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Abstract 
 

Parametric optimization of electric discharge machining (EDM) process is a multi-objective optimization task. In general, no single 

combination of input parameters can provide the best cutting speed and the best surface finish simultaneously. Genetic algorithm has 

been proven as one of the most popular multi-objective optimization techniques for the parametric optimization of EDM process. In this 

work, controlled elitist non-dominated sorting genetic algorithm has been used to optimize the process. Experiments have been carried 

out on die-sinking EDM by taking Inconel 718 as work piece and copper as tool electrode. Artificial neural network (ANN) with back 

propagation algorithm has been used to model EDM process. ANN has been trained with the experimental data set. Controlled elitist 

non-dominated sorting genetic algorithm has been employed in the trained network and a set of pareto-optimal solutions is obtained.    
 

Keywords: Artificial neural networks; Electric discharge machining; Genetic algorithm; Material removal rate; Optimization; Pareto-optimal solutions; 
Surface roughness.  
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1. Introduction 

Inconel 718 is one of the most difficult-to-cut nickel based 

alloys. Formation of complex shapes (of this material) along 

with reasonable speed and surface finish is very difficult by 

traditional machining. Electric discharge machining (EDM) is 

one of the most suitable non-conventional material removal 

processes to shape this alloy. EDM is a thermo-electric proc-

ess in which material is removed from work piece by erosion 

effect of series of electric discharges (sparks) between tool and 

work piece immersed in a dielectric liquid. The EDM process 

has a very strong stochastic nature due to the complicated 

discharge mechanisms making it difficult to optimize the 

process [1]. The process performance can be improved by 

selecting the optimal combination of process parameters. Op-

timization of process parameters of EDM is a multi-objective 

optimization task as, in practice, the performance measures 

(Material Removal Rate and Surface Roughness) are conflict-

ing in nature. Though much work has been reported in litera-

ture to improve the process performance, proper selection of 

process parameters still remains a challenge. There are several 

multi-objective optimization techniques for the same like goal 

programming, simulated annealing (SA), grey relation, and 

genetic algorithms (GA).  

SA is an optimization process whose operation is strongly 

reminiscent of the physical annealing of crystalline com-

pounds such as metals and metallic alloys [2]. Tarng et al. [3] 

and Yang et al. [4] employed SA technique for optimizing the 

parameters of EDM. Grey relation analysis has been em-

ployed successfully as a multi-objective optimization tech-

nique in EDM by many authors [5-7].  

Literature review shows that to employ SA, two objectives 

are transformed into a single objective by simple weighted 

method in which weight values are user defined in the range 

of 0 and 1. A single combination of input parameters has gen-

erally been reported in literature by employing SA. In grey 

relation method also, the authors (in literature) have generally 

reported a single combination of input parameters as optimal 

combination corresponding to the grey relation grade of 

higher rank. Since, the performance measures are conflicting 

in nature in case of EDM, a single combination does not pro-

vide satisfactory solutions for the best performance measures 

simultaneously. In some of the classical techniques, multi-

objective optimization problem is directly converted to a sin-

gle-optimization problem which deviates from the exact solu-

tions. Some of the techniques terminate at local optima and 

global optimum solutions are not reached. As a result, the true 

optimal solutions are not obtained.   
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GA is very different from most of the traditional optimiza-

tion methods. GA finds applicability in the field of EDM. It 

works with a random population of solution points and a set of 

pareto-optimal solutions is obtained for the best performance 

measures.  

Su et al. [8] optimized the process parameters of EDM by 

employing GA. A neural network was trained to establish the 

relationships between process parameters and performance 

measures and then GA was adapted to the trained network to 

determine the optimal process parameters. Mandal et al. [9] 

used ANN for modeling EDM process and then employed 

non-dominating sorting genetic algorithm-II (NSGA-II) to 

find pareto-optimal solutions. Kuriakose and Shunmugan [10] 

employed NSGA to optimize the EDM process. There are 

many references where GA has been applied as a multi-

objective optimization technique in the field of EDM [11-14].  

There are several variants of GA like multi-objective ge-

netic algorithm (MOGA), vector evaluated genetic algorithm 

(VEGA), non-dominated sorted genetic algorithm and NSGA-

II. In this work, controlled elistist NSGA-II has been em-

ployed to obtain the optimal combination of process parame-

ters. To employ GA, fitness function value is required which, 

in EDM, is the objective function value. So, the need of some 

function or equation arises that relates the process parameters 

with the performance measures. Since, EDM is very complex 

process, it is difficult to establish a mathematical equation that 

serves the purpose. Hence, the mathematical modeling of 

EDM process is needed. Many empirical, statistical and re-

gression techniques have been used in literature [15-18]. 

These techniques are not found very successful because of 

non-linearity and noise factors involved in EDM process. 

Artificial neural network (ANN) forms an alternative ap-

proach to model the system efficiently as it is capable of map-

ping input variable and performance measures of EDM. Sev-

eral researchers have shown the applicability and superiority 

of ANN in machining process in literature [19-23]. Hence an 

ANN tool has been used to model EDM process. In this work, 

L 36 (2
1
3

6
) orthogonal array is taken for experiment design. 

Shape factor (SF), Pulse-on-time (Ton), Discharge current (Id), 

Duty cycle (ζ), Gap voltage (Vg), Flushing pressure (P) and 

Tool electrode lift time (TL) are taken as input parameters. 

Material removal rate (MRR) and Surface roughness (SR) are 

taken as performance measures. Experiments have been con-

ducted on die-sinking EDM by taking Inconel 718 as work 

piece and copper as tool electrode. ANN model of EDM proc-

ess is developed by training of ANN with the experimental 

data. Prediction ability of trained ANN model has been veri-

fied experimentally. Finally, controlled elitist NSGA-II has 

been employed on the trained network to obtain the pareto-

optimal set of solutions. Simulation has been performed in 

MATLab.  

 

2. Experimentation 

Experiments have been conducted on Elecktra Plus S-50 

ZNC oil die-sinking electric discharge machine in which the 

Z-axis is servo controlled and X and Y axis are manually con-

trolled. The working range of input parameters and their levels 

taken are shown in Table 1. L36 (2
1
×3

6
) orthogonal array, 

shown in Table 2, has been used which contains 36 experi-

mental runs at various combinations of seven input parameters. 

Since stable machining conditions are achieved after 10 min-

utes, a study of 15 minutes machining or 0.5 mm depth of cut 

(whichever is earlier) is taken in this work. MRR and SR have 

been used to valuate machining performance. MRR (mm
3
/min) 

is calculated by measuring the amount of material removed 

per unit machining time. The center line average (CLA) sur-

face roughness parameter Ra was used to quantify the surface 

roughness. The experimentally obtained values of the per-

formance measures for the different combinations of input 

parameters are shown in Table 2. 

 

3. Artificial neural network 

Artificial Neural Networks are simplified models of bio-

logical nervous system inspired by human brain. Kohonen 

[24] defined neural network as “massively parallel intercon-

nected networks of simple (usually adaptive) elements and 

their hierarchical organizations which are intended to interact 

with the objects of the real world in the same way as biologi-

cal nervous system do.” ANNs have the capability to capture 

knowledge domain from examples. ANNs are built by con-

necting processing units, called nodes or neurons. Each of the 

input ( ix ) is associated with some weight ( iw ) which takes a 

portion of the input to the node for processing. The node com-

bines the inputs ( ix iw ) and produces net input which in turn 

is transformed into output with the help of transfer func-

tion/activation function. ANNs are broadly classified into feed 

forward and recurrent networks. Feed forward networks are 

those in which computation flows from the input node(s) to 

the output node(s) in a sequence. The nodes of one layer are 

connected to all or a subset of the nodes of the previous layer 

nodes as well as the subsequent layer nodes. The layers in 

between the input and output layer are known as hidden layers. 

Table 1. Machining Parameters and their levels. 
 

Levels and values 
Input parameters Unit 

1 2 3 

Shape factor (SF) - Square Circular - 

Pulse-on-time 

(Ton) 
µs 50 100 150 

Discharge current 

(Id) 
A 3 8 12 

Duty cycle (ζ) % 0.7 0.75 0.83 

Gap voltage (Vg) V 50 70 90 

Flushing pressure 

(P) 
Kg/cm2 0.3 0.5 0.7 

Tool electrode lift 

time (TL) 
sec 1 2 3 

 

 



 P. S. Bharti et al. / Journal of Mechanical Science and Technology 26 (6) (2012) 1875~1883 1877 

 

  

In a recurrent network, signals may propagate from the output 

of any neuron to the input of any neuron. Primarily there are 

two types of learning methods- supervised and unsupervised 

learning. In supervised learning method, every input pattern 

that is used to train the network is associated with an output 

pattern (i.e. the target or desired pattern). A teacher is assumed 

to be present during the learning process to determine the error 

after comparing the network’s computed output and desired 

output. This error is used to change network parameters which 

results in improvement in performance. In unsupervised learn-

ing method, the system learns by its own by discovering and 

adapting to structural features in the input pattern in the ab-

sence of a teacher. Back propagation (BP) algorithm is one of 

the most studied and used algorithm for neural networks train-

ing. BP neural networks applies the error-back procedure for 

learning. The back-propagation procedure uses a gradient 

descent method, which adjusts the weight in its original and 

simplest form by an amount proportional to the partial deriva-

tive of the error function (E) with respect to the given weight. 

The formula used for the adjustment (at the t
th
 iteration of the 

training algorithm) is: 
 

( 1) ( ) .ij ij

ij

E
w t w t w

w
η μ∂+ = − + Δ
∂

                     (1)     

In which η and µ are user-selected, positive constants (be-

tween 0 and 1) called learning rate coefficient and momentum 

term respectively. Δ w is the weight change in earlier layer. 

The error-back propagation is typical supervised learning pro-

cedure. They are the most popular neural network models in 

EDM. A representative single hidden layer back propagation 

network is shown in Fig. 1. Literature review shows that ANN 

has been used, in the field of EDM, mainly for prediction of 

performance measures, on-line monitoring of the process and 

optimization of process parameters [25-28]. In this work, 

ANN model of the EDM process has been developed. Ex-

perimental data is used for training the ANN model. Different 

architectures were studied and 7-9-2 architecture was found as 

the best amongst studied architectures. Architecture 7-9-2 

Table 2. Design experiment of 36(21×36) array with different experimental parametric levels. 
 

Exp. No. SF Ton (μs) Id (A) ζ (%) Vg (V) P (kg/ cm2) TL (sec) MRR SR 

1.   1 1 1 1 1 1 1 4.52 4.25 

2.   1 2 2 2 2 2 2 25.18 7.3 

3.   1 3 3 3 3 3 3 36.63 9.46 

4.   1 1 1 1 1 2 2 4.76 6.145 

58.   1 2 2 2 2 3 3 30.61 7.9 

6.   1 3 3 3 3 1 1 49.03 8.55 

7.   1 1 1 2 3 1 2 2.71 5.05 

8.   1 2 2 3 1 2 3 29.91 9 

9.   1 3 3 1 2 3 1 35.27 11.07 

10.   1 1 1 3 2 1 3 1.91 5.36 

11.   1 2 2 1 3 2 1 11.25 7.03 

12.   1 3 3 2 1 3 2 34.49 10.73 

13.   1 1 2 3 1 3 2 27.89 8.05 

14.   1 2 3 1 2 1 3 55.51 9.8 

15.   1 3 1 2 3 2 1 2.73 4.92 

16.   1 1 2 3 2 1 1 17.21 7.16 

17.   1 2 3 1 3 2 2 30.86 9.63 

18.   1 3 1 2 1 3 3 7.45 5.2 

19.   2 1 2 1 3 3 3 17.09 6.33 

20.   2 2 3 2 1 1 1 47.45 10 

21.   2 3 1 3 2 2 2 4.94 4.29 

22.   2 1 2 2 3 3 1 12.04 5.76 

23.   2 2 3 3 1 1 2 42.08 7.25 

24.   2 3 1 1 2 2 3 4.36 4.67 

25.   2 1 3 2 1 2 3 39.59 7.09 

26.   2 2 1 3 2 3 1 4.00 6.11 

27.   2 3 2 1 3 1 2 14.54 8.31 

28.   2 1 3 2 2 2 1 16.72 6.88 

29.   2 2 1 3 3 3 2 3.38 5.82 

30.   2 3 2 1 1 1 3 31.83 7.28 

31.   2 1 3 3 3 2 3 34.94 6.9 

32.   2 2 1 1 1 3 1 4.96 4.49 

33.   2 3 2 2 2 1 2 22.61 7.03 

34.   2 1 3 1 2 3 2 38.64 7.19 

35.   2 2 1 2 3 1 3 2.60 6.03 

36.   2 3 2 3 1 2 1 25.66 7.32 
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denotes the number of nodes in input, hidden and output layer. 

Since the operating ranges of the parameters are different, scal-

ing or normalization helps in avoiding skewing the results by 

any particular variable significantly during training. Input data is 

scaled (or normalized) between -1 to 1, while the output data is 

scaled between 0 to 1 to impose the condition of positivity on 

the output (irrespective of the error of modeling). The values of 

learning rate coefficient and momentum term have been taken 

as 0.4 and 0.1 respectively. Several algorithms have been used 

and the best results were obtained using Bayesian regularization 

(BR) algorithm. Log-sigmoid activation function has been used 

for both the layers (hidden and the output layers). For testing the 

prediction ability of the model, prediction error in each output 

node has been calculated as follows: 

 
( )

(%) *100 .
actual value predicted value

prediction error
actual value

−=  

          (2) 

 

This prediction error is calculated as absolute percentage er-

ror (APE). Mean absolute percentage error (MAPE) is mean 

of APE i.e. MAPE = APE of all the nodes/number of nodes. 

MAPE, for all patterns, has been calculated and the network, 

for which MAPE is minimum (i.e., 2.74%), is selected for 

prediction. Prediction ability of the trained network has been 

verified experimentally. The average percentage difference 

between experimental and ANN’s predicted value is 4 and 

4.67 for MRR and SR respectively as reported in Table 3. 

 

4. Optimization 

The objective, in this work, is to find the optimal combina-

tion of input parameters that provides maximum cutting speed 

(i.e., maximum MRR) and maximum surface finish (i.e., mini-

mum SR). It is observed that when cutting speed increases, 

surface finish deteriorates. Because of the conflicting nature of 

performance measures, a single combination of input parame-

ters does not serve the purpose. As a result, a set of optimal 

solutions (i.e., pareto-optimal solutions) is obtained instead of 

a single optimal combination.  

 

4.1 Elitist NSGA  

This algorithm was proposed by Deb et al. [29]. In this, a 

random population P (called parent population) of size N is 

selected and the offspring population O is created using P . 

As a part of elite-preserving strategy P and O  are combined 

together to form T of size 2 .N  Then, non-dominated sort-

ing is applied to classify the entire population ( )T  into dif-

ferent fronts of non-dominated solutions. None of the solu-

tions in a front is absolutely better than the other solutions of 

the same. Each solution is assigned a rank that is equal to its 

non-domination level. In order to identify the non-domination 

level, each solution is compared with every other solution. If 

solutions 1 and 2 are compared and it is observed that solution 

1 is better than solution 2 in objective function 1 and solution 

1 is also better than solution 2 in objective function 2. Then 

solution 1 dominates solution 2 or solution 1 is non-dominated 

by solution 2. However, if the solution 1 is better than solution 

Table 3. Comparison of experimental results with the ANN model prediction. 
 

Exp. No. Machining parameters MRR (mm3/min) SR (micron) Relative error (%) 

 SF Ton (μs) 
Id 

(A) 
ζ (%) Vg (V) 

P  

(kg/ 

cm2)

TL (sec)
ANN  

predicted 

Experi- 

mental 

ANN  

predicted 

Experi- 

mental 

Error in 

MRR 

Error in

SR 

1. 1 50 3 0.7 50 0.3 2 5.76 6.02 4.6 4.51 4.51 1.95 

2. 1 50 8 0.7 70 0.3 2 33.51 34.55 5.9 5.8 3.12 1.69 

3. 1 50 12 0.7 90 0.5 3 40.77 44.17 7.92 8.45 8.34 6.94 

4. 1 100 3 0.75 90 0.5 3 6.06 5.93 5.25 5.1 2.06 2.85 

5. 1 100 8 0.7 70 0.5 3 33.8 31.35 7.9 7.05 7.24 10.75 

6. 2 100 12 0.83 50 0.5 2 45.82 46.8 8.24 8.91 2.13 8.13 

7. 2 150 3 0.7 50 0.7 2 3.67 3.64 4.96 4.71 0.8 5.04 

8. 2 150 8 0.75 70 0.3 3 27.9 27.06 6.72 6.55 3.0 2.52 

9. 2 150 12 0.75 90 0.3 3 42.96 44.35 9.82 10.3 3.23 4.88 

10. 2 150 8 0.83 90 0.7 1 16.47 15.52 6.87 6.73 5.6 2.03 

Average error (%) 4.00 4.67 

 

 

Fig. 1. A representative 1 hidden layer Back-Propagation network. 
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2 in objective function 1, but solution 1 is worse than solution 

2 in objective function 2, solution 1 is dominated by solution 2. 

The concept of dominance and approach used to obtain the 

pareto-optimal set is mathematically explained as below [30]: 
( )1

x is said to dominate the other solution ( )2
x , if both the 

conditions 1 and 2 are true: 

1. The solution ( )1
x is no worse than ( )2

x in all objectives, 

or ( )( ) ( )( )1 2

j jf x f x/ , for all 1,2,......, .j M=  i j  implies 

that solution i  is worse than solution j  on a particular ob-

jective. 

2. The solution ( )1
x is strictly better than ( )2

x  in at least 

one objective, or ( )( ) ( )( )1 2

j jf x f x  for at least one 

{ }1, 2,........j M∈ . i j  implies that solution i is better 

than solution j on a particular objective. 

 

To provide the diversity in the new population (of size N ), 

crowded tournament selection operator is used to fill N solu-

tions in the new population. Any of the following condition is 

true to fill the new population of size N: 

1. If solution i  has a better rank, that is, ir < jr  

2. If they have same rank but solution i has a better crowd-

ing distance than solution j , that is ir = jr  and id > jd , 

where d is the local crowding distance. 

Crowding distance is the distance between neighboring so-

lutions. The solution lying in the less crowded area, will have 

larger crowding distance and so is selected. The crowd sorting 

of the solution of each front is performed by using a crowding 

distance metric.  
 

4.2 Controlled elitist NSGA-II 

It may happen that in a generation, we have a population (to 

fill N ) where most of the members lie on the non-dominated 

front of rank one and this front is distant from true pareto-

optimal front. The elitism operators will select the members of 

the non-dominated front of rank one and members of the other 

fronts will be deleted. As a result, diversity is lost and the so-

lutions obtained are not true pareto-optimal solutions.  

To counteract this, Deb and Goel [31] proposed a controlled 

elitist NSGA-II which restricts the number of individuals in 

the currently best non-dominated front adaptively. In this, 

each solution is assigned rank in the same manner as it is ap-

plied in elitist NSGA-II (as discussed in the previous section). 

To provide diversity in the population in the new population 

of size N , the maximum number of individual allowed in the 
thi front is restricted and generally given by the following 

relation: 

 

11

1

i
i F

r
n N r

r

−−=
−

 (3) 

 

where r is reduction rate, a user-defined value, that is less 

than 1 and F  is the number of non-dominated fronts. The 

strategy employed here forcible allows the solutions from all 

non-dominated fronts to co-exist in the population. If a par-

ticular front is having more solutions than required (to fill N ), 

Eq. (3) is used to restrict the number of solutions taken from 

the concerned front. And if the number of solutions (in a par-

ticular front) is less than required (to fill N ), the difference is 

added in the maximum allowed solutions in the next front and 

so on. After filling N  solutions in the new population, the 

same process is repeated over a number of generations and the 

pareto-optimal solutions are obtained. Since the solutions 

from all non-dominated fronts co-exist in the population, the 

diversity is maintained and the solutions obtained are true 

optimal solutions. 

To solve optimization problem using GA, fitness value is 

required. Fitness values, in fact, are the objective function 

values. In this work, ANN model has been developed to estab-

lish the relation between input and output. The objective func-

tion values are obtained by the trained network. 

 

5. Results and discussions 

The present work aims to maximize MRR and minimize SR. 

Since the objectives are conflicting in nature, modification of 

first objective (MRR) is done to get it converted for minimiza-

tion. The objective functions are given below: 

 

1
1Objective

MRR
=   

2 .Objective SR=   

 

Initially, a population of 1000 size has been chosen. The 

values of the objective functions are obtained from trained 

network. Trained network provides the function which relates 

the input parameters with the performance measures. Pareto 

fraction is taken as 0.1. For better convergence, 500 genera-

tions are taken in this work. One hundred three non-dominated 

solutions (pareto-optimal solutions) are obtained at the end of 

500 generations. The pareto-optimal solutions (along with 

corresponding performance measure values) are reported in 

Table 4. Fig. 2 shows the formation of pareto-optimal front 

that consists the final set of solutions. The shape of the pareto 

optimal front is a consequence of the continuous nature of the 

optimization problem posed. The results reported in Table 4 

clearly show that in 103 pareto-optimal solutions, the whole 

given range of input parameters is reflected and no bias to-

wards higher side or lower side of the parameters is seen. This 

may be attributed to the controlled NSGA that forcible allows 

the solutions from all non-dominated fronts to co-exist in the 

population. Since the performance measures are conflicting in 

nature, surface quality decreases as MRR increases and the 

same behavior of performance measures is observed in the 

solutions obtained. Since none of the solutions in the pareto-

optimal set is absolutely better than any other, any one of them 

is an acceptable solution. The choice of one solution over the 

other depends on the requirement of the process engineer. If 

surface finish is more desirable (than SR), any solution from 1 

to 25 will be more suitable. But at the same time MRR will be
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Table 4. Pareto-optimal solutions. 
 

Solution No. SF Ton (μs) Id (A) ζ (%) Vg (V) P (kg/ cm2) TL (sec) MRR SR 

1.  1.79 117.42 3 0.79 55.19 0.31 1.88 4.67 4.33 

2.  1.80 118.47 3 0.79 55.09 0.32 1.92 4.67 4.33 

3.  1.75 117.66 3 0.79 55.12 0.32 1.87 4.83 4.33 

4.  1.77 117.70 3 0.79 55.19 0.33 1.94 4.94 4.33 

5.  1.74 118.75 3 0.78 55.32 0.35 1.92 5.15 4.33 

6.  1.74 118.06 3.14 0.78 54.76 0.34 1.91 5.27 4.33 

7.  1.74 119.76 3.50 0.79 55.44 0.34 1.96 5.81 4.34 

8.  1.72 121.80 3.31 0.78 57.12 0.36 2.17 6.09 4.35 

9.  1.71 120.94 3.41 0.78 54.97 0.35 2.15 6.39 4.35 

10.  1.73 117.52 3.60 0.77 54.67 0.34 2 6.61 4.35 

11.  1.71 122.90 3.80 0.78 55.50 0.34 2 6.82 4.36 

12.  1.73 119.65 3.69 0.77 56.12 0.34 2.18 6.95 4.36 

13.  1.68 120.24 3.80 0.77 55.37 0.33 2.21 7.37 4.36 

14.  1.74 117 3.82 0.77 56.00 0.34 2.29 7.56 4.37 

15.  1.76 120.93 4.18 0.78 55.90 0.36 2.14 8.01 4.38 

16.  1.72 118.91 4.08 0.77 55.84 0.35 2.21 8.23 4.38 

17.  1.73 124.29 4.23 0.77 56.18 0.35 2.20 8.72 4.38 

18.  1.74 114.57 4.79 0.79 55.86 0.34 2.11 9.48 4.41 

19.  1.74 114.73 4.83 0.79 55.59 0.34 2.07 9.66 4.41 

20.  1.69 116.36 4.75 0.77 55.09 0.32 2.13 10.23 4.41 

21.  1.65 120.38 4.82 0.76 54.82 0.35 2.44 13.12 4.46 

22.  1.73 116.31 5.40 0.77 56.15 0.34 2.20 13.86 4.48 

23.  1.75 115.39 5.75 0.77 55.59 0.35 2.34 17.40 4.55 

24.  1.73 117.31 5.94 0.77 56.62 0.37 2.67 19.18 4.60 

25.  1.77 112.42 6.26 0.77 56.16 0.35 2.86 21.28 4.64 

26.  1.62 138.69 8.36 0.82 85.71 0.35 1.75 35.19 4.94 

27.  1.59 138.24 8.49 0.83 86.22 0.36 1.66 36.84 5.01 

28.  1.65 139.00 9.13 0.83 86.31 0.38 1.81 40.01 5.15 

29.  1.64 139 9.47 0.83 86.88 0.35 1.66 42.01 5.20 

30.  1.57 139.11 9.87 0.83 85.93 0.34 1.64 43.77 5.35 

31.  1.63 139.17 10.20 0.83 86.89 0.33 1.65 44.69 5.38 

32.  1.54 139.53 10.23 0.83 86.72 0.34 1.68 45.06 5.47 

33.  1.63 139.40 10.28 0.83 85.42 0.36 1.71 45.11 5.52 

34.  1.55 139.49 10.57 0.83 86.66 0.34 1.64 46.20 5.61 

35.  1.63 139.42 10.79 0.83 86.63 0.36 1.77 46.38 5.63 

36.  1.53 139 10.70 0.82 86.31 0.34 1.72 46.48 5.69 

37.  1.57 138.83 10.96 0.82 86.84 0.34 1.68 47.10 5.74 

38.  1.50 139.81 10.91 0.83 86.78 0.33 1.64 47.18 5.81 

39.  1.60 137.25 11.75 0.83 86.89 0.33 2.02 48.05 5.89 

40.  1.50 139.95 11.29 0.83 86.90 0.33 1.60 48.13 5.98 

41.  1.60 136.25 11.81 0.83 86.96 0.38 1.83 48.43 6.04 

42.  1.56 140 11.65 0.83 86.78 0.33 1.66 48.71 6.09 

43.  1.52 138.69 11.72 0.82 86.67 0.33 1.75 48.76 6.15 

44.  1.53 139.92 11.74 0.83 86.92 0.34 1.70 48.88 6.17 

45.  1.49 140.17 11.67 0.83 86.88 0.33 1.59 48.92 6.23 

46.  1.49 140.17 11.67 0.83 86.88 0.33 1.58 48.93 6.24 

47.  1.49 140.16 11.76 0.83 86.92 0.32 1.58 49.13 6.30 

48.  1.49 140.16 11.76 0.83 86.92 0.32 1.58 49.15 6.31 

49.  1.86 108.01 10.36 0.77 59.95 0.41 3.00 49.20 6.38 

50.  1.76 109.50 10.01 0.76 59.27 0.39 2.95 49.26 6.43 

51.  1.86 108.82 10.41 0.77 59.45 0.40 2.98 49.51 6.46 

52.  1.77 110.23 10.01 0.77 58.35 0.40 2.89 49.54 6.55 

53.  1.77 110.24 10.19 0.77 58.69 0.39 2.94 49.70 6.56 

54.  1.74 110.61 10 0.76 58.95 0.40 2.94 49.84 6.61 

55.  1.75 111.23 10.23 0.77 58.63 0.40 2.93 49.86 6.67 

56.  1.77 110.10 10.16 0.76 58.10 0.40 2.91 50.06 6.70 

57.  1.74 110.57 10.21 0.76 58.45 0.39 2.91 50.22 6.75 

58.  1.79 109.87 10.64 0.76 57.96 0.39 2.98 50.75 6.89 

59.  1.76 110.87 10.40 0.76 58.13 0.39 2.91 50.75 6.96 

60.  1.81 108.06 11.08 0.77 59.16 0.39 2.95 51.10 7.04 
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Table 4 (continued) 
 

61.  1.81 109.48 11 0.77 59.06 0.40 2.97 51.30 7.09 

62.  1.75 111.17 10.69 0.76 58.32 0.39 2.95 51.30 7.16 

63.  1.75 109.55 10.78 0.76 58.10 0.39 2.94 51.37 7.20 

64.  1.76 110.11 10.91 0.77 58.24 0.39 2.94 51.49 7.24 

65.  1.76 109.68 10.96 0.76 58.80 0.39 2.96 51.60 7.27 

66.  1.74 112.09 10.88 0.77 58.99 0.40 2.97 51.67 7.34 

67.  1.80 110.68 11.18 0.76 57.30 0.39 2.95 51.89 7.46 

68.  1.76 109.80 11.20 0.76 58.67 0.40 2.97 52.04 7.51 

69.  1.78 110.36 11.18 0.76 58.09 0.39 2.94 52.09 7.59 

70.  1.74 111.41 11.24 0.76 58.00 0.39 2.97 52.25 7.68 

71.  1.77 110.89 11.26 0.76 57.04 0.39 2.96 52.34 7.76 

72.  1.74 111.84 11.24 0.76 57.99 0.39 2.92 52.37 7.80 

73.  1.76 111.20 11.48 0.76 58.41 0.39 2.95 52.49 7.82 

74.  1.73 111.90 11.26 0.76 58.01 0.39 2.90 52.49 7.90 

75.  1.73 112.35 11.31 0.76 58.80 0.39 2.90 52.54 7.94 

76.  1.75 110.38 11.71 0.76 58.49 0.39 2.97 52.70 7.98 

77.  1.75 110.20 11.85 0.77 58.83 0.39 2.97 52.77 8.02 

78.  1.74 110.50 11.50 0.76 57.40 0.39 2.95 52.77 8.08 

79.  1.72 111.45 11.51 0.76 58.16 0.38 2.90 52.80 8.14 

80.  1.75 111.31 11.74 0.76 58.13 0.39 2.93 52.95 8.22 

81.  1.75 110.45 11.66 0.75 57.70 0.39 2.96 52.97 8.24 

82.  1.72 111.82 11.49 0.75 57.50 0.39 2.95 52.97 8.31 

83.  1.73 110.36 11.85 0.76 57.53 0.40 2.95 53.18 8.42 

84.  1.70 110.72 11.82 0.75 58.26 0.39 2.98 53.29 8.53 

85.  1.70 110.81 11.80 0.75 57.51 0.39 2.97 53.33 8.58 

86.  1.71 111.62 11.89 0.76 56.68 0.39 2.94 53.35 8.63 

87.  1.72 111.87 11.85 0.75 57.90 0.39 2.89 53.36 8.67 

88.  1.68 110.26 11.91 0.75 57.28 0.39 2.97 53.46 8.73 

89.  1.67 110.95 11.86 0.75 57.83 0.40 2.92 53.48 8.79 

90.  1.71 111.55 11.89 0.75 56.64 0.38 2.93 53.49 8.82 

91.  1.72 111.84 11.87 0.74 56.60 0.39 2.93 53.49 8.88 

92.  1.66 111.37 11.90 0.75 57 0.39 2.91 53.60 8.95 

93.  1.67 111.48 11.95 0.74 56.72 0.40 2.95 53.66 9.02 

94.  1.64 111.35 11.91 0.75 56.26 0.39 2.86 53.68 9.10 

95.  1.66 111.32 11.94 0.74 53.94 0.37 2.91 53.74 9.16 

96.  1.58 111.98 11.97 0.74 56.15 0.38 2.89 53.87 9.33 

97.  1.62 111 11.94 0.74 54.53 0.38 2.82 53.87 9.42 

98.  1.61 111.68 11.96 0.74 54.16 0.38 2.83 53.91 9.44 

99.  1.58 113.29 11.94 0.74 54.10 0.38 2.82 53.94 9.54 

100.  1.56 111.98 11.98 0.73 55.33 0.38 2.79 53.96 9.57 

101.  1.55 113.04 11.98 0.73 52.70 0.36 2.76 54.06 9.70 

102.  1.55 113.04 11.99 0.72 52.59 0.37 2.75 54 9.76 

103.  1.52 112.97 11.99 0.72 52.53 0.36 2.74 54 9.77 

 

compromised because of conflicting nature of MRR and SR. 

If MRR is more desirable (than MRR), any solution from 56 

to 103 will be more suitable but surface finish will be com-

promised at the same time. Solutions 26 to 55 may be used 

when both cutting speed and surface quality are given more or 

less equal weightage. However, this explanation is just an 

approximation and the choice of any solution will actually 

depend on the working requirement.  

 

6. Conclusions 

This work employs a new variant of GA i.e., controlled elit-

ist NSGA to optimize the process parameters of EDM. A 

pareto-optimal set of 103 solutions has been obtained and   
 

Fig. 2. Pareto-optimal front. 
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reported by employing controlled elitist NSGA. The solutions 

obtained are true representation of the given range of the input 

parameters and are not biased. This asserts the fact that con-

trolled elitist NSGA controls elitism and forcibly allows the 

solutions from each non-dominating front to co-exist in the 

population. This leads to true optimal solutions. Fitness value 

(i.e., objective function in case of EDM) has been obtained by 

developing the neural network model of EDM process. For 

this, a large number of experiments were conducted on die-

sinking EDM with a wide range of input parameters. The per-

formance measures were measured for each combination of 

input parameters. A feed forward back-propagation neural 

network was used to model the EDM process. Experimental 

data was used to train neural network. Various ANN architec-

tures were studied and 7-9-2 architecture was found as the best 

amongst studied architectures. The corresponding MAPE was 

as low as 2.74. The prediction ability of the trained network 

has been verified experimentally. The average percentage 

difference between experimental and ANN’s predicted value 

is 4 and 4.67 for MRR and SR respectively.  
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