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Abstract. In this paper, first, the vibrational governing equations for the suspension system of a selected sports
car were derived using Lagrange’s Equations. Then, numerical solutions of the equations were obtained to find
the characteristic roots of the oscillating system, and the natural frequencies, mode shapes, and mass and
stiffness matrices were obtained and verified. Next, the responses to unit step and unit impulse inputs were
obtained. The paper compares the effects of various values of the damping coefficient and spring stiffness in order
to identify which combination causes better suspension system performance. In this regard, we obtained and
compared the time histories and the overshoot values of vehicle unsprung and sprung mass velocities, unsprung
mass displacement, and suspension travel for various values of suspension stiffness (KS) and damping (CS) in a
quarter-carmodel. Results indicate that the impulse imparted to the wheel is not affected by the values ofCS and
KS. Increasing KS will increase the maximum values of unsprung and sprung mass velocities and displacements,
and increasing the value ofCS slightly reduces themaximum values. By increasing bothKS andCSwewill have a
smaller maximum suspension travel value. Although lower values of CS provide better ride quality, very low
values are not effective. On the other hand, high values of CS and KS result in a stiffer suspension and the
suspension will provide better handling and agility; the suspension should be designed with the best combination
of design variables and operation parameters to provide optimum vibration performance. Finally, multi-
objective optimization has been performed with the approach of choosing the best value for CS and KS and
decreasing the maximum accelerations and displacements of unsprung and sprung masses, according to the
TOPSIS method. Based on optimization results, the optimum range of KS is between 130 000–170 000, and the
most favorable is 150, and 500 is the optimal mode for CS.

Keywords: Multi-objective optimization / suspension system / sports car / quarter-car / numerical solution
unsprung mass / sprung mass / suspension travel

1 Introduction

One of the most critical factors for assessing vehicle
performance is ride comfort and researchers have been
trying to improve it on each vehicle. Road roughness
produces forced vibration which adversely affects ride
comfort and can even result in chaotic motions [1,2]. The
suspension is responsible for minimizing the discomfort for
passengers through the selection of proper springs and
dampers to reduce vehicle motion including pitch and roll,
and functions to smooth out the ride and isolate the
passengers and also protect the vehicle and its cargo from
vibrational damage and fatigue [3,4]. On the other hand,
the suspension system is essential for maintaining maxi-
mum contact between wheels and the road, to provide

steering stability and good handling in order to keep the
vehicle in control, because all vehicle-ground interaction
forces rely on the tire contact patch. The automotive
suspension system consists of all the parts and components
that connect the vehicle’s body to its wheel assembly and
permit suspension travel. Tires, pressurized air, springs,
shock absorbers, and linkages form the suspension system,
which contributes to both vehicle handling and road holding
and vehicle ride quality, which are two qualities that are
usually in contradiction with each other. Therefore, tuning
and design of the suspension involves finding the right
compromise between handling and ride quality, to maintain
both safety and comfort. In this regard, automotive
companies make available a variety of suspension systems
for their production line, and the design of the front and rear
suspensions of their cars are usually different.

Many factors affect a vehicle’s ride comfort, and the
suspension can be designed with the best combination of* e-mail: ebrahiminejad@iust.ac.ir
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design variables and operation parameters to provide
optimum vibration performance [5]. Therefore, designers of
automotive suspension require a deep understanding of the
effects of design parameters on the important dynamic
response of the system, especially under various loading
conditions and road surface inputs. To this end, suspension
design and analysis has evolved as an interesting research
topic.

Gohari and Tahmasebi [6] showed that the use of
intelligent active force control (AFC) will have a significant
effect on the seat suspension of an off-road vehicle, hence,
the neuro-AFC control system improves suspension
performance compared to conventional PID control. Seat
suspension is widely applied to attenuate vibrations, as
well. Wang et al. [7] studied a scissors mechanism to
improve a vehicle seat suspension while also enhancing the
convergence speed of the optimization procedure. Applying
light-weight designs, for weight reduction in the vehicle
body and chassis systems, especially for application in
future electric vehicles has also been a subject of research.
Tobolár et al. [8] presented a split carrier wheel suspension
system comprising of a three mass suspension design that
enhances ride comfort and road holding. Zhou et al. [5]
optimized the performance of an electric vehicle’s suspen-
sion system comprised of double suspension arm torsion
bars, under random vibrations and calculated the suspen-
sion stiffness and performed sensitivity analyses for design
parameters.

Suspension vibrations are most comfortable if the
frequency of the vibrations is between 1 and 1.5Hz. Once
the frequency exceeds this limit and is between 1.5 and 2Hz,
the ride becomes harsh for the passengers. To solve this
problem, many researchers have focused on the design and
analysis of active or semi-active suspension systems with
adaptive stiffness and damping parameters, including
hydro-pneumatic suspension and magneto-rheological
(MR) suspension systems in which the elastic and damping
properties can vary with road conditions under the
influence of regulating air pressure or changing the electric
current supply or electromagnetic field. To improve ride
comfort, Marzbanrad et al. [9] used an activeMR controller
in a half-car model and performed a multi-objective
optimization procedure. Their results showed significant
improvements due to the application of an MR damper
compared to a passive suspension system.

Automotive control systems monitor a variety of
operational parameters to control vehicle performance,
thereby providing better handling and ride quality. Chen
et al. [10] conducted a non-linear control of a semi-active
variable damping suspension to improve ride comfort,
handling stability, and driving safety. Ozbulur [11] used a
fuzzy-logic-based controller and showed significant
improvements in resonance values and reductions in the
vibration amplitude in comparison with passive suspension
performance active suspension. Gad et al. [12] conducted
another investigation on genetic algorithm (GA) multi-
objective optimization of a fractional-order PID (FOPID)
control of a semi-active MR-damped seat suspension to
examine the successful performance of the proposed
FOPID system. Prassad et al. [13] designed an adaptive
control system for a suspension to improve vehicle safety

and ride characteristics, indicating the effectiveness of the
adaptive control in reducing the displacements and thereby
providing better ride comfort for the passengers.

Moreover, investigations on simple vehicle models have
been performed to consider handling and braking stability.
For example, Hamersma and Els [14] attempted to improve
braking performance using ABS and experimentally
validated simulations of a suspension system and showed
that the semi-active suspension has a significant positive
impact on brake performance. Simulation analysis of the
response of state variables of slip angle and yaw rate was
performed by Shi et al. [15] at various speeds for a step
steering angle input. Simulation results indicated that the
vehicle’s time-response curves of slip angle and yaw rate
can intuitively reflect the variations in vehicle handling
stability. Recently, Maier et al. [16] investigated the
braking dynamics of an experimentally validated multi-
body dynamic model design of a bicycle front suspension,
incorporating frame geometries and suspension concepts.

Suspensions with low spring stiffness and low damping
rate have large suspension travels, while high damping rate
results in small suspension travel and improves vehicle
handling. Most recently, multiple controlled generators
have been used for damping-tunable energy-harvesting in
the suspension system. By designing an energy harvesting
system and altering the number of generators, Xie et al. [17]
showed that the damping coefficient can be fine-tuned
according to suspension system requirements.

Generally, ride comfort and vehicle handling are
critically important for automotive engineers. For this
reason, engineers are constantly working to enhance ride
comfort and handling characteristics by improving and
optimizing the suspension system. Since the suspension
system parameters are interdependent, to optimize the
suspension system, all parameters must be checked in
conjunction with each other; hence, the problem should be
considered as a multi-purpose decision-making problem
[18]. Such a problem has been the subject of a plethora of
research. For example, to improve handling stability,
Zhang et al. performed [19] the multi-objective suspension
system optimization for an in-wheel-motor driven electric
vehicle. Using the Taguchi method, Zhang and Wang
Conducted a parametric study to optimize a half-vehicle
suspension system model [20]. Numerical computational
studies comprising the multi-objective optimization of a
full-vehicle suspension model and non-dominated sorting
genetic algorithm II (NSGA-II) has been established by
Fossati et al. [21]. Optimization based on neighborhood
cultivation GA and weighting combination method has
been designed by Su et al. [22] for a minivan.

Among the different methods to solve multi-objective
decision-making problems, the technique for order prefer-
ence by similarity to ideal solution (TOPSIS) is simple and
efficient [23]. Jiang andWang used TOPSIS to optimize the
suspension system of a truck [18] and also to optimize the
handling stability and ride comfort [24].

As mentioned above, suspension stiffness and damping
coefficient highly affect vehicle ride and handling proper-
ties and the study of their effects can be of great
significance. The purpose of this paper is to characterize
the proper spring stiffness coefficient and damping

2 S. Ebrahimi-Nejad et al.: Mechanics & Industry 21, 412 (2020)



coefficient for a specific sport vehicle to achieve the best
ride comfort, considering lowest expenses without funda-
mental changes in the suspension system with multi-
objective optimization. The current study is concerned
with the theoretical mathematical formulation of vibra-
tional analysis of a sports vehicle. As the vibrational
analysis of a discrete system with high degrees of freedom
requires considerable analytical and computational effort,
in such circumstances, numerical methods are used to
analyze and predict the behavior of the system. To this end,
a quarter-car model is taken into consideration and its
equations are derived and solved. Finally, numerical results
are obtained and compared in different conditions to
examine the impact of design parameters.

The remaining sections of our article proceed as follows.
Initially, we provide a brief description of the modeling and
methods procedure of the vibrational pitch and bounce
model of the car. Then, the modeling of all effective
parameters of the components including suspension damp-
ing and stiffness, sprung and unsprung masses, tire
damping coefficient, and step height are described in order
to be used in simulations. Next, displacement, velocity, and
acceleration in the shock absorber are solved to obtain and
discuss the effects of damping CS and stiffness KS in the
presented model. Finally, a multi-objective optimization is
performed with the approach of choosing the optimum
values for CS and KS and decreasing the maximum values
of the displacements and the accelerations of the sprung
and unsprung masses. These optimum values, obtained
according to the TOPSIS method, ensure significant
improvements in suspension response and handling
characteristics.

2 Modeling and methods

Mercedes AMG SLC-43, which is designed with indepen-
dent front and rear suspensions, is studied in this paper.
Apart from providing a high ride quality, the multilink
suspension system of the sports car should be designed close
to the ideal attributes for responsive handling, to provide
high lateral acceleration, and to reduce body roll tendency.
The front and rear suspensions are shown in Figure 1.

Stiffer components and firmer tuning of the springs and
shock absorbers combine to provide greater responsiveness,
stability, control, and better driver feedback. Table 1
presents the mechanical characteristics of the vehicle.

On a rough surface, an automobile may undergo pitch,
bounce, and roll motions. A 2-DOF vehicle model with
pitch and bounce motion, as presented in Figure 2, can
provide a preliminary suspension model. In this model, tire
elasticity and damping properties and those of the
suspension are collected into the combined equivalent
system of spring and damper for each of the front and rear
suspensions.

Table 2 lists the dimensions, inertia, damping ratio, and
spring stiffness values and weights of the vehicle.

However, as rolling motion is assumed to be negligible
and we would prefer to incorporate the stiffness, mass, and
rolling properties of the tire, individually in the vibrational
equations of motion, a quarter-car model is used instead.
For this purpose, a MATLAB code is generated to estimate
the spring stiffnesses and damping coefficients for the
quarter-car model. The quarter-car model is frequently
used in vehicle suspension analyses due to its simplicity,

Fig. 1. The suspension system of the studied vehicle.
Fig. 2. Two-DOF model of the car with bounce and pitch
motions.

Table 1. Characteristics of vehicle mechanical system.

System Type

Steering Speed-dependent, electro-hydraulic
Steering gear type Rack-and-pinion
Front wheel or axle location Independent Suspension
Rear wheel or axle location Independent Suspension
Front/Rear Springs Coil spring / Coil spring
Front/Rear shock absorber Double-tube gas pressure / single-tube gas pressure
Front/Rear stabilizer type Tubular Torsion bar / Tubular Torsion bar
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examined only vertical vibrations of the car body
(bouncing), but it can provide the main characteristics
of the full model which can be useful for preliminary design.
The dynamic model, shown in Figure 3, can serve as a basis
for analyzing the response of the full-vehicle model to road
bumps or steps. The model is presented considering that
the vehicle body is rigid and each suspension includes a
spring, a damper, the total sprung and unsprung weights
and tire elasticity, and damping.

Based on information of the vehicle and its suspension
system, presented in Table 3, additional characteristics CS

of the quarter-car model can be obtained.
The vehicle is considered to be moving at a speed of

50 km/hrand thepathof the road is a sinusoidal pathwithan
amplitude of 50mm and wavelength of l=5m. For the
model, moving on a rough surface, the sprung mass EOM
becomes:

ms€x1 þ ks x1 � x2ð Þ þ cs _x1 � _x2ð Þ ¼ 0: ð1Þ

The unsprung mass EOM is:

mu€x2 þ ktðx2 � wÞ þ ctð _x2 � _wÞ � ksðx1 � x2Þ
� csð _x1 � _x2Þ¼ 0: ð2Þ

Equations (1) and (2) are formulated in state space:

_X ¼ AX þBU

V ¼ CX þDU ð3Þ

where A, B, C, and D are state space, input, output, and
direct transmission matrices, respectively, and U is system
input. Let,
_x1 ¼ V 1; _x2 ¼ V 2;D ¼ x1 � x2ð Þ; _D ¼ V 1 � V 2ð Þ

Therefore, equations (1) and (2) can be written as:

_V 1 ¼ ½ks=M�D� ½Cs=M�ðV 1 � V 2Þ ð4Þ

_V 2 � ½Ct=M� _w ¼ ½ks=m�Dþ ½kt=m�w� ½kt=m�x2

þ½Cs=m�V 1 � ½ðCs þ CtÞ=m�V 2: ð5Þ

Moreover,

_T ¼ _V 2 � Ct=Mð Þ _w

T ¼ V2 � Ct=Mð Þw
V2 ¼ T þ Ct=Mð Þw: ð6Þ

Replacing equations (6) into (5), gives:

T ¼ ½ks=M�D� ½kt=M�x2 þ ½Cs=M�V 1 þ ½ðCs þ CtÞ=m�T

þ½�ðCsCtÞ=m
2 � C2

t=m
2 þ kt=M�w ð7Þ

Now,

_D ¼ V 1 � V 2ð Þ ¼ V 1 � T þ Ct=mð Þw½ �: ð8Þ

Replacing V2 from equations (6) into (4), results in:

_V 1 ¼ ½ks=M�D� ½Cs=M�V 1 þ ½Cs=M�T

þ½ðCsCtÞ=ðMmÞ�w ð9Þ

Based on equation (7), the state variables are D,X2,V1,
T. The phase space matrix becomes:

_x2

D

V 1

T

2

6

6

4

3

7

7

5

¼

0 0 0 1

0 0 1 �1

0 �ks=M �Cs=M Cs=M
�kt=m ks=m Cs=m � Cs þ Ctð Þ=m½ �

2

6

6

4

3

7

7

5

x2

D

V 1

T

2

6

6

4

3

7

7

5

þ

Ct=mð Þ
� Ct=mð Þ

CsCtð Þ= Mmð Þ½ �

�CsCt

m2
�
Ct

2

m2
þ

kt

m

2

6

6

6

6

4

3

7

7

7

7

5

:

Table 2. Dimensions and weights of the Mercedes-AMG
SLC-43.

Dimensions and weights Value

Total length, L 4143 mm
Total height, h 1303 mm
Front Track width, T 1565 mm
Vehicle width (including side mirrors) 2006 mm
Wheelbase, l 2431 mm
Distance of front axle from COG, l1 1.00 m
Distance of rear axle from COG, l2 1.43 m
Turning Circle 1052 mm
Curb weight 1580 kg
Gross vehicle weight, GVW 1890 kg
Moment of inertia about COG, J 2500 kgm2

Stiffness of front spring, K1 29350N/m
Stiffness of rear spring, K2 24730N/m
Front damping ratio, C1 3890N s/m
Rear damping ratio, C2 2915N s/m

Fig. 3. Quarter-car model of the vehicle suspension.
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The output matrix becomes:

x1

V 1

_V 1
x2

V 2

D

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

1 1 0 0

0 0 1 0

0 �ks=M �Cs=M Cs=M
1 0 0 0

0 0 0 1

0 1 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

x2

D

V 1

T

2

6

6

4

3

7

7

5

þ

0

0

_V 1

CsCtð Þ= Mmð Þ

Ct=m

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

Using the above equations, the time-histories of vehicle
unsprung and sprung mass velocities and displacement can
be studied. Moreover, the overshoot values of unsprung and
sprung mass velocities, unsprung mass displacement, and
suspension travel of thequarter-carmodel suspension,witha
step input of 0.05m, are investigated. It is worth noting that
it is regular to model both road steps and bumps, for
evaluating the performance of the suspension system.

3 Results and discussions

We used MATLAB software package to perform a
numerical solution to find the complex conjugate pair of
characteristic roots as �2.0373+5.3958i, �2.0373
� 5.3958i, �1.7500+4.9580i, �1.7500� 4.9580i. In the
complex roots, the negative real parts values indicate that
the oscillation will decay with time.

The two damped natural frequencies and mode shapes
for the 2-DOF quarter-car model are indicated as:

vd1 ¼ vn1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2
1

q

¼ 4:8903 rad=s

vd2 ¼¼ vn2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2
2

q

¼ 5:4506 rad=s:
ð10Þ

Hence:

�j1vn1 ¼ �1:7349 rad=s
�j2vn2 ¼ �2:0630 rad=s: ð11Þ

The mode shapes are calculated as:

A1

B1

¼
ðC2l2 � C1l1Þsþ k2l2 � k1l

ms2 þ C1 þ C2ð Þsþ k1 þ k2

� �

¼ �1:1468

A2

B2

¼
ðC2l2 � C1l1Þsþ k2l2 � k1l

ms2 þ C1 þ C2ð Þsþ k1 þ k2

� �

¼ 0:5507

ð12Þ

A1

B1

� �

¼
�1:1468

1

� �

A2

B2

� �

¼
0:5507

1

� �

ð13Þ

Next, we extract the natural frequencies and mode
shape, in addition to the stiffness matrix and mass-matrix
and the results are:

M ¼
1580 0

0 2500

� �

K ¼
4:9457 �1:0658
�1:0658 7:5367

� �

� 10
4

ð14Þ

The resulting natural frequencies and mode shapes
matrices are:

v ¼
5:4652 0

0 6:0273

� �

u ¼
0:0143 �0:0207
�0:0164 �0:0114

� �

ð15Þ

The natural frequencies are vn=5.4652 rad/s and
vn=6.0273 rad/s and the first mode is:

1

�1:147

� �

: ð16Þ

The second mode is:

1:816
1

� �

: ð17Þ

MATLABSimulink is used to verify the results obtained
above. The elements of themode shape vectors are set as the
initial condition for the integrators.Results indicate that the
bounce response occurs at a damped frequency of 5 rad/s,
which is in close agreement with our calculated damped
natural frequency of 4.8903 rad/s. The damped natural
frequency is also obtained for the second mode:

vd2 ¼ vn2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2
2

q

¼ 5:4506 rad=s: ð18Þ

AMATLAB code is used to obtain the system response
to road excitation, which will clearly provide the above-
mentioned transfer functions associated with this input. As
mentioned above, the inputs Y1 and Y2 for the simulations

Table 3. Design information on the suspension system.

Parameter Value

Sprung Mass, ms 395 Kg
Unsprung Mass, mu 38 Kg
Suspension Spring Stiffness, Ks 29300N/m
Suspension Damping Coefficient, CS 3000N.s/m
Tire Stiffness, kt 290000N/m
Tire Damping Coefficient, ct 3100N s/m
Road Step Height, w 50 mm
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are provided based on the assumed road surface amplitude
of 10mm and wavelength of 5m is the car speed which is
assumed to be 50 km/hr. The time period, cyclic frequency,
and phase delay due to Y2 are:

T ¼
l

V
¼

5

50=3:6
¼ 0:36s ð19Þ

v ¼
2p

T
¼ 17:453 rad=s ð20Þ

f ¼
l1 þ l2

l
2p ¼

2:431

5
2p ¼ 0:97p rad ð21Þ

Substituting v, f and motion amplitude in the above
equations result in:

y1 ¼ 0:05 sin17:453t
y2 ¼ 0:05 sinð17:453t� 0:97pÞ

ð22Þ

Now to determine the appropriate values of damper
coefficient and spring stiffness (KS and CS), we compare
various values of damper coefficient and spring stiffness in
order to figure out which one causes the suspension system
to perform better. As shown in Figure 4, we obtained our
results for the time histories of vehicle unsprung and sprung
mass velocities and displacements.

Results for the quarter-car suspension system for step
height of 0.05m (step input) indicates that the greater the
value of damping coefficient and spring stiffness, the
greater the unsprung and sprung mass velocities and the
unsprung mass displacement, which is not desirable for the
system; however, suspension travel decreases slightly and is
damped more rapidly, as seen in the output results.

The time histories of vehicle sprungmass acceleration is
shown in Figure 5. For instance, although the system has a
steady-state behavior after 1.5 s for all differentKS and CS,

Fig. 4. (a) Velocity of unsprung mass (m/s),. (b) Velocity of sprung mass (m/s),. (c) displacement of unsprung mass (m). (d)
suspension travel (m), for various combinations of Ks (N/m) and CS (N-s/m).

6 S. Ebrahimi-Nejad et al.: Mechanics & Industry 21, 412 (2020)



it has an overshoot in the time period of 0–0.75 s, and it is
clear that the greater the values of KS and CS the more
overshoot will appear in results which is not appropriate.

Finally, we specifically analyzed the overshoot values
for the quarter-car model suspension system for step input
by obtaining the maximum values of the time history
outputs of Figure 4. The resulting maximum unsprung and
sprung mass velocities, maximum unsprung mass displace-
ment and maximum suspension travel of the quarter-car
model suspension, with a step input of 0.05m, are displayed
in Figure 6. As shown in Figure 6a, the maximum unsprung
mass velocity, which indicates the impulse imparted to the
wheel, is not affected by the values of CS and KS and
therefore, the maximum value of unsprung mass velocity
remains constant. Figure 6b shows that increasing spring
stiffness KS will increase sprung mass velocity for different
CS values. On the other hand, increasing the value of CS

slightly reduces the maximum sprung mass velocity.
Figure 6c shows with increasing spring stiffness KS the

maximum displacement of the unsprung mass increases,
whereas, increasing values of CS slightly reduces the
maximum unsprung mass displacement. For the maximum
value of suspension travel, indicated in Figure 6d, it is seen
that with increasing both KS and CS we will have a small
suspension travel value.Although lowervalues ofCSprovide
better ride quality, very lowvalues ofCS arenot effective.On
the other hand, high values of CS and KS result in a stiffer
suspension and it is clear that the suspension will provide
better handling and agility. It is worth mentioning that the
suspension system should be designed with the best
combination of design variables and operation parameters
to provide optimum vibration performance.

4 Application of the TOPSIS method

In order to find the best value for KS and CS and having a
good ride from the vehicle, a multi-objective optimization

method has been developed with the help of the Technique
for Order of Preference by Similarity to Ideal Solution
(TOPSIS) multi-criteria decision-making technique.

Objectivefunction ¼ min

maximumun sprung mass displacement;
sprung mass displacement;
sprung mass acceleration

unsprung mass acceleration

8

>

>

<

>

>

:

9

>

>

=

>

>

;

subject to : 500 � Cs � 1000; 10000 � Ks � 200000f g

For as much as KS and CS are related to each other,
first, for CS, a constant value is assumed, and all values for
KS are investigated, then, a constant value for KS is
assumed and all values for CS are investigated. After that,
the values referring to maximum unsprung and sprung
mass displacements, and unsprung and sprung mass
accelerations during vehicle vibrations have been
extracted. The values obtained for CS being assigned a
constant value are shown in Table 4.

The values obtained for the state in whichKS assumes a
constant value, are shown in Table 5.

In order to obtain optimal values forKS andCSwith the
approach of minimizing the maximum values of unsprung
mass displacement, sprung mass displacement, sprung
mass acceleration, and unsprung mass acceleration, the
TOPSIS method is applied.

First, the decision matrix is made according to the
following relation:

D ¼

x11 x12 :: x1n

x21 x22 :: x2n

: : : :

xm1 xm2 :: xmn

2

6

6

4

3

7

7

5

ð23Þ

where xij is value for each criterion., the decision matrix
should be normalized. For normalization of values, rij is
formed by the vector method. Unlike the simple lineariza-
tion method, normalization is performed according to the
following:

rij ¼
xij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

i¼1
x2
ij

q : ð24Þ

The next step is the establishment of a normal
compatible matrix based on the weights of the criteria.
The weights are multiplied in the normalized matrix as
follows:

vij ¼ rij � wj ð25Þ

where wj is the weighting factor symmetric to the jth
criterion.

X

n

j¼1

wj ¼ 1 ð26Þ

Fig. 5. Sprung mass acceleration (m/s2), for various combina-
tions of Ks (N/m) and CS (N-s/m).
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There are many ways for weighing the criteria,
including Analytic Hierarchy Process (AHP), least-squares
method, logarithmic least squares method, approximate
methods, and Shannon entropy. In this optimization, the
Shannon entropy method is used to correctly measure the
criteria. The subsequent step is to calculate positive and
negative desired values based on the following relation-
ships:

Aþ ¼
max vij

i
j j∈Vb

� �

;
min vij

i
j j∈Vc

� �� �

¼ vþj j j ¼ 1; 2; . . . ;n
n o

ð27Þ

A� ¼
min vij

i
j j∈Vb

� �

;
max vij

i
j j∈Vc

� �� �

¼ v�j j j ¼ 1; 2; . . . ;n
n o

ð28Þ

– For positive criteria, the positive desired value is the
largest value of that criterion.

– For positive criteria, the negative desired value is the
smallest value of that criterion.

– For negative criteria, the positive desired value is the
smallest value of that criterion.

– For negative criteria, the negative desired value is the
largest value of that criterion.

Here,Vb is related to the positive indicators, whileVc is
related to the negative indicators.

In the next step, Euclidean distance from the positive
and negative desired values are calculated using the
following formula:

dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

vij � vþj

	 
2

v

u

u

t ð29Þ

Fig. 6. (a) Maximum velocity of unsprung mass (m/s), (b) maximum velocity of sprung mass (m/s), (c) maximum displacement of
unsprung mass (m), (d) maximum suspension travel (m), versus spring stiffness Ks (N/m) for various values of CS (N-s/m).
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Table 4. The impact of variations of spring stiffness Ks in suspension performance for a given CS = 1000 N-s/m.

CS Ks Maximum unsprung
mass displacement

Sprung mass
displacement

Sprung mass
acceleration

Unsprung mass
acceleration

1000 10 000 0.5530 �0.0519 0.2449 �0.0948
1000 20 000 0.0543 �0.0508 0.345 �0.1836
1000 30 000 0.0533 �0.0497 0.4253 �0.2591
1000 40 000 0.0541 �0.0488 0.4924 �0.3424
1000 50 000 0.0552 �0.0479 0.5500 �0.3809
1000 60 000 0.0562 �0.0470 0.6004 �0.4309
1000 70 000 0.0572 �0.0462 0.6452 �0.4751
1000 80 000 0.0581 �0.0455 0.6852 �0.5145
1000 90 000 0.0590 �0.0488 0.7213 �0.5497
1000 100 000 0.0599 �0.0441 0.7541 �0.5812
1000 110 000 0.0607 �0.0434 0.7841 �0.6096
1000 120 000 0.0615 �0.0428 0.8115 �0.6351
1000 130 000 0.0622 �0.0423 0.8368 �0.6582
1000 140 000 0.0629 �0.0417 0.8601 �0.6790
1000 150 000 0.0635 �0.0411 0.8817 �0.6980
1000 160 000 0.0642 �0.0406 0.9017 �0.7152
1000 170 000 0.0648 �0.0401 0.9203 �0.7308
1000 180 000 0.0653 �0.0397 0.9377 �0.7450
1000 190 000 0.0659 �0.0392 0.9539 �0.7580
1000 200 000 0.0664 �0.0388 0.9691 �0.7698

Table 5. The impact of variations of damping coefficient in suspension performance for a given Ks = 100 000N/m.

Ks CS Maximum unsprung
mass displacement

Sprung mass
displacement

Sprung mass
acceleration

Unsprung mass
acceleration

100 000 500 0.0607 �0.0479 0.7837 �0.6660
100 000 1000 0.0599 �0.0441 0.7541 �0.5812
100 000 1500 0.0592 �0.0409 0.7327 �0.5119
100 000 2000 0.0587 �0.0381 0.7188 �0.4548
100 000 2500 0.0583 �0.0357 0.7124 �0.4075
100 000 3000 0.058 �0.0336 0.7131 �0.3682
100 000 3500 0.0579 �0.0318 0.7198 �0.3353
100 000 4000 0.0578 �0.0302 0.7309 �0.3079
100 000 4500 0.0579 �0.0288 0.7447 �0.2851
100 000 5000 0.0580 �0.0275 0.7599 �0.2662
100 000 5500 0.0583 �0.0264 0.7755 �0.2509
100 000 6000 0.5860 �0.0254 0.7912 �0.2386
100 000 6500 0.0590 �0.0245 0.8066 �0.2291
100 000 7000 0.0595 �0.0236 0.8215 �0.2222
100 000 7500 0.0600 �0.0228 0.8359 �0.2175
100 000 8000 0.0604 �0.0221 0.8497 �0.2150
100 000 8500 0.0609 �0.0214 0.8629 �0.2143
100 000 9000 0.0613 �0.0208 0.8755 �0.2152
100 000 9500 0.0618 �0.0202 0.8876 �0.2175
100 000 10000 0.0622 �0.0197 0.8991 �0.2210
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d�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

vij � v�j

	 
2

v

u

u

t ð30Þ

The final step is calculating the relative proximity of the
desired solution. Here, the relative proximity of each
option, defined in terms of the closeness value Cl is
considered to be the desired solution using the following
formula:

Cl�i ¼
d�i

d�i þ dþi
ð31Þ

The closeness value Cl is between zero and one and as it
approaches unity, it is assumed to become closer to the
ideal answer.

Results of TOPSIS optimization with the goal of
minimizing the maximum unsprung mass displacement,
sprung mass displacement, sprung mass acceleration, and
unsprung mass acceleration and weighing these criteria by
Shannon Entropy are presented in this Section.

As shown in Table 6, Cl has been calculated and ranked
for each KS, using the Shannon entropy method, according
to the rankings, the results of which are also illustrated in
Figure 7, the optimum range of KS is between 130 000 and
170 000, and the most favorable is 150 000.

Also, Cl values have been calculated and ranked for
each CS, as shown in Table 7. As can be seen in Table 6 and
further depicted in Figure 8 with increasingCS, the optimal
mode moves farther away. Therefore, the optimal mode for
CS is 500.

As can be seen in Table 7 with increasing CS, the
optimal mode moves farther away. Therefore, the optimal
mode for CS is 500.

Based on the results of the TOPSIS optimization and
the numerical results presented in Tables 6 and 7, it can be
expressed that relatively large spring coefficients and low
damping coefficients lead to better isolation of the sprung
mass and unsprung mass from the vibrating source by
minimizing maximum unsprung mass displacement,
sprung mass displacement, sprung mass acceleration and
unsprung mass acceleration.

5 Conclusion

A vibrational model has been discussed for a sports car
suspension system. The output of themodel was elaborated
using MATLAB and Simulink in order to obtain
characteristic roots, the natural frequencies, mode shapes,
and mass and stiffness matrices. We also showed how our
suspension system works in variable road conditions; for
example, the accelerations and displacements of each shock
absorber were presented, when the car passes a step or
bumps on the road. A key finding of the paper is to compare

Table 6. The closeness values obtained for various spring
coefficients and ranking of the resulting performance.

Ks Cl Rank

10 000 0.4930 15
20 000 0.3929 20
30 000 0.4205 19
40 000 0.4556 18
50 000 0.4637 17
60 000 0.4896 16
70 000 0.5141 14
80 000 0.5361 13
90 000 0.5534 12
100 000 0.5656 11
110 000 0.5744 10
120 000 0.5796 7
130 000 0.5830 4
140 000 0.5842 2
150 000 0.5849 1
160 000 0.5836 3
170 000 0.5823 5
180 000 0.5812 6
190 000 0.5789 8
200 000 0.5771 9

Fig. 7. The closeness values obtained for various spring stiffness values, using the TOPSIS method.
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various values of damper coefficient and spring stiffness
(KS and CS), in order to figure out which one causes better
suspension system performance. In this regard, we
obtained and compared the time histories of vehicle
unsprung and sprung mass velocities, unsprung mass
displacement, and suspension travel for various values of
KS and CS in a quarter-car model. Time history results

indicate that the greater the value ofKS andCS, the greater
the unsprung and sprung mass velocities and the unsprung
mass displacement and the more overshoot will appear in
the sprung mass acceleration results, none of which are
desirable for the system; however, suspension travel
decreases slightly and is damped more rapidly.

The maximum unsprungmass velocity, which indicates
the impulse imparted to the wheel, is not affected by the
values of CS and KS and therefore, remains constant.
Increasing KS, will increase the maximum values of sprung
mass velocity and unsprung mass displacement for
different CS values and increasing the value of CS slightly
reduces the maximum values. For the maximum value of
suspension travel, it is seen that with increasing both KS

and CS we will have a smaller suspension travel value. It is
worth noting that although lower values of CS provide
better ride quality, very low values of CS are not effective.
On the other hand, high values of CS and KS result in a
stiffer suspension and it is clear that the suspension will
provide better handling and agility and the suspension
should be designed with the best combination of design
variables and operation parameters to provide optimum
vibration performance. It was shown that suspensions with
low spring stiffness and low damping rate have large
suspension travels, while high damping rate results in small
suspension travel and improves vehicle handling. However,
it was shown that higher spring stiffness increases the
maximum displacement of the unsprung mass and also
sprung mass velocity.

To increase ride comfort, a multi-objective optimization
with the approach of reducing maximum unsprung and
sprung mass displacements, and unsprung and sprung mass
accelerations, with the help of TOPSIS method has been
implemented.GiventhatKSandCSarerelatedtoeachother,
to find the optimal value for each one, the other is assigned a
constant value. Themulti-objective optimization procedure
resulted in a value of 500 for CS and 150 000 for KS.

Table 7. The closeness value obtained for various
damping coefficient and ranking of the performance.

CS Cl Rank

500 0.9945 1
1000 0.9871 2
1500 0.9778 3
2000 0.9699 4
2500 0.9635 5
3000 0.9581 6
3500 0.9537 7
4000 0.9500 8
4500 0.9469 9
5000 0.9444 10
5500 0.9422 11
6000 0.9405 12
6500 0.9391 13
7000 0.9380 14
7500 0.9372 15
8000 0.9367 16
8500 0.9363 18
9000 0.9362 19
9500 0.9362 19
10 000 0.9364 17

Fig. 8. The closeness values obtained for various damping coefficient values, using the TOPSIS method.
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