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Abstract— Software Testing Effort (STE), which contributes 

about 25-40% of the total development effort, plays a significant 

role in software development. In addressing the issues faced by 

companies in finding relevant datasets for STE estimation 

modeling prior to development, cross-company modeling could 

be leveraged. The study aims at assessing the effectiveness of 

cross-company (CC) and within-company (WC) projects in STE 

estimation. A robust multi-objective Mixed-Integer Linear 

Programming (MILP) optimization framework for the selection 

of CC and WC projects was constructed and estimation of STE 

was done using Deep Neural Networks. Results from our study 

indicate that the application of the MILP framework yielded 

similar results for both WC and CC modeling. The modeling 

framework will serve as a foundation to assist in STE estimation 

prior to the development of new a software project.   
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I.  INTRODUCTION  

Software Testing Effort (STE) is one of the critical phases in 
software development as it is estimated to contribute about 25-
40% [1] of the total development cost. STE is the effort in 
relation to duration, resources and source code for testing the 
software before deployment to the client or market [1]. The 
acquisition of relevant data for effort estimation has been a 
focus for prior work [2] concerning the effective use of within-
company (WC) and cross-company (CC) datasets for predictive 
modeling. Researchers and practitioners who lack the relevant 
local data rely on data imported from other repositories or 
companies. The challenge is that this approach might not 
always be useful for WC estimation. In order for WC 
estimation to benefit from CC datasets, the selection of an 
optimal “mix” of project datasets and features is required for 
efficient estimation. 

The WC and CC modeling have been considered in the 
domains of software development effort estimation and defect 
prediction [2][4]. To the best of our knowledge, this is the first 
study to employ the use of CC projects in the estimation of 
STE. A study by Burak et al. [4] indicates that models that used 
CC datasets for defect prediction yielded similar performance 
to WC models when normalization and Nearest Neighbor 
filtering techniques were applied to the datasets.  

In this study, we incorporated a z-score normalization  
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technique into our proposed project selection approach after it 
proved superior to log transformation and box cox 
transformation. 
The two research questions addressed by this study are as 
follows: RQ1. Do models constructed from CC projects yield 
similar STE results to models from WC projects with/without 
normalization? RQ2. Does STE estimated from “prior” features 
yield similar results to STE estimated from “posterior” 
features?  

In order to minimize the cost (effort) associated with project 

and feature selection in STE estimation, this study proposes a 

multi-objective Mixed-Integer Linear Programming (MILP) 

optimization framework. The selection of an optimal “mix” of 

N* projects with their respective f* features from m companies 

to estimate STE is subjected to the following constraints: 1) 

allocation of projects constraint; 2) allocation of features 

constraint; 3) size of project constraint.  

The rest of the paper is organized as follows: Section II 

describes the related work. Section III presents the 

methodology. Section IV describes the results from the study. 

Finally, Section V presents the conclusion and future work.  

II. RELATED WORK 

Bareja and Singhal [1] studied various effort estimation 
techniques in order to minimize STE. They realized that 
machine learning and data mining testing techniques adopted 
by developers assist in the reduction of effort expended in the 
software development process. A study by Turhan et al. [4] 
investigated how cross-company (CC) projects can be used for 
defect prediction modeling. They found that within-company 
(WC) modeling performed better than CC modeling. In the 
field of effort estimation, Kocaguneli and Menzies [2] in the 
quest for finding relevant dataset for effort estimation 
concluded that there is little significant difference in the use of 
CC or WC datasets for modeling. Ansari et al. [7] proposed a 
regression test case optimization approach to assist in the 
reduction of error cost and testing time to achieve a more 
quality software product. Their test selection approach makes 
use of prioritized test cases for testing riskier components of 
the product in order to enhance system reliability and stability.  

This study differs from previous works since to the best of 
our knowledge this is the first study to apply a multi-objective 
MILP for project and feature selection for STE estimation. 
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III. METHODOLOGY 

A. Datasets 
For the purpose of this study, 45 PHP projects from 5 

software development companies were used. We present the 
projects with the means of their respective sampled features - 
Function Points (FP), Development Duration (DD) in months, 
Lines of Codes (LOC) and STE in person-months in Table I. 
Other features from the projects are Number of Development 
Personnel (DP), Test Cases (TC), Project Cost (PC), number of 
defects, user stories and marketers. For confidentiality reasons, 
we denote the names of the companies with Xj and their 
respective project names as Xij. 

TABLE I.  DESCRIPTIVE SUMMARY OF COMPANY PROJECTS 
 

Company 

No. of 

Projects 

Mean 

FP DD LOC STE 

X1 15 47.2 13.7 14589 151.7 

X2 7 44.4 8.4 3942 25.0 

X3 4 301.0 16.0 719786 123.3 

X4 4 58.8 4.8 14654 18.6 

X5 15 238.0 7.3 65543 25.5 

B. Within-Company and Cross-Company Modeling 

Given {X1, X2…Xm} denoting a set of m companies and 

each Xj consisting of a set of {X1j, X2j…Xmj} projects, then we 

formulate a within-company (WC) project modeling as a 

combination of selected Xij projects from a single Xj company. 

Similarly, cross-company (CC) project modeling as a 

combination of projects from a number of companies. In each 

case of the modeling, the selected projects by the MILP were 

used for constructing the predictive model for estimating the 

STE of a target project.  

Based on findings by Turhan et al. [4], we also found the 

need of preprocessing datasets prior to model construction. 

We applied a 3-step preprocessing approach. 1) Data 

Cleaning: In order to assess if the datasets were normally 

distributed, we made use of a graphical analytical technique 

namely Quantile-Quantile (QQ) plot. It should be noted that, 

no missing values were observed in the datasets used. 2) Data 

Transformation: Because of variations within the datasets, we 

used the z-score normalization to transform the data points 

into specific range in order to leverage the outweighing 

discrepancies. 3) Data Reduction: The MILP framework did 

not select three projects and this was due to the weak 

correlation between the independent features and the 

dependent feature (STE).   

C. Proposed MILP Algorithm 

The MILP optimization framework is formulated for the 
project and feature selection. Deep Neural Network (DNN) is 
incorporated into the framework for estimating the STE. A 7-
step procedure of the proposed framework is presented below.  
Step 1: Preprocess project datasets. 
Step 2: Given m companies each with an archival set of 
projects, construct the MILP for the project selection. 

Step 3: For every selected optimal set of Xi
*
 projects from each 

jth company, compute the multivariate Spearman rank 
correlation between the respective independent features and the 
dependent feature (STE).  
Step 4: Select the projects based on the project selection 
optimization method and based on the higher correlation values 
in a non-increasing order until the optimal number of projects 
for every jth company is achieved. 

Step 5: Combine the selected projects from each jth company. 
For the given project datasets applied, it was assumed that each 
project has similar set of features for estimating STE. 
Step 6: Select the features based on the feature selection 
optimization method. 
Step 7: Construct both within-company and cross-company 
STE models in the domain of DNN and evaluate the 
performance with MdMRE, a robust metric free from outliers 
[9]. 

D. Optimization Model Formulation  

A generalized optimization model formulation specifically 

MILP is composed of three main components namely; the 

objective function, the constraints and decision variable 

bounds. The optimization model minimizes or maximizes an 

objective function subject to certain constraints, which can be 

in the form of equality or inequality constraints. The decision 

variable (normally independent) is said to be discrete if it can 

assume a finite set values and continuous if it can assume 

values within a specified interval. Optimization problems with 

both discrete and continuous decision variables are said to be 

MILP.   Based on Mridul and Rana [6] categorization of 

software size into functional and technical size, we 

constructed the generalized objective function for the MILP 

incorporating the functional size in the form of FP. Thus, since 

our ultimate aim is to estimate STE prior to development, we 

eliminated LOC which is a technical size from developers’ 

perspective and made use of FP from users’ perspective 

together with other prior input features - estimated project 

duration, estimated project cost and number of development 

personnel. FP is defined as the sum of five components – 

external inputs, external outputs, external query, external 

interface files and internal logical files with their respective 

weights [6]. Posterior features from the projects include LOC, 

coding time, test cases and number of defects.  

In the formulation of the objective functions, we define a 

probability weight function, αij for each ith project from the jth 

company as shown in (1). 

𝛼𝑖𝑗 =  
(∑ 𝑓𝑗

𝑝
𝑗=1 )

𝑖

∑ (∑ 𝑓𝑗
𝑝
𝑗=1

)
𝑖

𝑛
𝑖=1

                                  (1) 

where p denotes the total number of fj features for every 

project and n denotes the total number of features from all 

companies. Each of the probability weights is multiplied by 

the respective prior input features. We incorporated two 

unique identifiers, λij to uniquely label every ith project from 

the jth company and βj to uniquely identify each of the 

companies as shown in (3) and (4). 

Objective Function 
In this study, we formulated two main objective functions 

for the MILP problem – WC and CC objective functions. Each 
objective function is further categorized for project and feature 
selection. All objective functions are minimization of project 
cost and feature selection problems from the respective 
companies.  

A mathematical model based on Parkinson’s Law [5] is 
formulated in (2) for computing the STE for each unsupervised 
project prior to the setting up of the MILP model. Here, 
unsupervised project refers to dataset without STE. 

   STE = (∑ 𝐷𝐷 × ∑ 𝐷𝑃𝑡
𝑗=1

𝑡
𝑖=1 ) × 𝑇𝑃%                      (2) 

where DD = Development Duration in months; DP = 

Development Personnel; TP = Testing Proportion. For 



 

consistency in the computation of the STE for each 

unsupervised project dataset, we chose a threshold of 40% for 

TP [1]. DP and DD are parameters denoting the total number 

of development personnel and duration for requirement 

gathering, design and testing respectively.  

WC Objective Function for Project Selection  

We first define the cost function, CostWCP in relation to 
project selection for WC in (3) as a cost minimization 
involving the following design variables – DD, DP, Function 
Points (FP), Test Cases (TC), Project Cost (PC), Probability 
Weight Function (α), Project Identification Code (λ) 

𝐶𝑜𝑠𝑡𝑊𝐶𝑃 = 𝛼𝑖𝑗(∑ ∑ 𝐷𝑃𝑛𝑛𝑡 𝐷𝐷𝑡 + ∑ 𝑇𝐶𝑢𝑢 + ∑ ∑ 𝐹𝑃𝑖𝑗 +𝑗𝑖

                          ∑ 𝑃𝐶𝑐𝑐 ) + ∑ ∑ λ𝑖𝑗𝑗𝑖                                          (3) 

CC Objective Function for Project Selection 
The objective cost function, CostCCP for the CC project 

selection is defined in (4). 

𝐶𝑜𝑠𝑡𝐶𝐶𝑃 = 𝛼𝑖𝑗 ((∑ ∑ 𝐷𝑃𝑛𝑛𝑡 𝐷𝐷𝑡 + ∑ 𝑇𝐶𝑢𝑢 + ∑ ∑ 𝐹𝑃𝑖𝑗 +𝑗𝑖

                          ∑ 𝑃𝐶𝑐𝑐 ) + ∑ ∑ λ𝑖𝑗𝑗𝑖 ) +  ∑ 𝛽𝑗𝑗                     (4)           

WC Objective Function for Feature Selection  
We define an expression for the objective function, CostWCF 

for the optimal subset of features for WC in (5). The CostWCF 
function incorporates the Akaike Information Criteria (AIC) for 
the optimal selection of features for the cross modeling process. 

  𝐶𝑜𝑠𝑡𝑊𝐶𝐹 =  arg
𝑟,𝛿,𝑘𝜖ℜ

{min{𝑟𝑙𝑜𝑔(𝛿̂2) + 2𝑘}
𝑓

} λ𝑖𝑗                  (5)                                

where r = number of records in the cross projects, 𝛿̂2= mean 

squared error, k = number of estimated parameters in AIC.  

Here, we consider STE as the dependent variable and 

independent variables are the rest of the features to be selected. 

We therefore constructed an ordinary least squares regression 

and used AIC incorporating both forward and backward 

selection with the aim of selecting the optimal subset of 

features. AIC is very good at handling much more complex 

models and achieves a better bias-variance tradeoff [10].  

CC Objective Function for Feature Selection  

The objective function, CostCCF for the optimal subset of 

features for the CC approach is defined in (6). 

  𝐶𝑜𝑠𝑡𝐶𝐶𝐹 =  arg
𝑟,𝛿,𝑘𝜖ℜ

{min{𝑟𝑙𝑜𝑔(𝛿̂2) + 2𝑘}
𝑓

} 𝛽𝑗                  (6)                                

Constraints 
We considered three constraints namely; allocation of 

projects, allocation of features and size of projects constraints. 

Allocation of Projects Constraint 
In order to minimize cost, we considered an inequality 

constraint for the allocation of projects defined as ∑ ∑ 𝑋𝑖𝑗 <𝑗𝑖

𝑌𝑁 whereby not all the company projects can be selected. The 
variable Xij denotes the ith project selected from the jth 
company. YN denotes the total number of N projects from the 
companies.  

Secondly, we considered the inequality constraint, ∑ 𝑋𝑖 ≤𝑖

𝑋∙𝑗
∗ < 𝑌𝑁 for the selection of projects from within-company. 𝑋∙𝑗

∗  

denotes the total number of projects from a given jth company. 
We assumed that at the worst case scenario, all projects can be 
selected from most of the companies but not all companies.  

Allocation of Features Constraint 

We define an inequality constraint for the allocation of 
features in terms of Variance Inflation Factor (VIF) to deal 
with the multicollinearity issues among the predictor 
(independent) features. After experimental fine tuning of the 

parameters, we considered multicollinearity as an issue if VIF 
is more than a specified threshold, k = 10 in each AIC model. 
Hence, for optimal predictor features to be obtained we needed 
correlation between predictor features to be very minimal.  

An adjusted R2 of 0.7 was chosen after parameter fine 
tuning. Hence, for optimal feature subset, we needed at least 
70% of the total variation in STE to be explained by the 
predictor features.   

Lastly, we considered an inequality constraint in the form 
of ∑ ∑ ∑ 𝑓𝑖𝑗𝑝 < 𝑓𝑁𝑝𝑗𝑖  in order not to select all features from the 

total projects. Thus, in minimizing cost, we made the 
assumption that, there exist a subset of features (fijp) that will 
equally play a significant role in estimating STE as compared 
to all features (fN). fijp denotes the selected pth feature from the 
ith project selected from the jth company.  

Size of Projects Constraint 

We define two inequality constraints, ∑ ∑ 𝐹𝑃𝑖𝑗 ≤ 𝐹𝑃𝑁𝑗𝑖  

and ∑ ∑ ∑ 𝐹𝑃𝑖𝑗𝑝 < 𝐹𝑃𝑁𝑝𝑗𝑖  for the project sizes in relation to FP 

[6]. Here, we considered the sum of FP in the selected projects 
in a given jth company to be at most equal to the total number 
of FP in all projects from that jth company. On the other hand, 
the sum of FP from the selected projects was considered to be 
strictly less than the total FP in all the projects from the 
selected companies.  

E. Deep Neural Networks (DNN) Model 

In the estimation of STE for the selected projects using their 

respective prior and posterior features, we made use of DNN. 

DNN was considered for the within-company (WC) and cross-

company (CC) modeling approach since it makes use of 

multiple layers to automatically learn from a set of features and 

gives better predictive results [8]. After series of fine tuning of 

network architecture parameters, we considered the DNN for 

the STE estimation to be best at 3 hidden layers with 5, 2 and 1 

neuron(s) respectively and an output layer with a single neuron. 

The Levenberg-Marquardt backpropagation optimization 

training function was used to update the weights and the 

hyperbolic tangent activation function was used in each of the 

neurons for giving the respective outputs. We employed the k-

fold cross validation approach for setting up the DNN model. 

The formation of the training set and test set differ slightly for 

the CC and WC projects. For CC modeling, we used all 

projects from four of the five companies to form the training 

set whilst the fifth company project formed the test set. This is 

repeated in a leave-one-out (LOO) cross validation manner till 

all projects from the companies were part of the training set 

and test set respectively. For WC modeling, we used all but 

one project from a single company to form the training set 

whilst the remaining project formed the test set using the LOO 

method similar to the CC modeling. We then used the Median 

Mean Relative Error (MdMRE) [9] in evaluating the DNN 

model. Experiment was conducted in MATLAB toolkit 

(version R2014b). 

IV. RESULTS AND DISCUSSION 

A. Project and Feature Selection by MILP 

After applying the MILP to the project datasets, a subset of 
42 projects and five features were selected. These features were 
project duration in months (PD), number of development 
personnel (DP), number of test cases (TC), number of function 
points (FP) and the cost of each project (PC) in USD. 



 

RQ1: Do models constructed from CC projects yield similar 
STE results to models from WC projects with/without 
normalization? 
     In order to compare the evaluation performance of STE 

estimated from both approaches, we used the MdMRE 

accuracy measure [9] and presented results in   Tables II-III. 

The results in relation to normalized and un-normalized 

datasets are presented using the win/tie/loss metric. The 

win/tie/loss metric enabled us to make an evaluation and 

comparative performance using MdMRE for the within-

company (WC) and cross-company (CC) modeling [2]. For 

example, in Table II, in relation to MdMRE evaluation, we 

realized that WC and CC modeling with z-score normalization 

yielded similar predictive results in 3 cases (that is 3 ties in the 

2nd, 3rd and 5th cases where one project from X4, X3 and X1 were 

used for testing respectively). Without the normalization 

technique, we realized that WC dominated in estimating STE 

(Table III). Thus, results from our optimization selection 

framework and DNN estimation modeling approach reveal 

that, models constructed from WC and CC yield approximately 

similar STE results when datasets were subjected to the z-score 

normalization technique.  

 
TABLE II.  MDMRE EVALUATION (NORMALIZED) 

CC Train set WC Train set Test set Win Tie Loss 

Xi1, Xi2, Xi3, Xi4  Xi-1,5    LOO  WC  CC 

Xi1, Xi2, Xi3, Xi5 Xi-1,4 LOO  ✓  

Xi1, Xi2, Xi4, Xi5 Xi-1,3 LOO  ✓  

Xi1, Xi3, Xi4, Xi5 Xi-1,2 LOO WC  CC 

Xi2, Xi3, Xi4, Xi5 Xi-1,1    LOO  ✓  

 
TABLE III.  MDMRE EVALUATION (UN-NORMALIZED) 

CC Train set WC Train set Test set Win Tie Loss 

Xi1, Xi2, Xi3, Xi4  Xi-1,5 LOO  WC  CC 

Xi1, Xi2, Xi3, Xi5 Xi-1,4 LOO   ✓  

Xi1, Xi2, Xi4, Xi5 Xi-1,3 LOO  WC  CC 

Xi1, Xi3, Xi4, Xi5 Xi-1,2 LOO  WC  CC 

Xi2, Xi3, Xi4, Xi5 Xi-1,1 LOO   ✓  

LOO – Leave one out; WC – within company; CC – cross company 
 
RQ2: Does STE estimated from “prior” features yield similar 
results to STE estimated from “posterior” features?  
     Here, we compared performance of STE estimation from 

both “prior” and “posterior” features with respect to WC and 

CC modeling. Due to space limitation, the MdMRE evaluation 

of results are presented in Tables IV-V available in the link1. 

In relation to cross-company (CC) modeling approach, the 

average MdMRE value was 79.7%. In relation to within-

company (WC), the average MdMRE value was 82.0%. Result 

from Table IV shows that, in relation to the application of the 

normalization technique, STE estimated from CC modeling 

yielded similar results for both prior and posterior features. 

We further confirmed this result using Friedman’s test statistic 

[3] which yielded p-values of 0.4240 and 0.0597 at 5% 

significance level for the prior and posterior features 

respectively. This indicates that there is no statistical 

difference in the STE estimation results from the prior and 

posterior features. In the WC modeling, prior features  

 

 

 

dominated best in the STE estimation as illustrated in Table V.  

This means that, our proposed multi-objective MILP 

optimization selection framework can select optimal prior 

features which yield similar STE results as compared to 

posterior features provided a z-score normalization is applied. 

V. CONCLUSION AND FUTURE WORK 

A Mixed-Integer Linear Programming (MILP) optimization 

framework has been proposed for the selection of desirable 

number of projects with their respective features from within-

company and cross-company projects. The five input features 

selected by the MILP for Software Testing Effort (STE) 

estimation prior to development are Project Duration, 

Development Personnel, Test Cases, Function Points and 

Project Cost. We subjected the selected projects and features 

to train a Deep Neural Network (DNN) model for estimating 

STE using the k-fold cross validation approach. Results show 

that the DNN model for estimating STE from cross-company 

projects yielded similar results to within-company projects 

provided that the z-score normalization method was applied. 

Going forward, we intend to incorporate a filter in our 

MILP framework to further improve the CC project and 

feature selection approach for STE estimation.  
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