in the right angle
coordinate system as shown in Eq. 3 (Zhang and Zhu, 2020):

ρc
zT

zt
� z

zx
(Kx

zT

zx
) + z

zy
(Ky

zT

zy
) + z

zz
(Kz

zT

zz
) (3)

In the formula: ρ is the density of the material, kg/m2; c is the
specific heat of the material, J/(kg · K); t is the time, s; Kx, Ky,
and Kz are the thermal conductivity of the material in different
directions, W/(m ·K) respectively.

4) Determination of the boundary conditions.

In the finite element analysis of the ladle, the temperature and
stress changes of the ladle shell and refractory liner during the
casting process are mainly analyzed. Considering the complex
changes of the ladle thermal state and its influencing factors, the
following assumptions are made: 1) Adding trunnion auxiliary
blocks to simulate the ladle spreader or support member. During
the casting process, elastic constraints in the X, Y and Z directions
are applied to the nodes in the plane where the trunnion is in
contact with the auxiliary block; 2) Ignoring the contact thermal
resistance between different refractory materials; 3) Not
considering the stratification of the steel temperature in the
ladle, the steel temperature is uniformly distributed, and the
steel temperature change is neglected in the pouring stage, and
the steel temperature is 1,600°C.

During the casting cycle of the ladle, there are only two ways
to dissipate heat from the outer surface of the ladle shell. One is
the thermal convection between the ladle shell and the
surrounding air, and the other is the thermal radiation
between the ladle shell and the surrounding environment.
Ambient temperature is 20°C. That is, type 3 boundary
conditions are used (Li and Liu, 2015a).

Generally, the natural convection coefficient between the air
and the steel cladding is 5–10 W/(m2gK) (Li and Liu, 2015b),
and the more accurate calculation is

h � 1.826[ Ts

Ts − Ta
]1/3

(4)

Among them, h is the convective heat transfer coefficient, Ts is
the temperature of the ladle shell, and Ta is the temperature of the
surrounding air.

The ability of an object to radiate heat depends primarily on the
temperature of the object (Li and Liu, 2015c; Li et al., 2013). However,
due to the highly nonlinear calculation of radiation heat transfer, it
takes a lot of calculation time, and a simplified form can be used, that
is, the radiative heat transfer is converted into the form of convective
heat transfer, which can be replaced by the equivalent convective heat
transfer coefficient through the data. Radiant heat transfer. The
equivalent convective heat transfer coefficient when the radiative
heat transfer between the ladle shell and the surrounding is converted
into convective heat transfer can be expressed by formula (5).

hr � εB(T2
s − T2

a)(Ts − Ta) (5)
where hr is the equivalent convective heat transfer coefficient, Ts is
the temperature of the ladle shell, Ta is the temperature of the
surrounding air, B is the Boltzmann constant, and ε is the emissivity.

The radiation coefficient ε is 0.8 and Boltzmann constant B =
5.67e−8. The calculated combined convective heat transfer
coefficient is shown in Table 2.

3.4 Stress Analysis of Ladle
Various parts of the ladle generate temperature stress in the ladle due
to the difference in temperature, and expansion pressure is generated
between the various parts of the ladle due to different thermal
expansion coefficients and constraints. In the stress field calculation
for the ladle, the sequential coupling method is used. The temperature
field of themodel is calculatedfirst, and then the stress field of the ladle
is calculated by applying the temperature field results to the model as
the load for the stress field calculation (Li et al., 2015b; Li et al., 2019).

In calculating the ladle thermal stress, the deformation displacement
of each point within the ladle is first calculated based on the overall
temperature distribution of the ladle and the coefficient of thermal
expansion of different parts. Then the strain at each point within the
ladle is calculated using the geometric equation (strain-displacement
relationship). Finally, the stress at each point in the ladle is calculated
according to the physical equation of the ladlematerial (the relationship
between stress and strain) (Li et al., 2015c; Li et al., 2013).

1) The ladle stress field geometric equation-strain-displacement
relationship is shown in Eq. 6.

ε �
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Where ε � [εx εy εz γxy γxz γyz]T is the strain at any point in the
ladle. υ � [u v w]T, u、v、w denotes the displacements along x,
y and z directions, respectively, m.

2) The physical equation of the ladle stress field - the strain-stress
relationship is shown in Eq. 7.

σ � E(1 − υ)
(1 + υ)(1 + 2υ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(7)

Where: E is themodulus of elasticity, MPa; υ is the Poisson’s ratio;
ε is the strain.

3) Ladle equilibrium equation.

For the three-dimensional problem, the equilibrium equation
of any point in the ladle along the coordinates x, y, z direction is as
in Eq. 8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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zz
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zτxz
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+ zτyz
zy

+ zσz

zz
+ fz � 0

(8)

Where fx 、 fy 、 fz is the component of volume force per unit
volume of the ladle in x, y and z directions.

4 RESPONSE SURFACE EXPERIMENT
DESIGN AND ANALYSIS
4.1 Optimization Design Process of Ladle
Lining
According to the finite element analysis theory, parametric
modeling of the ladle lining is carried out, and ANSYS finite
element analysis software is selected to carry out relevant analysis.
The lining optimization flow chart is shown in Figure 4.

4.2 Choice of Experimental Design Method
On the premise of ensuring that the strength of the ladle lining is
satisfied, the lightweight and thermal insulation of the ladle should be
ensured as much as possible. Select the maximum equivalent stress of
the ladle lining, the maximum temperature of the ladle shell, and the
total mass of the ladle as the output parameters, that is, the objective
function. The thickness of the insulating layer, the thickness of the
permanent layer and the thickness of the working layer are selected as
input parameters to be constrained, that is, the design variables. A
preferred solution for an optimized design is obtained.When building
a response surface model, we first need to conduct experimental
design. Common experimental design methods include central
composite design (CCD), optimally filled space design (OSFD),
Latin hypercube sampling (LHS) and so on. In this paper, OSFD
is used to select experimental points. This method is optimized by
LHS, and OSFD can evenly distribute design parameters throughout
the design space to gain maximum insight into design points with
minimum number, compared to CCD focusing on parameters near
the design area. It is suitable for complex modeling such as Kriging,
nonparametric regression, neural network, etc. The design type selects

FIGURE 4 | Flow chart of ladle lining optimization.

TABLE 2 | Integrated convective heat transfer coefficient on the outer surface of the ladle.

Temperature of
Ladle Shell/°C

20 100 200 300 400 500

Heat transfer coefficient/ w ·m−2 · K−1 14.6 18.8 25.7 36.2 56.6 75
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maximum entropy, which can maximize the covariance of sampling
points and reduce the uncertainty of unobservable locations. The
sample type is a full quadratic model sample. After the above method
is set, a set of experimental points will be automatically generated
inside the analysis system, and the iterative solution of this set of
experimental points will be performed. The values of the experimental
points are shown in Table 3.

4.3 Establishment of Response Surface
Model
4.3.1 Selection of Response Surface
Commonly used response surface fitting methods generally
include second-order polynomial, kriging, non-parametric
regression, neural network and other methods. In this paper,
non-parametric regression (non-parametric regression) method
is used to establish the response surface. This method has high
fitting efficiency and is suitable for fitting large-scale and highly
nonlinear sample data (Tao and Huang, 2021; Wei and Wang,
2021; Zhao and Jiang, 2022).

First input sampleX � {x1, x2, x3, ..., xi}, xi represents the input
column vector ofN dimension, determine the form of the equation:

Y≤W,X> + c (9)
W in the above formula represents the weight vector, in the
general non-parametric case, formula (9) can be expressed as:

Y � ∑N
i�1
(Ai − Ap

i )K( �Xi, �X) + c (10)

Where K( �Xi, �X) is the kernel map and Ai、Ap
i is the Lagrange

multiplier.
In order to determine the Lagrangian multiplier, it is first

necessary to assume that the weight vector A is the smallest,
so that most of the sample points lie within the error of the
fitted response surface, as shown in Supplementary Figure
S2, the sample points are suitable for the slack variables and ζ
and ζp characterized by W set of regression lines with
tolerance ε.

Therefore, the original optimization equation is:

FIGURE 5 | Response surfaces of P1, P2, P3 and P4.
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FIGURE 6 | Response surfaces of P1, P2, P3 and P5.

TABLE 3 | Values of experimental points.

Serial Number Insulation Layer
Thickness (mm)

Permanent Layer
Thickness (mm)

Working Layer
Thickness (mm)

Ladle Quality
(kg)

Maximum Temperature
of Steel Cladding (°C)

Maximum Stress
of lining(MPa)

1 0.5 73.6 159.5 59,057 207.65 43.787
2 7.5 70.4 162.5 59,015 157.30 44.775
3 1.5 81.6 150.5 58,936 198.88 42.426
4 2.5 76.8 138.5 57,575 200.39 43.456
5 4.5 80.0 165.5 60,014 168.89 44.006
6 9.5 78.4 156.5 59,132 145.75 43.319
7 6.5 83.2 144.5 58,542 160.99 43.168
8 8.5 72.0 141.5 57,417 156.34 45.205
9 3.5 68.8 147.5 57,686 196.88 44.341
10 5.5 75.2 153.5 58,663 168.56 43.103
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Lmin � 0.5‖W‖2 + t

N
∑N
i�1
(ξi + ξ i) (11)

In the formula, t is a constant greater than 0. In order to
describe the error correctly, a loss function needs to be
defined within the range of (−ε, ε), which can be
expressed as:

Lε � 0∀
∣∣∣∣f(x) − y

∣∣∣∣< ε
Lε �

∣∣∣∣f(x) − y
∣∣∣∣ − ε

(12)

Equation (11) can be rewritten as:

L � 0.5‖W‖2 + t∑N
i�1
(�l(ξi) + �l(ξpi )) (13)

4.3.2 Response Surface Fitting
Before fitting the response surface, it is necessary to establish
sample points. The commonly used sample points are to adopt

certain rules to generate sample points within a certain range. In
this paper, the parameters calculated in Table 3 are taken as the
sample points and brought into the finite element model. The
fitting method adopts the non-parametric regression method
with good support for high nonlinearity, and generates the
relationship between the input parameters and the output
parameters. As shown in Figures 5–7 below. In order to
improve the recognition degree of the chart, this paper sets
the corresponding numbers of design variables and
optimization objectives, as shown in Supplementary Table S2.

Figure 8 reflects how well the designed output variables fit in the
response surface model. The red squares represent the ladle mass, the
green squares represent the maximum temperature of the ladle shell
and the blue squares represent the maximum stress in the lining. The
predicted value of the response surface of each objective function is
basically consistent with the observed value of the experimental
design point, and they are gathered near the identification line. It
shows that the establishment of the response surface model is
reasonable and meets the actual design requirements.

FIGURE 7 | Response surfaces of P1, P2, P3 and P6.
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5 MULTI-OBJECTIVE GENETIC
ALGORITHM OPTIMIZATION AND
VERIFICATION
5.1 Overview of Genetic Algorithms
Biological evolution is a very magical process. It produces
excellent species through the laws of nature such as selection,
elimination, and mutation (Jankauskas and Farid, 2019;
Majumder and kar, 2019). Genetic algorithm (GA) is a
computer intelligence algorithm abstracted from the selection
and evolutionary process of nature (Netjinda et al., 2015; Ngo
et al., 2016).

GA forms a random search algorithm with the characteristics
of “generate + test” by fully simulating natural selection and
genetic mechanisms (Ram et al., 2019; Shastri et al., 2019). The
genetic algorithm first determines the fitness function according
to the solution space, then determines the initial population and
obtains the fitness value of the individual, and judges the
obtained results. When the fitness value reaches the optimal
solution in the solution space, the algorithm ends. When the
optimal solution conditions are not met, enter the next stage to
generate a new population through genetic operations, then
return to the previous stage to obtain the fitness value of the
individuals in the new population, and judge the obtained
results, and so on until the requirements are met. (Tanweer
and suresh, 2016; Sharifi and Mojallali, 2019; Talbi, 2019).

The basic genetic algorithm consists of basic processes such as
coding, fitness function, and genetic operators (selection,
crossover, and compilation). Coding is to use a certain coding
mechanism to convert objects into strings of specific symbols in a

certain order. Just as the study of biological inheritance starts with
chromosomes, the genetic algorithm determines the quality of an
individua (Huang and He, 2020;Huang and fu, 2021; Duan and
Sun, 2021). The basic flow of the genetic algorithm is shown in
Supplementary Figure S3 shown.

The general steps of a genetic algorithm are as follows:

1) Use random or other heuristic methods to generate an initial
population pop(1), t: � 1 with N chromosomes;

2) For each chromosome popi(t) in population pop(t) ,
calculate its fitness value fi � fitness(popi(t));

3) If the stopping condition is met, the algorithm stops;
otherwise, some chromosomes are randomly selected to
form a new population newpop(t + 1) with a set
probability or other methods;

4) Crossover with a certain probability to generate some new
chromosomes and obtain a new population crosspop(t + 1);

5) Change a gene of the chromosome with a small mutation
probability to form mutpop(t + 1): t: � t + 1, and become a
new population pop(t) � mutpop(t + 1), and return to
step 2.

5.2 Mathematical Model of Multi-Objective
Optimization Problem
The multi-objective optimization (Mop) problem is to seek a set
of design variables x1, x2,/, xn that satisfy the constraints and a
vector function composed of sub-objective functions, so that the
decision maker can accept all sub-objective values. The objective

FIGURE 8 | Goodness of fit second-order response surface.
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function is a specific description of the system performance of the
design variables, and its mathematical model can be expressed as
formula (14):

M inf(x) � [f1(x), f2(x),/, fn(x)]T, x ∈ X
gi(x)≥ 0, i � 1, 2,/, p
hj(x) � 0, j � 1, 2,/, q

(14)

In general, formula (14) is called a mathematical model of
multi-objective optimization problems, in which
X � (x1, x2, · · ·, xn), n variables x1, x2, · · ·, xn are decision
variables, and the vector x composed of decision variables is
called decision vector; n (>1 and an integer) numerical value The

objective function fi(x) � fi(x1, x2, · · ·, xn) is the objective
function, and the vector formed by the objective function is
called the vector objective function; gi(x) and hj(x) are called
the constraint function.

5.3 Basic Concepts of Multi-Objective
Optimization
The optimal solution of multi-objective optimization problem is
generally called Pareto optimal solution. In formula (14), if
solution x1 ∈ X is superior to all other solutions, then x1 is
said to be the optimal solution of the multi-objective optimization
model. If there is a solution x1 ∈ X that does not make all fn(x)

FIGURE 10 | Comparison of ladle shell temperature distribution before
and after optimization.FIGURE 9 | Comparison of stress distribution in ladle lining before and

after optimization.
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optimal, but there is no better solution than x1, then x1 is called a
non-inferior solution of the multi-objective optimization model,
also known as the Pareto optimal solution (Huang and chen,
2022).

Definition 14) Given a multi-objective optimization problem
f(X), its optimal solution is defined as

f(Xp) � opt
X∈Ω

f(X) (15)
in, f: Ω → Rr (16)

where Ω is the feasible solution domain that satisfies the
constraints in formula (14).

Definition 15) For a multi-objective problem min f(X) ,
define Xp ∈ Ω to be the optimal solution (Pareto optimal
solution), if for any X ∈ Ω, the following conditions are satisfied:

∧
i∈I
(fi(X) � fi(Xp)) (17)

Or there is at least one j ∈ I, I � (1, 2, · · ·, r) such that

fj(X)>fj(Xp) (18)
Definition 16) For a multi-objective problem min f(X), if

Xp ∈ Ω, and there is no other X# ∈ Ω, such that

fj(Xp)≥fi(X#) (19)
holds, and at least one of them is a strict inequality, thenXp is said
to be the Pareto optimal solution of min f(X)

Definition 17) For a multi-objective problem min f(X), for
any X1, X2 ∈ Ω:

If f(X1)≤f(X2), then X1 is said to be superior to X2;
If f(X1)<f(X2), then X1 is said to be superior to X2.
From the definition (17), it can be known that there is often

more than one solution that satisfies the Pareto optimal solution
condition, but a Pareto optimal solution set.

Definition 18) For a multi-objective problem min f(X), its
optimal solution set is defined as:

Pp � {Xp} � {X ∈ Ω,∃X′ ∈ Ω, fj(X′)≤fj(X), (j � 1, 2, ..., r)}
(20)

The optimization process of MOGA is to find the current
optimal individual (optimal solution) in each generation of
evolutionary population, which is called the non-dominated
solution in the generation, or the non-dominated solution.
Inferior solution (non-inferior solution); the current set of all
optimal individuals is called the non-dominated set (NDS) of this
generation, and the core of the algorithm is to make the non-

dominated set continuously approach the theoretical Pareto of
the objective function. The optimal solution set, and finally
reaches the optimal.

5.4 Selection of Multi-Objective
Optimization Algorithm
In multi-objective optimization problems, the solution of a multi-
objective optimization problem is often a non-inferior solution.
Because the objectives are contradictory and mutually
constrained, and the improvement of one objective is often at
the cost of the loss of other objectives, and it is impossible to make
each objective reach the optimal solution (Luo and Sun, 2020).
Multi-objective optimization algorithms are divided into
traditional optimization algorithms and intelligent
optimization algorithms, among which traditional optimization
algorithms can be further divided into weighting, constraint and
linear regression methods, and intelligent optimization
algorithms are evolutionary algorithms (EA) and particle
swarm algorithms (PSO). Evolutionary algorithms include
multi-objective genetic algorithms (MOGA), non-dominated
ranking genetic algorithms (NSGA) and NSGA-ΙΙ, as shown in
Supplementary Figure S4. Traditional optimization algorithms
generally obtain one of the Pareo solution set at a time, while
using intelligent algorithms to solve, more Pareto solutions can be
obtained, and these solutions constitute an optimal solution set
called Pareto optimal solution (Liu L. et al., 2022).

In this paper, MOGA is used to calculate the structure
optimization problem of the new ladle refractory lining, and
the Design Exploration module in ANSYSWorkbench provides a
convenient way to optimize the design, and is widely used in
practical engineering analysis. According to the needs of
experimental conditions, various parameters to be analyzed
and designed are included in the analysis process, which is
beneficial to design such as optimization analysis. These
include related parameter system, response surface system,
objective-driven optimization system, Six Sigma analysis
system, etc. The optimization algorithm of the ladle lining
adopts the multi-objective genetic algorithm in the response
surface optimization method. The multi-objective optimization
flowchart is shown in Supplementary Figure S5.

5.5 Establishment of Multi-Objective
Optimization Model
Take the working layer thickness, permanent layer thickness, and
insulating layer thickness of the ladle lining as input parameters.
On the basis of the response surface method, using MOGA to

TABLE 4 | Pareto solution candidate points.

Candidate Points Insulation Layer
Thickness (mm)

Permanent Layer
Thickness (mm)

Working Layer
Thickness (mm)

Ladle Quality
(kg)

Maximum Temperature
of Ladle Shell (°C)

Maximum Stress
of lining(MPa)

1 7.87 77.36 151.19 58,639 148.06 43.44
2 8.02 76.20 148.61 58,225 149.25 43.66
3 6.55 79.05 145.38 58,224 160.74 43.56
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optimize the ladle lining structure. Set the number of objective
functions to 3, the decision variable to 3, set the maximum and
minimum values of the decision variable, the population size to
100, the number of iterations to 20, the crossover probability to
90%, the mutation probability to 1/3. The objective function of
this optimization is the fitness function. The maximum
equivalent force on the refractory lining is within the
permissible stress range as a constraint. The mathematical
model for ladle lining optimization is shown in Eq. 21:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Min(α, β, χ) � f(H1, H2, H3)
0≤H1 ≤ 10
68≤H2 ≤ 84
137≤H3 ≤ 167
β≤ 48MPa

(21)

In the formula:H1 is the thickness of the working layer;H2 is
the thickness of the permanent layer; H3 is the thickness of the
insulating layer; α is the maximum temperature of the ladle shell;
β is the maximum equivalent stress of the ladle lining; χ is the
total mass of the ladle.

5.6 Optimization Results and Verification
Analysis
5.6.1 Results of the Optimization
The multi-objective optimization problem can only be solved by
coordinating the trade-offs of each objective so that each sub-
objective can be optimized. For the refractory lining layer size
optimization problem, the maximum ladle shell temperature and
the maximum refractory lining stress are reduced and the ladle
mass is reduced under the premise that themaximum stress in the
refractory lining is within the permissible stress range. The
optimal size optimization is to find the best balance between
the two opposing problems of ladle insulation and longevity. The
Pareto solution candidates obtained by the multi-objective
genetic algorithm are shown in Table 4.

It can be seen from Table 4 that the maximum stress of the
refractory lining of the three groups of candidate points is
within the allowable stress range. The magnitude of the
refractory lining stresses did not differ significantly among
the three groups of candidate points. Candidate point 1 and
candidate point 2 have the best insulation performance, but the
mass of the ladle at candidate point 2 is better than that of the
ladle at candidate point 1. Therefore, candidate point 2 is
selected as the optimal design point.

The optimized calculation results of the ladle refractory lining
structure are shown in Table 5.

Among them, the thickness of the insulating layer changed
the most, from 0 mm before optimization to 8.02 mm. The
thickness of the permanent layer is reduced from 81 mm
before optimization to 76.20 mm, a change of 5.93%. The
thickness of the working layer has the smallest change, which
is reduced from 152 mm before optimization to 148.61 mm, and
the change range is 2.23%. The maximum temperature of the
ladle shell is reduced from 214.46°C before optimization to
149.25°C, and the change range is the largest, reaching
30.41%. The maximum equivalent stress of the ladle lining is
reduced from 43.94 MPa before optimization to 43.66 MPa,
with a small change of 0.64%. The total mass of the ladle is
reduced from 59020 kg before optimization to 58225 kg, with a
change range of 1.35%, which achieved the purpose of
optimization.

5.6.2 Validation Analysis
In order to verify the reliability of the above optimization results,
this section uses numerical simulation methods for thermal stress
analysis and comparison with the insulation performance of the
unoptimized ladle refractory lining. The same analysis steps,
interactions, and boundary conditions as in Section 3 are set
in turn.

Figure 9 shows the comparison of the temperature
distribution of the ladle shell before and after optimization.
The maximum temperature of the ladle shell after optimization
is 151.58°C. The maximum temperature of ladle shell obtained
after optimization by multi-objective genetic algorithm is
149.25°C, which is a good fit with the results of finite
element software analysis, and the error is only 1.53%, both
of which are lower than the maximum temperature of 214.46°C
of ladle shell before optimization. Figure 10 shows the
comparison of stress distribution in the ladle lining before
and after optimization. The maximum equivalent stress of
the ladle liner after optimization is 43.75 MPa, and the
maximum equivalent stress of the ladle liner after
optimization by multi-objective genetic algorithm is
43.66 MPa, which is a good fit with the results of the finite
element software analysis, with an error of only 0.21%, and is
lower than the maximum equivalent stress of the ladle liner
before optimization, which is 43.94 MPa. The optimization
model is verified to be correct and the effect of optimization
is achieved.

TABLE 5 | Optimization results of lining structure.

Variable Before Optimization Optimized

Design variable Insulation layer thickness 0 8.02
Permanent layer thickness 81 76.20 −5.93%
Working layer thickness 152 148.61 −2.23%

Objective function Maximum temperature of ladle shell (°C) 214.46 149.25 −30.41%
Maximum equivalent stress of ladle lining (MPa) 43.94 43.66 −0.64%
Ladle total mass (kg) 59,020 58,225 −1.35%
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6 CONCLUSION

The optimal design of ladle refractory lining based on finite
element analysis software is an organic combination of
mechanical design and computer simulation technology. In
this paper, ANSYS Workbench software is used to
parametrically model the ladle as a solid, and the model is
imported using the seamless connection between the software.
Then the optimal filled space design method (OSFD) is used to
complete the design of the test program. Then the parametric
design platform established by the secondary development
technology in Workbench is used to establish models with
different parameter combinations, and thermal stress analysis
is performed for each group of models to complete the acquisition
of sample points. Finally, the response surface model is
established by using nonparametric regression, and the Pareto
optimal solution is found by genetic algorithm, and the following
results are obtained.

1) The optimized insulation layer thickness is increased from 0 to
8.02 mm, the permanent layer thickness is reduced from 81 to
76.20 mm, and the working layer thickness is reduced from
152 to 148.61 mm.

2) The maximum ladle shell temperature is reduced from
214.46 to 149.25°C, the maximum equivalent force of the
lining is reduced from 43.94 to 43.66 MPa, and the total ladle
mass is reduced from 59,020 kg to 58,225 kg after
optimization.

3) The structure of the ladle lining is optimized by using multi-
objective genetic algorithm in response surface optimization
method to improve the service life and insulation performance
of the ladle.

For the multi-objective problem, although each sub-objective
cannot reach the optimum at the same time, the use of MOGA to
obtain the Pareto Frontier can provide the ideal design parameters
based on the actual trade-off weight relationship of each objective,
which improves the design efficiency. This optimization method of
finding the optimal solution avoids repeated iterative calculations of
the whole finite element model, saves computation time while
ensuring the solution accuracy, and provides a reference method
for improving the insulation performance and lightweighting
performance of the ladle.
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