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Abstract

Background: Model based design plays a fundamental role in synthetic biology. Exploiting modularity, i.e. using

biological parts and interconnecting them to build new and more complex biological circuits is one of the key issues.

In this context, mathematical models have been used to generate predictions of the behavior of the designed device.

Designers not only want the ability to predict the circuit behavior once all its components have been determined, but

also to help on the design and selection of its biological parts, i.e. to provide guidelines for the experimental

implementation. This is tantamount to obtaining proper values of the model parameters, for the circuit behavior

results from the interplay between model structure and parameters tuning. However, determining crisp values for

parameters of the involved parts is not a realistic approach. Uncertainty is ubiquitous to biology, and the

characterization of biological parts is not exempt from it. Moreover, the desired dynamical behavior for the designed

circuit usually results from a trade-off among several goals to be optimized.

Results: We propose the use of a multi-objective optimization tuning framework to get a model-based set of

guidelines for the selection of the kinetic parameters required to build a biological device with desired behavior. The

design criteria are encoded in the formulation of the objectives and optimization problem itself. As a result, on the

one hand the designer obtains qualitative regions/intervals of values of the circuit parameters giving rise to the

predefined circuit behavior; on the other hand, he obtains useful information for its guidance in the implementation

process. These parameters are chosen so that they can effectively be tuned at the wet-lab, i.e. they are effective

biological tuning knobs. To show the proposed approach, the methodology is applied to the design of a well known

biological circuit: a genetic incoherent feed-forward circuit showing adaptive behavior.

Conclusion: The proposed multi-objective optimization design framework is able to provide effective guidelines to

tune biological parameters so as to achieve a desired circuit behavior. Moreover, it is easy to analyze the impact of the

context on the synthetic device to be designed. That is, one can analyze how the presence of a downstream load

influences the performance of the designed circuit, and take it into account.
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Background
Synthetic Biology is defined as the engineering of biology:

the deliberate (re)design and construction of novel biolog-

ical and biologically based parts, devices and systems to

perform new functions for useful purposes [1]. As an engi-

neering discipline, it emphasizes engineering principles

and methodology in designing, constructing and char-

acterizing biological systems to be applied in industrial,

environmental and other applications. Currently, there

still is a disparity between the ability to design systems

and the one to synthesize them. This disparity can partly

be attributed to a lack of well-characterized parts and

methods for reliably and robustly composing parts into

devices [2].

From the very beginning of Synthetic Biology, efforts

have been made in order to characterize standard bio-

logical parts –i.e. DNA sequences encoding a function

that can be assembled with other standard parts to form

devices [3]. Yet, the roadmap to engineering biological

systems is determined not by the biological parts but

rather by how they interact [4]. Thus, both precise charac-

terization and predictable part composition are essential

for the efficient creation of sophisticated genetic circuits

[5, 6]. In this context, developing frameworks for func-

tional composition is a current challenge, the solution of

which will allow biological components to be systemati-

cally, reliably, and predictably assembled into a functional

device or system [2].

The systematic design of complex bio-circuits from

libraries of standard parts relies on mathematical models

describing the circuit dynamics. In this regard, modular

modeling tools facilitate the mathematical representa-

tion of biological parts and their combinations, providing

the description of the reactions which take place inside

the different parts and the interfaces that connect them

[7, 8]. Computer-aided (model based) methods and tools

can be used to guide the design of synthetic biochemical

pathways [9–11].

Several problems arise when building up biological

devices by combining parts. First, composing different

biological parts and devices together can be difficult, even

if assuming a synthetic circuit structure has been prop-

erly designed to have a pre-specified dynamic behavior,

because the desired input and output levels of a mod-

ule are often unknown, difficult to measure quantitatively,

or difficult to compare. Additionally, the ratio part/device

performance may be altered due to the interaction of

loads in the combined system, the so-called retroactivity

[12]. Along with this, there is an ever-growing appreci-

ation for biological complexity, which requires new cir-

cuit modeling and design principles to overcome barriers

such as metabolic load, cross-talk, resource sharing, and

gene expression noise [5, 13–15]. Finally, one must never

forget the gap between computational (dry-lab) design,

and wet-lab implementation. In practice, biological parts

are subject to uncertainty. Circuit structure design and

parameters tuning methods must cope with this uncer-

tainty in the biological parts and context to narrow the

gap.

To this end, the modular and systematic design of bio-

circuits, i.e. the systematic way of finding combinations

of components from a library of standard parts allow-

ing to optimally perform a pre-defined function, can be

formulated using an optimization framework [16–18].

Indeed, it has been argued that Synthetic Biology is less

like highlymodular (or ‘switch-like’) electrical engineering

and computer science, and more like civil and mechani-

cal engineering in its use of models optimization of whole

system-level stresses and traffic flow [5].

Advanced optimization-based methods, capable of han-

dling high levels of complexity andmultiple design criteria

have been proposed for the modular and systematic struc-

tural design of biocircuits [19]. These new approaches

combine the efficiency of global Mixed Integer Nonlinear

Programming solvers with multi-objective optimization

techniques [20, 21].

On the other hand, a natural approach to model-based

tuning of synthetic circuits consists of the analysis of the

effect of key parameters that can be used as tuning knobs

in the experimental implementation. In this approach,

selection of biological parts is understood as choice of

the range of values of key parameters of the device that

yield the desired dynamical behavior. A current challenge

is to devise methods to provide the set of circuit parame-

ters that satisfies a specified circuit behavior in a way that

can be readily used for their wet-lab implementation [22].

Thus, for instance, in [23], the authors synthesize reg-

ulatory promoter libraries, characterize key parameters,

and use them to guideline the construction of synthetic

networks with different predicted input-output charac-

teristics. Global sensitivity analysis is used in [16]. The

sensitivity information is used to guide the selection of

circuit components and thereby reduce the wet-lab imple-

mentation effort. In [24] the authors express the desired

behavior as a functional cost index of the desired circuit

trajectories. Then, the inverse sensitivity of the mapping

between parameters and cost index is obtained after lin-

earising the functional cost index around an initial value

of the model parameters. This local inverse mapping is

used to map a region of specifications into a one of

parameters.

Although the specification of the desired dynamic of

the circuit is most often naturally expressed as a multi-

objective global optimization problem, this approach has

not been used so far. Instead, current approaches define

independent thresholds set a priori for each of the func-

tional goals characterizing the desired behavior of the cir-

cuit. Then, global Monte Carlo-like approaches are used,
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sampling the parameters space and simulating the circuit

time response. The result of these simulations is used to

assess the circuit behavior, so as to profile the subset of the

parameters space that result in circuit behavior fulfilling

all thresholds. After this, some statistical post-treatment

of the results is used, like clustering or correlation anal-

ysis or global sensitivity analysis, to draw conclusions

between the distribution of the parameters, and the cir-

cuit behavior [25]. This Monte Carlo based approach has

a huge computational cost. Given a defined search space

in the parameters space, the Monte Carlo sampling does

not ensure that a solution will be found, thus requiring a

large number of samples to find solutions. This problem

increases as the thresholds defining the acceptable cir-

cuit behavior are more stringent. On the other hand, the

solution space obtained weighs, either equally or ad hoc,

all the functional goals of the circuit. Thus, besides miss-

ing many possible optimal solutions, there may be little

variability among the different solutions in the param-

eters space, making the statistical post-treatment less

sensitive.

Feed-forward circuits have been used within this con-

text as an important case-study. In [26] all three-node

possible network topologies that present adaptive dynam-

ical behavior are analyzed using function-topology maps

based on Monte Carlo sampling in the parameters space.

Using a simple enzymatic model, the authors draw

design principles of adaptation circuits. They show that

there are only two core solutions that achieve robust

adaptation: negative feedback loops and incoherent feed-

forward ones. In [27], the incoherent feed-forward adap-

tive enzyme network structure derived in [26], is used

as case study. A method is proposed to make inferences

on the contribution of individual parameters to specific

components of the system. Classes of kinetic parameters

are obtained that may correspond to varying strengths of

enzymatic reactions that can be measured and classified

experimentally. The authors show that, for a given net-

work structure, certain types of values, ormotifs, also exist

for kinetic parameters in order to achieve specific system

dynamics. Clustering in the parameters space to detect

kinetic motifs, i.e. sets of parameters yielding desired

circuit dynamics, is used in [25].

In this paper, to build a given functional device with

desired dynamic behavior, we study the application of a

multi-objective optimization design (MOOD) framework

[28] to obtain a model-based set of guidelines for the

selection of its biological parts. In MOOD all objectives

are important, so all of them are optimized simultane-

ously. Thus, the solution rarely is unique, but a set of

solutions called the Pareto Front. In this sense all solu-

tions are Pareto-optimal and differ from each other in the

trade-off of objectives that each one represents. Then, the

design reduces to encode carefully the desired dynamics

into the objectives and optimization problem itself in

the MOOD [28]. As a result, the designer obtains qual-

itative regions/intervals of parameters along the Pareto

Front giving rise to the predefined behavior of the circuit.

Contrarily to the passive search for solutions of Monte

Carlo-based approaches, the multi-objective optimization

approach actively searches for all the optimal solutions as

a first step. TheMOOD framework also naturally provides

a classification of the parameters along the Pareto front, by

taking into account their effect on each of the goals. More-

over, this framework makes easy to analyze the impact of

context on the synthetic devices to be designed. This can

be done by just incorporating information about the rela-

tionship between the device and the context. In general,

this means we only need to knowwhere do we connect the

device which is being designed and howwe are connecting

it. Including this information in the optimization problem,

we obtain a qualitative region of parameters taking into

account the effect of the context on the device.

The remaining of the paper is organized as follows. In

Methods, the general framework, and the type-1 inco-

herent feed-forward (I1-FFL) circuit that will be used

as case study, are presented. Next, in Results, the pro-

posed methodology is applied to the I1-FFL case study,

and the main findings for the circuit are described. Two

typical application scenarios of the methodology are also

considered. Finally, some discussion and general conclu-

sions, both on the methodology and its results on the

I1-FFL case study are drawn in Discussion and Conclusion

sections.

Methods
Multi-objective optimization design framework

General workflow

Achieving a synthetic biological circuit fulfilling some

behavioral specifications requires in practice an itera-

tive process through three main steps: choosing a circuit

structure capable to perform the desired behavior after

the proper tuning of its parameters, tuning the circuit

parameters, and validating the circuit with the selected

tuned components. The use of models to solve the first

two subproblems in silico, before attempting the wet-lab

implementation to validate the circuit, reduces the wet-

lab effort and speeds-up the design process. This work

focuses on the second subproblem: in silico tuning of the

circuit model parameters, so as to achieve the desired

behavioral specifications.

First, a topology for the functional module or circuit

is needed, capable to perform the desired behavior after

the proper tuning of its parameters. This will provide

the circuit model structure. Although currently there are

no catalogues as such for functional modules, there is

a vast literature in the systems biology area on network

motifs producing a variety of dynamic behaviors [29].
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Much work has also been done and is on-going on the

design of circuits with various capabilities: repressila-

tors [30], biomolecular concentration trackers [31], feed-

back regulation circuits [32], switchable genetic oscillators

[33], etc. Many of the functional circuits that are being

implemented in synthetic biology take advantage from

well-established work in areas such as electronics and

feedback control for the design of bistables, feedback and

feedforward structures, switches, etc; see, for example,

[26, 29, 34–39] and the references therein. Alterna-

tively, one may find the potential circuit structure cast-

ing the problem as an optimization one, starting from

coarse-grained models of the potential circuit struc-

tural components, and looking for the optimal circuit

topology [19].

Models may have different degrees of detail. Our goal

is to tune the model parameters using a degree of detail

in the model amenable to serve as basis to provide guide-

lines for the experimental implementation of the circuit.

That is, the parameters to be tuned should correspond to

biological tuning knobs that can be modified experimen-

tally [40]. Mass action kinetic models obtained from the

set of biochemical reactions will be used for this purpose.

These models can be reduced using singular perturbation

methods (the so-called quasi-steady state approximation,

QSSA) by neglecting the dynamics associated to fast bind-

ing reactions - e.g. RNA polymerase binding to DNA-

and by taking into account the algebraic relationships

among species resulting from conserved moieties [41].

The reduction process can be performed so that both the

species in the reduced model are a subset of the original

one [42, 43], and that the resulting aggregated parameters

have a clear matching with experimental biological tuning

knobs [44].

From this starting point, we can proceed to tune the

model parameters so that eventually the circuit fulfills

the behavioral specifications. We will consider the general

case when a set of specifications is desired, thus leading

to a multi-objective problem. A usual approach to face

a multi-objective problem consists of building an aggre-

gate function in order to assemble the design objectives

in a unique index, normally by means of a weighting

vector. This approach is followed for example in [25].

However, the solution obtained depends too much on the

correct selection of the weighting factors, and it might

not possibly reflect with enough clarity the designer’s

preferences in relation with the desired balance of require-

ments. An alternative option is to use multi-objective

optimization [45]. This is a natural choice to face this kind

of problems. In multi-objective optimization all design

objectives are important to the designer, so all of them

are optimized simultaneously. Thus, the solution rarely

is unique, but a set of solutions called the Pareto Front.

In this sense all solutions are Pareto-optimal and differ

from each other in the trade-off of objectives each one

represents.

In order to successfully implement the multi-objective

optimization approach, at least three fundamental steps

are required [46], as depiced in figure depicted in Fig. 1:

1. the multi-objective problem (MOP) definition:

defining the circuit behavioral specifications in a

proper way.

2. the optimization process: tuning the parameters

using multi-objective global optimization (MOO).

3. and the multi-criteria decision making (MCDM)

stage: obtaining tuning guidelines useful for the

wet-lab implementation.

This overall multi-objective optimization design

(MOOD) procedure enables to analyze design objectives

trade-offs to implement a preferable solution [28]. Fur-

thermore, it may provide a better understanding of the

problem at hand by the so called process of innovization

Fig. 1 Steps for the multi-objective optimization design procedure
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through optimization as stated by [47]. Next we describe

each of the steps in detail.

Defining the circuit behavioral specifications

The starting point of the proposed methodology is the

multi-objective problem definition, that is the specifica-

tion of the desired dynamical behavior for the circuit to

be designed. This can be done in several ways. From the

designer’s point of view, specifying the circuit behavior in

terms of the desired output signal profile for a given input

signal profile is a natural approach [48]. The input signal

is chosen as the one that is going to be used in working

conditions, or as simple standard probing input-signals

(e.g. step-like, sinusoidal, or pulse ones). Once the desired

input-output relationship is defined, the set of circuit

parameters achieving it can be obtained by optimization-

based system identification [20]. This approach is use-

ful for linear dynamical systems, as their time-response

to these probing signals fully characterizes the circuit

dynamical behavior. This is not the case for nonlinear

circuits as the ones typically encountered in synthetic

biology. Thus, the particular signal to be used in working

conditions should be chosen. Yet, this may be very restric-

tive. Indeed, usually the input signal to a circuit will have

varying characteristics. In the best case, it will belong to

a given class (e.g. step-like signal with varying amplitude).

Therefore, the dynamical behavior, i.e. the desired circuit

time-response to a given input signal, is better given as a

set of input-output performance indexes to be optimized.

Specifying the desired circuit behavior in terms of per-

formance indexes to be optimized has many advantages.

In the general case, the indexes will take the form of func-

tionals mapping the circuit trajectories to the reals. Thus,

consider a circuit with dynamics given by the model:

ẋ = f (x, θ)

0 = g(x, θ)
(1)

where x ∈ R
n is the state, θ ∈ R

p the parameters,

and function g(.) represents algebraic constraints in the

system. The indexes can be expressed as:

Ji(θ) =

∫ tf

t0

h(x(τ , θ), τ)dτ (2)

for some possibly time-dependent function h(.) of the sys-

tem trajectories during a time interval of interest
[

t0, tf
]

,

being i = 1 . . . ni is the number of indexes. These can be

made valid for a whole class of input signals, may consider

other signals in the circuit besides the input and output

ones, robustness with respect to uncertainty in the cir-

cuit parameters can be included, etc. They will typically

consider the desired performance at steady state (preci-

sion), and some measure of the quality of the transient.

Proper definition of the optimization indexes representing

the desired behavior is a key point. An incorrectly speci-

fied objective, not properly representing the actual desired

behavior, will lead the optimization in a wrong direc-

tion, returning a parameter set that will give misleading

design guidelines. Moreover, for the proper interpreta-

tion of results by the designer, one must pose meaningful

design objectives.

Multi-objective parameters tuning

As mentioned above, representing the desired behavior

will eventually lead to several objectives to be optimized.

That is, the optimization problemwill be amulti-objective

one in the general case. Typically, some of the objec-

tives will be in conflict, so a trade off among solutions

is required. Ad hoc weighting of the different objectives

may be used to transform the problem into a single-

objective one [49]. Alternatively, thresholds on each of

the objectives may be set in order to run multiple times

a single-objective optimization. Instead, we address the

problem as a truly multi-objective optimization design

(MOOD) one.

The multi-objective optimization (MOO) process seeks

to approximate the best parameters θ∗
P that give the best

Pareto-front approximation J∗P [45]. Such search could

be done through a random Monte-Carlo sampling in the

decision variables space θ –the set of parameters deter-

mining our biological model–, followed by a filtering of

the solutions in order to obtain the θ∗
P that defines the

Pareto front approximation J∗P . This could be a good

option for problems with few decision variables. For prob-

lemswith a large number of decision variables, as our case,

it is more efficient to use an appropriate multi-objective

optimization algorithm to approximate this solution.

We obtain the Pareto-optimal front of solutions via

spMODE, a multi-objective optimization algorithm based

on differential evolution [50, 51] implemented in Matlab,

and available at Matlab Central1. The algorithm spMODE

actively searches for all the solutions in the parameter

space along the Pareto front. It:

• improves convergence by using an external file to

store solutions and include them in the evolutionary

process;
• improves spreading by using the spherical pruning

mechanism [50];
• improves pertinency of solutions, i.e. getting

interesting solutions from the designer’s point of

view, by means of a basic bound mechanism in the

objective space, as described in [52].

Obtaining tuning guidelines for implementation

After the multi-objective optimization, a set of solutions

is obtained: values for the kinetic parameters that repre-

sent a trade-off between the objectives. Then, the final
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step is to obtain tuning guidelines to select the values

of the kinetic parameters of the model and correspond-

ingly cues for the implementation of the circuit in the

wet-lab. In this work we present two alternatives for this

last step: a semi-automated one based on an optimized

clustering of the solutions, that is, providing some guine-

lines; and a second one, in case the implementation needs

more insight allowing to learn more about the problem,

based on the visualization of the Pareto front and set

using suitable tools, thus, providing a guidance with this

information.

In the first alternative, qualitative instructions for the

wet-lab implementation are extracted from these solu-

tions. The kind of information extracted is in the form of

qualitative levels for the kinetic parameters that can be

commonly modified in the wet-lab, for instance:

• Plasmid copy number. It can be tuned by selecting

the appropriate replication origin of the plasmid.
• Promoter strength. It can be modified by selecting

the appropriate promoter with predicted strength; for

example from the Anderson Promoter library [53]

available at the iGEM Parts Registry.
• Ribosome Binding Site strength. It is one of the

easiest parameters to tune in the wet-lab using, for

instance, RBS libraries, the RBS Calculator from Sallis

Lab [54], or nucleotides repetition [55].
• Protein degradation rate. It can be tuned globally by

changing the growth rate of the microorganism. It

can also be tuned by adding a protein degradation tag

to include the protein in an active degradation

pathway.

In order to facilitate the obtention of the guidelines, a

hierarchical clustering is performed with the solutions

(also using a Matlab script, see Additional files 1 and 2),

including the values of the objectives and also the kinetic

parameters of each solution. This process is achieved

by using a cluster tree based on the Euclidean distance

among the vectors containing the attained values of the

objectives for all points along the Pareto front. The dis-

tance among clusters is obtained bymeans of the weighted

center of mass distance. Then we set the number of clus-

ters in an iterative manner from ten to two, and in each

iteration we perform a Kruskal-Wallis [56] test (which is

the non-parametric equivalent of the one-way analysis of

variance ANOVA) to study the correlation between the

kinetic parameters and the clusters. With this process the

optimal number of clusters is selected by choosing the

one that maximizes the number of significantly correlated

parameters with the clusters. Each one of the resulting

correlated parameters has different value ranges in each

one of the clusters which represents a guideline for this

parameter. For example it can range around low values

(with respect to the initial interval for that parameter)

for some clusters and high values for other clusters.

This parameters are particular guidelines for each

cluster.

For the parameters that do not exhibit a significative

correlation, its optimized range is also checked against

the initial interval given to the optimizer. If the ranges

are different this means the optimization process found

an optimal range for the parameter, but general to all

the clusters. This parameters are general guidelines for

optimality.

For the second alternative, it is accepted that visual-

ization techniques are valuable in order to analyze the

trade-off among competing objectives. Such visualization

and analysis is not a trivial task when the number of objec-

tives is larger than three and/or the number of decision

variables in the Pareto set is large, like in our case. Several

tools are available, but in any case, some desirable char-

acteristics are useful to perform such analysis. The first

of them are concerned with the practical aspects of the

analysis:

• It must enable design alternatives comparison

(analyze different solutions).
• It must enable design concepts comparison (analyze

different Pareto front approximations).

Others are related to subjective aspects of the visualiza-

tion:

• Completeness: all relevant information should be

contained in the visualization.
• Persistence: all the relevant information should be

retained in the designer’s mind.
• Simplicity: the visualization should be easily

understandable.

In this work we use the visualization tool Level Dia-

grams (LD) [57, 58], which has a freely available imple-

mentation for designers: LD-Tool2. LD-Tool allows to

correlate design objectives with decision variables. It clas-

sifies the calculated optimal parameters θ∗
P with respect to

each objective Jq(θ) normalized with respect to its min-

imum and maximum value. A graph for each objective

is displayed (see Additional file 1: Figure S1), where the

Y-axis is the p-norm ‖Ĵ(θ)‖p of the objectives vector, and

the X-axis corresponds to the objective value or decision

variable depending on the case. A second graph displays

‖Ĵ(θ)‖p with respect to each decision variable. These char-

acteristics make it helpful in order to propagate the infor-

mation from clustering between design objectives space

and decision variables space. Thus, a given solution will

have the same value -y in all graphs. As it is, LD enables

the alternative and design concept comparison. In order
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to also incorporate the information obtained in the clus-

tering, the y-axis of the LD plot is modified to show the

membership of a solution to a cluster, therefore, improv-

ing completeness for our problem. And this is coded also

in the color of the points in all the graphs, improving

persistence and simplicity. This correspondence of col-

ors helps to evaluate general tendencies along the Pareto

front and compare solutions according to the clusters

they belong to. Additionally, with the aim of improv-

ing simplicity and completeness, the dynamic response

of species from the model is ploted using the same color

code. To sumarize, this step consists in first the clustering

of the solutions and then:

For the guidelines

Study correlations between the parameters and the clus-

ters and obtain guidelines.

For the guidance to help manual decision making

Visualization of the Pareto Front and Pareto Set of the

clustered solutions to obtain more insight and learn about

the specific problem.

All this step is performed in matlab scripts (see

Additional files 1 and 2 for a description and the scripts

respectively)3.

Finally, it is interesting to note that the selection of

the preferable solution according to designer’s criteria,

or equivalently the extraction of qualitative levels for the

parameters, takes place in an a-posteriori multi-criteria

analysis of the Pareto Front approximation, and it is in

general computationally cheap in comparison with the

multiobjective optimization step.

Incoherent type 1 feed-forward loop (I1-FFL)

Adaptation is an important property of biological systems,

linked to homeostasis [29], and to the generation of

responses that depend on the fold-change in the input

signal, and not on its absolute level [59]. It is defined as

the particular ability of biological circuits to respond to a

change in its input and return to the value it had prior to

the stimulus, as depicted in Fig. 2. Due to its relevance, in

the paper we will use a genetic circuit showing adaptation

to illustrate the proposed approach. Circuit topologies

giving rise to adaptive behavior have been extensively

studied [29]. Different three-node topologies are possi-

ble [26]. Among them, the incoherent type 1 feed-forward

loop structure (I1-FFL) is one the most common network

motifs. Different implementations are possible, including

enzyme reaction networks [26, 27], gene networks [34, 60]

and in vitro transcriptional networks [61]. In the gene net-

work case, a protein A acts as a transcription factor and

activates expression of two downstream genes B, and C. In

turn protein B represses expression of gene C. Figure 3a

depicts the genetic synthetic circuit. To introduce a step-

like input signal to the circuit, we consider the addition

of an external chemical inducer I, that diffuse from the

extracellular culture inside the cell. Most of these induc-

ers undergo an heterodimerization, i.e. the inducer binds

to one of the circuit species thus effectively providing an

input to the circuit. Most of them subsequently dimer-

ize. We have used a model that captures both phenomena.

The protein A, product of gene A, bounds to the inducer

I, forming a monomer A · I which in turn dimerizes. The

dimer (A · I)2 is the transcription factor that activates

expression of gene C directly, and represses it indirectly

Fig. 2 Input-output adaptive behavior. Adaptation is an important property of biological systems, related to homeostasis. After an input stimulus

the output signal responds by first quickly reaching a peak value, after which it returns to its previous value even if the stimulus persists
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Fig. 3 Three-node incoherent type 1 feedforward loop. a Gene gA produces the protein A, which forms a dimer with the inducer I. The dimer

activates both genes gC and gB. In turn, the product of gB represses gC. b Representation of a cell incorporating an incoherent feedforward loop

synthetic circuit

via activation of the repressor B. As a result, when a sig-

nal causes node A to assume its active conformation, C

is produced, but after some time B accumulates, even-

tually attaining the repression threshold for the gene C

promoter.

We model the designed genetic circuit using a deter-

ministic approach and taking into account the key regu-

latory interactions between the main biochemical species

present in the genetic circuit: proteins A,B, and C, and

inducer I. In our gene synthetic circuit (see Fig. 3b), the

circuit comprises a gene gC under the control of the pro-

moter PgC. The concentration of protein C is considered

to be the circuit output signal. Expression of C is activated

by the dimer (A·I)2 that acts as transcription factor for the

hybrid promoter PgC, and it is repressed by protein B. The

dimer (A · I)2 also acts as transcription factor activating

the promoter PgB. Protein A is constitutively expressed,

and bounds to the inducer I. The inducer can passively

diffuse across the cell membrane. Though the input signal

to the circuit is the intracellular inducer concentration I,

the experimental input signal is the external application of

the inducer in the broth Ie.

Starting from a complete model based on mass action

kinetics (See Additional file 1, 1.I1-FFL Model) we

obtained the reduced deterministic model (3).

ẋ1 = kmACgA − dmAx1

ẋ2 = kpAx1 − dAx2 − k2x2x3 + k−2M

ẋ3 = −k2x2x3 + k−2M + kd(x9 − x3) − dIx3

ẋ4 = k3M
2 − k−3x4 − dAI2x4

ẋ5 = KmB CgB
x4

γ1 + x4
− dmBx5

ẋ6 = kpBx5 − dBx6

ẋ7 = KmCCgC
x4 + β1γ4x6 + β2γ5x4x6+

γ2 + γ3x4 + γ4x6 + γ5x4x6
− dmCx7

ẋ8 = kpCx7 − dCx8

ẋ9 = Kcellskd (−x9 + x3) − dIex9

M = −
dAI + k−2

4k3
+

1

4k3

√

(dAI + k−2)2 + 8k3(k2x2x3 + 2k−3x4)

(3)

where M is the monomer concentration, and

Kcells =
VcellNcells
Vmedium

the volumes relationship required to

take into account the concentration outside the cells.

Note the transport term (x3 − x9), depends only on the

difference of the concentrations inside and outside the

cells. The Kcells constant reflects the amount that goes

out (or in, depending on the sign) from all the cells into

the extracellular volume. In the simulations we used

Vcell = 1×10−15L, which is the typical volume of an E. coli
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cell, we considered Ncells = 2.4 × 108 cells/mL ∗ 0.18mL

which is the number of cells in a 180µL culture with

OD = 0.3 placed in a well containing Vmedium = 180µL

of culture medium. Table 1 shows the species and their

corresponding symbols.

Model (3) has nine differential equations plus one alge-

braic equation (M) and 26 parameters, described in

Table 2. Although from the model reduction process more

algebraic relations were obtained, (See Additional file 1,

1.I1-FFL Model), they are simple enough to be directly

replaced into the model.

An SBML implementation of this model was

deposited in BioModels [62] and assigned the identifier

MODEL1511290000. This implementation is not part

of the multi-objective optimization design procedure,

although it was included for completenes and is intended

to be used separately. The implementation as matlab

scripts is in the Additional file 2, and will be available in

Matlab Central.

For the simulations implemented in the next section, the

values in Table 3 are selected for the kinetic parameters

that are not considered decision variables.

Results
Using the presented framework we considered its applica-

tion for tuning the kinetic parameters of the I1-FFL circuit

to achieve adaptation behaviour. The idea is to apply the

three steps of the MOOD considering the I1-FFL model

presented in the previous section. This way, the imple-

mentation of the MOOD procedure will be clarified by an

example. Later we will show two scenarios related with

the wet-lab implementation and usability of the guidelines

obtained.

I1-FFL tuning using MOOD framework

Multi-objective problem (MOP) definition

The first step of theMOOD framework is to formulate the

circuit specifications as design objectives to be optimized.

Recall the desired input-output behavior for the I1-FFL

Table 1 List of variables used in the reduced model

Variable Description Units Symbol

x1 mRNAgA nM mA

x2 A protein nM A

x3 Inducer nM I

M A·I monomer nM A·I

x4 (A·I)2 dimer nM (A·I)2

x5 mRNAgB nM mB

x6 B protein nM B

x7 mRNAgC nM mC

x8 C protein nM C

x9 Extracellular inducer nM Ie

circuit, depicted in Fig. 2. Let θ denote the following

subset of parameters selected for optimization from the

reduced model (3):

Two basic objectives can be considered for this circuit

[25, 26, 60, 63]:

• Sensitivity: after input stimulation, a clear transient

peak value is desired for the output. Sensitivity can be

defined in relative terms as the relationship between

the input and output variation during the transient.

In our case, we define sensitivity as the ratio between

the absolute total variation of the output signal –the

C protein concentration x8–, and the variation of the

input signal –the external inducer x9.
• Precision: after the peak transient, the output must

go back to its value previous to circuit stimulation.

Thus, precision can be defined as the inverse of the

normalized output error. The lower the steady state

error, the higher the precision.

Our design objectives can be mathematically expressed

by means of the indexes:

J1(θ) =
2

(

x9(tf ) − x9(t0)
)

∫ tf
t0

|dx8
dt

|dt

J2(θ) =
x8(tf ) − x8(t0)

x9(tf ) − x9(t0)

(4)

where tf is the time length of the experiment. The input

stimulus is applied at t0.

Sensitivity is the inverse of J1(θ). Notice the total abso-

lute variation of the C protein concentration is obtained

as half the accumulated absolute value of the time deriva-

tive of x8. The lower J1(θ) (larger output peak w.r.t. input

variation), the higher the sensitivity.

Precision is the inverse of J2(θ), i.e. the inverse of the

ratio between the variation of the C protein concentration

between t0 and tf , and the variation of the external inducer

concentration between t0 and tf . If the C protein concen-

tration x8 at time tf is the same as the initial one at time

t0, precision is infinite.

Note that both objectives are defined as the inverses of

Sensitivity and Precision in order to use them in the min-

imization problem as it is the standard for optimization

problems [46].

Additionally, other objectives could be considered. For

instance, fulfillment of constraints on the species. In

our case, in order to obtain realistic solutions regarding

the values of protein B concentration, its absolute total

variation was taken into account as a constraint. This can

be expressed as:

P(θ) =

∫ tf

t0

∣

∣

∣

∣

dx6

dt

∣

∣

∣

∣

dt,
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Table 2 Parameters of the reduced model

Parameter Description Value Unit

CgA , CgB , CgC gA, gB, gC copy number - adim.

kmA
, kmB

, kmC
gA, gB, gC transcription rate - min−1

dmA
, dmB

, dmC
mA , mB , mC degradation rate 0.3624 min−1

kpA mA translation rate 80 min−1

kpB , kpC mB , mC translation rate - min−1

dA A degradation rate 0.035 min−1

dB , dC B, C degradation rate - min−1

kd inducer diffusion rate 0.06 min−1

k2 , k3 (AI) and (AI)2 association rate 0.1 min−1

k−2 (AI) dissociation rate 20 min−1

k−3 (AI)2 dissociation rate 1 min−1

γ1 gB promoter Hill constant - nM

γ2 gC promoter coefficients 0.2 nM

γ3 , γ4 , γ5 gC promoter coefficients - adim, adim, nM−1

β1 ,β2 gC promoter basal expression coefficients 0.05 adim, nM−1

dI , dIe inducer degradation rate 0.0164 min−1

dAI , dAI2 (AI), (AI)2 degradation rate 0.035 min−1

We considered the constraint:

1 < P(θ) < 10000 (5)

To make the precision higher (that is, low output error)

the easiest option is to have very high values of protein

B concentration, which acts as repressor of protein C. To

avoid this unrealistic solution, it is possible to make the

concentration of protein B to have an upper bound. In the

case of not having this restriction, the solutions may have

higher precision at the cost of unrealistically high values of

protein B concentration. The restriction penalizes this fact

and drives the search to a different region of the parame-

ter space (going away from this undesired region, the one

corresponding to high values of protein B).

Another relevant issue is the definition of limits for

J1(θ) and J2(θ) beyond which we consider that precision

and sensitivity degrade to such an extent that we can-

not talk about adaptive behavior anymore [26]. This is

the so-called pertinency range of the objectives. The limits

established in this work are: J1(θ) ∈[1 × 10−3 , 200], and

J2(θ) ∈[1 × 10−4 , 20].

Table 3 Parameters of the reduced model selected for

optimization

Parameter Wet-lab implication

kmB
CgB , kmC

CgC Promoter strength and Plasmid origin of replication

kpB , kpC RBS Strength

γ1 ,γ3 ,γ4 ,γ5 Mutations in promoter sequence

dB , dC Degradation tag sequence

Finally, we look for the set of values for the 10 decision

variables θ that optimize both objectives. Yet, precision

and sensitivity are conflicting objectives. So a trade-off

must be reached. Therefore, our problem can be formu-

lated as a multi-objective problem (MOP):

min
θ∈R10

J(θ) = [J1(θ), J2(θ)] ∈ R
2

subject to: Eq. (3)

1 × 10−3 < J1(θ) < 200

1 × 10−4 < J2(θ) < 20

1 < P(θ) < 1 × 105

(6)

Multi-objective optimization

As a second step we carried out the dynamic optimiza-

tion of (6) using the multi-objective differential evolu-

tion spMODE genetic algorithm described in Subsection

Multi-objective parameters tuning. Starting from an ini-

tial random population of candidate solutions, we set

15.000 iterations as the maximum number of evaluations

of the objective functions. We obtained a Pareto front

containing 33 solutions that achieve adaptation, together

with the Pareto set containing the kinetic model param-

eters corresponding to the Pareto front solutions (see

Additional file 1: Table S3). These solutions show, as

expected, a trade-off. Solutions range from high sensitivity

(low values of J1) and low precision (high values of J2) ones

to low sensitivity (high values of J1) and high precision

(low values of J2) ones. Note in all cases these solutions are

the optimal ones, in the sense of Pareto.
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A Monte-Carlo sampling (MCS) and a Latin Hyper-

cube sampling (data not shown) with the same compu-

tational cost were performed for the sake of comparison.

In both cases, the solutions must be selected with a

dominance filter so as to detect the ones actually fulfill-

ing the constraints and yielding adaptive dynamics [25].

Note this functional association step is not required in

our approach, as the optimal sets of parameters obtained

already correspond to functional ones. From the func-

tional solutions obtained with these sampling techniques,

we approximated the corresponding Pareto front. Figure 4

shows the results obtained. The Pareto front obtained

from the MCS (dominant solutions in green) covers a

larger region of the objectives space, but outside of our

region of interest (pertinency box), and it is far away

behind the optimal one obtained with spMODE.

Obtaining guidelines for the implementation

The third step is to obtain guidelines and guidance for

the implementation of the circuit. To obtain the guide-

lines, the solutions gathered from the optimization were

clustered hierarchically in an agglomerative tree (see Mat-

lab code in Additional file 1) and the optimal number

of clusters obtained with the procedure explained in the

Methods section. The guidelines obtained are shown as

intervals in the next Table.

As result we can put into words the following general

guidelines, which are necessary for achieving adaptation:

• dB: Degradation rate of protein B, has to be the

lowest possible in all the cases.
• KpB: The RBS strength of gene B has to be the lowest

possible in all the cases.
• γ1: The promoter strength (activation strength) has

to be high in general, but it does not has an apparent

effect.

• γ3: The hybrid promoter strength (activation

strength), has to be the lowest possible in all the cases.

Depending on whether high sensitivity or high precision

are chosen, specific guidelines (see Table 4) can be given

for the tuning knobs to be modified in the wet-lab so as to

tune the behavior of the circuit:

High Sensitivity Strategy:

• KmCCgC and KpC : increasing values of the

promoter strength and plasmid copy number of

gene C, and the RBS Strength of gene C, lead to

increasing values of sensitivity (higher peak

values). These are tuning knobs for sensitivity.
• dC : degradation of protein C has to be slightly

lower for high sensitivity.
• γ4 and γ5: Hybrid promoter strengths

(repression, and activation - repression cross

combined strength), should be kept low.
• KmBCgB: Promoter strength and plasmid copy

number of gene B, must have low values.

High Precision Strategy:

• KmBCgB: Promoter strength and plasmid copy

number of gene B, is a tuning knob for Cluster 6,

increasing precision proportionally to its value.
• γ4 and γ5: Increasing values of the hybrid

promoter strengths lead to increasing values of

precision (lower error).
• KmCCgC and KpC : Promoter strength and

plasmid copy number of gene C, and the RBS

Strength of gene C, keep them low.
• dC : degradation of protein C has to be high.

The results show that the value of dC , i.e. the degrada-

tion rate of the C protein, is a key parameter to correctly

Fig. 4 Pareto Front comparison. Pareto Front representation for J1 and J2 obtained with the spMODE algorithm for the MOO (blue line).

Monte-Carlo random sampling results are colored in red and the dominant solutions are in green. The time response of the C protein concentration

for three representative points are shown
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Table 4 Design guidelines. Each one of the optimized parameters is either a general guideline for all clusters, or is a trade-off control

tuning knob for a specific cluster

Parameter Initial parameter range Design guideline

General guideline Cluster 1 Cluster 2

kmACgA ∗ [1 200] – [1 171.91] 1

kmBCgB [1 200] – 1 [1 200]

kmCCgC [1 200] – [1 171.91] 1

kpB [1 100] 1 – –

kpC [1 100] – [1 15.68] 1

dB [0.01 0.3] [0.01 0.0792] – –

dC [0.01 0.3] – [0.2784 0.3] 0.3

γ1 [50 200] [78.93 200] – –

γ3 [1e-4 0.5] – [1e-4 0.013] [1e-4 0.0141]

γ4 [5e-4 5] – [5e-4 1.4424] [0.0697 5]

γ5 [1 100] – [1 9.2546] [12.125 100]

*kmACgA Is the same as kmCCgC as the are physically in the same plasmid

achieve adaptation.With high values of this parameter, the

concentration of the C protein will to return faster to its

original level.

Some parameters γ in the hybrid promoter of protein

C are also forced to take certain values for the system to

attain the adaptive behavior. In particular, it is interesting

to notice that the repression strength, parameter γ4 plays

an important role, which is in agreement with the analysis

in [34], where a mutation was performed on the hybrid

promoter so as to affect the same parameter.

In the case the designed needs more insight, we provide

the tools for visualization to allow a proper decision mak-

ing procedure and selection of the appropriate parameters

for the design.

The Pareto front together with the time response of the

C protein concentration for each point are shown in Fig. 5.

Clusters range from high sensitivity and low precision

(cluster 1) to low sensitivity-high precision ones (cluster

2). In Fig. 6 the Pareto set is depicted the value of each

parameter and its membership to the corresponding clus-

ter. This way is easy to directly find the implication of each

parameter in the design. After the analysis of the Pareto

set plot it is possible to find: on the one hand, parameters

dB,KpB and γ3 have uniform (and tight) values for both

clusters and γ1 has a uniform and wide range of values

also for both clusters. On the other hand, we find basically

two different strategies: one for high sensitivity (clusters

1, with red color, in Fig. 6) which changes parameters in

gene C (KmgCgC, kpC and less dC), and another one for

high precision (clusters 2, blue colors, in Fig. 6) which

changes parameters in gene B and in the hybrid promoter

(KmBCgB,γ4 and γ5).

In the Additional file 1: Figures S3 and S4 the original

Level Diagrams of the Pareto front and set are shown, in

case the designed needs more information and insight for

the guidance of its multi-criteria decision-making.

Application scenario I: selecting parameters for an

implementation

As a proof of concept, and also to validate the guide-

lines obtained for the I1-FFL we proceed as we would

do in the wet-lab. Let us suppose we have two imple-

mentations obtained with the guidelines proposed in this

work: one designed with the High Sensitivity Strategy

(Case A) and another one with High Precision Strategy

(Case B).

The Case A is a solution with low precision, but high

sensitivity as it belongs to cluster number 1. It is located

in the low extreme of J1, and in the high end of J2 in Fig. 5.

For this design will use the High Sensitivity Strategy and

we will choose, for example, kpC as a tuning-knob. Chang-

ing the value of this parameter will affect the position of

the solution in the Pareto front. Although, moving exactly

along the Pareto front requires modifying more param-

eters as shown in the guidelines before, we can see (by

looking at the reddish dots in see Fig. 7) how the initial

chosen solution moves almost on top of the Pareto front.

This shows that the obtained guidelines are robust so that

we can use the selected parameter as a tuning knob in the

wet-lab implementation.

Also, starting from the high precision implementation

(Case B), we show how changing one of the tuning knobs

from our High Precision Strategy (KmBCgB for exam-

ple) one can almost move along the Pareto front and

obtain higher sensitivity solutions without losing preci-

sion, as shown by the blueish dots. In the insets of Fig. 7

is possible to see the temporal behavior of the obtained

solutions.
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Fig. 5 Pareto front representation in the cluster-modified LD tool. a Value of the objectives J1 and J2 for each solution where each cluster is

identified by a different color. Clusters range from high sensitivity-low precision (red) to low sensitivity-high precision ones (blue). b Time courses of

protein C concentration for the different solution in the clusters

Conversely to this, changing values of key parame-

ters like dC completely destroy the adaptation behavior

independently of the selected solution (see Figure S2 in

Additional file 1).

Application scenario II: output robustness analysis

This framework is also useful to analyze the output perfor-

mance of the designed functional device when connecting

it to other devices.

Here we will use a simple binding reaction as a load to

demonstrate the procedure (see Fig. 8). This is one of the

most common types of load. For example, the protein C

could be a transcription factor and bind to a promoter

region in the DNA. The next equations model this load

binding reaction:

ẋ8 = kpCx7 − dCx8 − K1x8x10 + K2x11

ẋ10 = −K1x8x10 + K2x11

ẋ11 = K1x8x10 − K2x11

(7)

where x10 represents the empty load species (e.g. an

unbound promoter or protein), and x11 represents

the complex C bound to the load species. K1 and

K2 are the binding constants. For this case we used

K1 = 40 nM−1min−1, and K2 = 20 min−1, which cor-

respond to a mildly fast binding. We chose the initial
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Fig. 6 Representation of the Pareto set. Cluster-modified LD representation for decision variables (kinetic parameters) in the High Sensitivity

Strategy (cluster 1, red dots) and in the High Precision Strategy (cluster 2, blue dots)

Fig. 7 Application scenario I Pareto Front in blue line connected dots. A. Dots with reddish color are obtained when using the RBS strength of gene

C as a trade-off tuning knob and represented by modifying kpC ∈ [5 0.05] starting at the extreme solution. Notice, that decreasing only kpC it is

possible to increase the sensitivity, almost without losing optimality (without getting away from the Pareto front). Inset shows the time course of

protein C. As expected, sensitivity of the solution is increased, i.e. the peak of protein concentration after stimulus is higher. B. Dots with blueish

color are obtained when using the promoter strength and plasmid copy number gene B by modifying KmBCgB ∈ [200 1]
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Fig. 8 Application scenario II Depiction of the incorporation of information on the context. Connecting our module to a load

condition x10(t0) + x11(t0) = 800 nM. Since we did not

consider degradation terms in (7), this initial condition

represents the total amount of available load species.

In Fig. 9, the Pareto front of the loaded device is

shown in red colored diamonds, and the original Pareto

front in blue circles. Notice that the analysis needs to

be performed only along the Pareto front solutions.

Thus, it is computationally very efficient. As we see

for the I1-FFL circuit, solutions with low sensitivity are

more affected by the load effect at high values of J1, i.e.

lower peak values of C protein. This happens when the

concentration of C is in the order of 800 nM, which is

the total amount of load species concentration in this

example.

Finally, in the inset of Fig. 9, the loaded time courses of

the protein C concentration after stimulus (red line) are

shown and compared with the original ones (blue line)

for values of the parameters corresponding to solutions 1,

Fig. 9 Application scenario II Pareto front of the functional module without load (blue circles) and with load (red diamonds). Inset: temporal

responses of the solutions 1, 2 and 3 with (red line) and without load (blue line)



Boada et al. BMC Systems Biology  (2016) 10:27 Page 16 of 19

2 and 3. As we see, solution 1 is practically not affected;

but solution 2 is affected considerably. Finally, solution 3

is way out from is location and actually looses adaptation

behavior. Consequently, it is possible to use this frame-

work to evaluate the output performance of our designed

circuit.

Discussion
Computer-aided model-based methods and tools are

being increasingly used in synthetic biology to guide the

design of synthetic biochemical pathways so as to achieve

user-defined functions and behaviors [9–11].

In this work, in order to obtain a set of guidelines

to aid the design of synthetic genetic networks with a

predefined functionality (functional modules), we devel-

oped a framework using a multi-objective optimization

design (MOOD) procedure. Compared to previous stud-

ies [25], a novel feature of our framework is that the result

of the optimization is already a set of parameters that

optimally achieve the desired function and dynamics, as

encoded in the objective indexes. Specifying the desired

circuit behavior in terms of performance indexes to be

optimized has many advantages. The indexes or objec-

tives can be made valid for a whole class of input signals,

they may consider other signals in the circuit apart from

input and output, the robustness with respect to uncer-

tainty in the circuit parameters can be included, etc. The

proper definition of the optimization indexes represent-

ing the desired behavior is a key point. An incorrectly

specified objective, not properly representing the actual

desired behavior, will lead the optimization in a wrong

direction, thus returning a parameters set that will give

misleading design guidelines. This is a drawback, but eas-

ier to handle than setting the thresholds defining the

acceptable circuit behavior after a Monte Carlo sampling,

for these do not ensure that a solution will be found

[25, 27].

The solutions obtained, i.e. the design objectives

together with the respective parameter sets, may be clus-

tered hierarchically, or post-processed with any multivari-

ate statistical analysis tool in order to get further insight

into the role of the different parameters. The importance

of this, is that the spMODE and LD-tools already order the

Pareto front solutions with respect to the objective func-

tions. The LD-tool, as a matter of fact, already provides

insight into the role of the different solutions. Further sta-

tistical processing is very efficient, as only a small set of

data has to be processed (the solutions at the Pareto front),

and this set is already ordered. This allows us to reveal and

understand associations of parameters and functionality.

For example, cluster 1 (red) in the Results Section has the

highest sensitivity together with the lowest precision. To

implement in the wet-lab a system with this functional-

ity, the RBS in gene B has to be weak, and it should be

cloned in a low copy plasmid, as reflected by the guidelines

obtained for parameters kpB and KmBCgB, respectively.

On the contrary, to implement a cluster 2 (blue) system,

the guidelines obtained for the same parameters tell us to

put gene B also with a weak RBS and but in a high copy

plasmid (Fig. 6).

For a given circuit design with a desired functionality,

the guidelines for the kinetic parameters (Fig. 6, Table 4)

are very useful to decide which biological components to

use out of the ones available from a library of biologi-

cal parts, such as the MIT Registry of Standard Biological

Parts [64] by iGEM Foundation, the BIOSS Toolbox [65],

or BioFab [66]. In particular, for the I1-FFL, we showed

that important tuning knobs are:

• KmXCgX. This is a lumped plasmid copy number and

promoter strength, so it can be tuned by selecting the

appropriate replication origin of the plasmid and the

promoter; for example from the Anderson Promoter

library [53] available at the iGEM Parts Registry.
• kpX represents the Ribosome Binding Site strength,

and is one of the easiest parameters to tune in the

wet-lab using, for instance, RBS libraries, the RBS

Calculator from Sallis Lab [54], or nucleotides

repetition [55].
• dX is the protein degradation rate. It also can be

tuned globally by changing the growth rate of the

microorganism. It also can be tuned by adding a

protein degradation tag to include the protein in an

active degradation pathway.

As more and more parts are deposited and character-

ized in these libraries, frameworks providing guidelines

for the design and wet-lab implementation, like the ones

presented here, will gain more applicability and the design

of synthetic genetic circuits will become more rationale-

based than intuition-based.

The analysis performed in the Application Scenario I,

shows that it is possible to use only one parameter to

move from the Pareto front to a sub-optimal solution. For

example, starting from a solution with high precision and

low sensitivity, one can move to a solution with higher

sensitivity and lower precision; with almost no losing opti-

mality. This is very useful in the wet-lab, because it means

that once you have the system implemented in the wet-

lab, it is possible to change the output of your system

in a controlled way by performing the minimum amount

of changes to it. The methodology easily allows to check

how the initial solution will deteriorate by changing the

value of only one parameter (see Fig. 7). Of course, mov-

ing along the Pareto front solutions requires modifying

more parameters, i.e. changing the values of the param-

eters from a cluster to another one; however we showed

that the obtained guidelines are really robust and that we
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can use a particular parameter as a tuning knob in the

wet-lab implementation.

In the Application Scenario II, we saw that it is straight-

forward to have an idea of how much the functionality of

the system can be compromised by loading it, i.e. by con-

necting it to another module. The proposed methodology

allows to design the system taking this into account. The

analysis is computationally efficient, as it has to be per-

formed only for the Pareto front solutions, and not for

the whole objective space. Thus, we foresee that extend-

ing the approach to the analysis of interconnecting several

devices will not be difficult. In a way, as advocated in [5],

the approach is less like highly modular electrical engi-

neering, andmore like civil andmechanical engineering in

its use of optimization of modeling of whole system-level

taking into account loads and flows.

Notice that the analysis needs to be performed only

along the Pareto front solutions. In this case, we are

performing a robustness analysis a posteriori with the

Pareto optimal solutions approximated. That is, the

decision making process is carried out at the end of

the MOOD process using additional information, in

order to select a robust configuration. This is congru-

ent with similar analysis of uncertainties and decision

making [67].

If it is required by the decision maker to seek actively

for a robust set of solutions, a different approach will

be required. That is, in order to get such solutions then

the robustness measure analysis should be included a

priori within the optimisation process. This leads to dif-

ferent optimisation instances known as robust design

optimization (RDO) and reliability based design optimi-

sation (RBDO) [68]. The former seeks to minimize the

sensitivity of a solution; the latter to provide a measure of

risk failure. In any case, such optimization instances are

out of the scope of this work and are proposed as future

work.

The general applicability of the framework allows to

use it with different functional modules and topologies,

as soon as the ODEs can be obtained from reactions,

although evidently difficulties will arise when dealing with

larger networks. In that sense it is interesting to note the

difference between the problem of expensive computa-

tion and the one of large-scale optimization. Expensive

computation arises when the complexity of the system

makes the evaluation of the objective function an expen-

sive task. On the contrary, large-scale is related with the

amount of decision variables and the size of the objective

space. In the cases we are dealing with, this two problems

will be more or less coupled. For a larger network, more

kinetic parameters (decision variables) and more expen-

sive computation of the dynamics of the system to evalu-

ate the objectives. Nevertheless, one of the key issues will

be to obtain a reasonable reduced model of the module

to give to the optimization algorithm rather than the opti-

mization itself. Genetic algorithms like spMODE have

been used in the past with problems with sizes includ-

ing 15 objectives and hundreds of decision variables with

reasonable computational cost, and related research is a

hot topic [69, 70]. Also memory handling in the men-

tioned algorithms is very efficient, as the only informa-

tion that propagates from generation to generation is the

population.

Conclusion
The proposed multi-objective optimization design frame-

work is able to provide effective guidelines to tune biolog-

ical parameters so as to achieve a desired circuit behavior.

Moreover, it is easy to analyze the impact of the context

on the synthetic device to be designed. That is, one can

analyze how the presence of a downstream load influ-

ences the performance of the designed circuit, and take

it into account. Finally, our results suggest that –although

system dynamics actually put constraints on the possible

values of the kinetic parameters– design guidelines can

be obtained to build a biological systems with a desired

functionality.

Availability of data andmaterials
All the material used in this work can be found in the

following locations:

• The spMODE, a multi-objective optimization

algorithm based on differential evolution

implemented in MATLAB is available at

MatlabCentral, code 39215. http://www.mathworks.

com/matlabcentral/fileexchange/39215
• The LD-tool toolbox to help visualization in

MATLAB is available at MatlabCentral, code 24042.

http://www.mathworks.com/matlabcentral/

fileexchange/24042
• An SBML implementation of the I1-FFL model was

deposited in BioModels with identifer

MODEL1511290000. https://www.ebi.ac.uk/

biomodels-main/ (This implementation is not part of

the multi-objective optimization design procedure,

although it was included for completeness and is

intended to be used separately.)
• The source code of the all the software developed for

this work is available in the Additional file 2 —

matlabscripts.zip and also publicly available at http://

sb2cl.ai2.upv.es/content/software, and it is explained

in Additional file 1, Section 2. Matlab CODE.

Endnotes
1http://es.mathworks.com/matlabcentral/fileexchange/

39215.
2Tool available at http://www.mathworks.com/

matlabcentral/fileexchange/24042.

http://www.mathworks.com/matlabcentral/fileexchange/39215
http://www.mathworks.com/matlabcentral/fileexchange/39215
http://www.mathworks.com/matlabcentral/fileexchange/24042
http://www.mathworks.com/matlabcentral/fileexchange/24042
https://www.ebi.ac.uk/biomodels-main/
https://www.ebi.ac.uk/biomodels-main/
http://sb2cl.ai2.upv.es/content/software
http://sb2cl.ai2.upv.es/content/software
http://es.mathworks.com/matlabcentral/fileexchange/39215
http://es.mathworks.com/matlabcentral/fileexchange/39215
http://www.mathworks.com/matlabcentral/fileexchange/24042
http://www.mathworks.com/matlabcentral/fileexchange/24042


Boada et al. BMC Systems Biology  (2016) 10:27 Page 18 of 19

3publicly available at http://sb2cl.ai2.upv.es/content/

software.

Additional files

Additional file 1: additional. (1) I1-FFL model, Tables S1–S2; (2) 2. Matlab

CODE (3) Supplementary Tables and Figures: Figure S1 – S4 and Table S3.

(PDF 978 kb)

Additional file 2: matlabscripts.zip. Code source of the software

explained in Additional file 1 (2. Matlab CODE). (ZIP 255 kb)
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