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ABSTRACT

A tolerancing method highlighting trades-off against key design variables of me-

chanical systems is proposed and applied to herringbone-grooved gas journal

bearings. Gas bearings typically suffer from a subsynchronous instability de-

manding a very tight tolerance on the bearing clearance and the groove depth.

Classical optimization techniques look for the most stable design, which does

not necessarily lead to most robust design against manufacturing deviations. The

proposed method uses a non-dimensional multidimensional look-up table of sta-

bility score (critical mass), covering a large design space of gas bearings. It then

dimensionalizes the table for a specific rotor-bearing system, highlighting re-

gions of the hyperspace where the system is stable. The hyperspace is sliced into

2-D maps and a Monte-Carlo method creates windows within the stable domain

along the two most critical design variables regarding manufacturing: the bear-
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ing clearance and the groove depth. Width and length of the windows represent

the manufacturing tolerance allowed on the two parameters to remain stable. A

Pareto front of optimum windows in the entire hyperspace is then compiled. It

displays the trade-off between the tolerance against deviation in clearance and

groove depth, allowing the designer to select a nominal geometry tailored to the

available manufacturing methods. A test rotor is analyzed with this method and

the effects of pressure, speed, viscosity, radius, mass and centrifugal growth on

manufacturing tolerances are investigated, highlighting that the radius and the

viscosity have the greatest impact on the robustness.
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INTRODUCTION

Recent years have seen a strong development of high-speed turbomachines sup-

ported on gas bearings, for example for heat pumping [1, 2] or fuel cell air sup-

plies or recirculation devices [3]. Among the gas bearing technologies accom-

panying this development, Herringbone Grooved Journal Bearings (HGJB) have
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the advantage of being reliably modelled and repeatable regarding manufactur-

ing, characteristics still missing for compliant foil gas bearings [4]. However, the

manufacturing tolerances necessary to achieve stable operation on rigid bearings

represent a serious economic bottleneck limiting the large-scale marketability of

HGJB-supported machines. Although several authors have investigated the sen-

sitivity of stability in gas bearings to manufacturing errors [5, 6, 7], the literature

lacks systematic design strategies to maximize the stability robustness.

Nature of the issue

The optimization and integrated design of turbomachinery supported on HGJB is

typically adopting a mono or multi-objective strategy comprising the maximiza-

tion of the gas bearing stability, either in terms of critical mass [8], or logarith-

mic decrement [2]. Following the development of the Narrow-Groove Theory

[9], HGJBs were first optimized to maximize the load capacity [9, 10]. Later, the

optimization of HGJB was oriented toward a maximization of the stability based

on the critical mass criterion [11, 8]. More recent years have seen the emergence

of multi-objective, integrated optimal design of entire rotor-HGJB systems [12],

also including the spiral groove thrust bearing in the optimization. Typical com-

peting objectives are the minimization of losses and the maximization of a sta-
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bility criterion. The underlying assumption is that a high nominal stability of

the HGJB supported rotor will also allow a large deviation of the bearing pa-

rameters from their design point, while keeping the system dynamically stable.

However, achieving an accurate bearing clearance through lapping or grinding

is a challenging and expensive task. The manufacturing of the grooves through

laser or chemical etching, grinding or even additive manufacturing [13], gener-

ally yields accurate groove width, length and angle. The groove depth, however,

usually exhibits a large relative uncertainty [14, 15]. Since manufacturing devi-

ation of the bearing clearance and groove depth can easily achieve ±15%, the

effect of this wide dimensional range can have a significant impact on stability

and load capacity. As a consequence, rather than simply maximizing the stabil-

ity, the maximization of tolerances, might lead to a more manufacturing-oriented

design procedure for HGJB, thus improving their cost effectiveness. Meanwhile,

design tools and concepts such as multi-objective optimizations and Pareto fronts

have already proven their suitability in the tolerancing of mechanical systems

[16, 17] and might be of interest for the tolerancing of aerodynamic bearings.
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Goals and objectives

The present work aims to 1) propose a multi-objective optimization procedure

for maximizing the range of selected design parameters while minimizing their

effect on selected performance metrics, 2) apply the methodology to the design

of a gas bearing supported rotor and 3) use the results to devise design guidelines

for the maximization of the manufacturing tolerances for HGJB.

Scope of the Paper

The proposed optimization procedure for improving the design robustness with

regards to deviation is based on the establishment of a non-dimensional perfor-

mance matrix that is computed only once and that serves as a look-up table for

all similar design problems. For each particular design case, the non-dimensional

performance matrix is transformed into the dimensional space according to the

specified design problem. Hence, this methodology can be used for any design

problem that can be expressed with non-dimensional numbers such as turbo-

machinery, gas lubricated bearings or heat exchangers among many. In this pa-

per, the authors suggest to look at the design of herringbone grooved journal

bearings. The HGJB model based on the Narrow Groove Theory under the as-

sumption of concentric position is used to build a dimensionless stability look-
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up table covering a large domain of bearing geometries. For a particular design

case, this table is then dimensionalized for a specific rotor-bearing system and

the minimum critical mass criterion of Fleming and Harmock [8] is employed

to determine the whirl stability. The resulting matrix is sliced along each of its

dimensions and a Monte-Carlo method generates a Pareto front of manufacturing

tolerances in clearance and groove depth at each slice. Finally, the several slice

fronts are combined in a global Pareto front representing the maximum achiev-

able manufacturing tolerances. The method is applied on a case rotor and the

sensitivity of the final Pareto front on rotor and ambient parameters is analyzed.

Based on the results, general design guidelines are devised.

THEORY

The strategy to perform an optimization maximizing the manufacturing tol-

erances on design variables of HGJB consist in computing a stability criteria

within a large non-dimensional design space, where each dimension of this space

is a key variable of the gas bearing. Typically, the geometry of a classical HGJB

can be described by 6 non-dimensional variables: the groove aspect ratio α , the

groove angle β , the relative land length γ , the relative groove depth δ̄ , the bear-

ing length-diameter ratio L/D and the compressiblity number Λ. The 6-D space
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is discretized and and the non-dimensional stability is computed for each node

using the critical mass criteria. This multi-dimensional matrix is the base that

serves as a look-up table to investigate the performance of any given rotor sup-

ported on HGJB. To study a particular rotor-bearing system undergoing an accel-

eration from rest to full speed, the stability is evaluated at discrete speeds in this

range and the minimum stability achieved along this path is retained. This step

requires the dimensionalization of the hyperspace previously computed, using

characteristics of the rotor (radius, mass, clearance, groove depth), the ambient

conditions (pressure, viscosity) and the operating conditions (angular velocity).

This transformation into the dimensional space allows to introduce clearance

distortion effects (thermal and centrifugal) and the absolute manufacturing devi-

ations. For each of the n speed steps along the acceleration path, a dimensional

hyperspace is created from the generic non-dimensional one (Figure .1). The

n hyperspaces are combined to retain the minimum critical mass at each node,

leading to one single rotor-specific hyperspace used to express the minimum crit-

ical mass. Two of its design dimensions are kept dimensional: the bearing ridge

clearance h0 and the groove depth δ , since these are the critical variables for the

manufacturing process. The 4 other dimensions are still non-dimensional: α ,β ,γ

and L/D.
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The next step consists in the slicing the specific dimensional hyperspace to ex-

tract planes along the bearing clearance and the groove depth. On each slice

(constant α , β , γ and L/D), a Monte Carlo method is used to generate a large

number of rectangles aligned on the axis of nominal clearance and groove depth,

whose geometrical center is in the stable domain. Each rectangle is defined by 4

parameters: the position of its center along the clearance and groove depth (h0,⇤

and δ⇤ respectively) and its half length along each axis (∆h0 and ∆δ ). Each rect-

angle undergoes a verification to ensure it satisfies the performance criterion

(mrotor < mc,min), the outliers being discarded. The validation algorithm checks

12 points on a grid centred on the rectangle and 8 points randomly scattered in

the rectangle (Figure .2). Valid rectangles are represented in a 2D space defined

by their length along the two directions, which represents the viable sets of man-

ufacturing tolerances to obtain a stable operation of the specific rotor-bearing

system:

h0 = h0,⇤±∆h0 (1)

δ = δ⇤±∆δ (2)

The collection of all these tolerance windows allows to identify a Pareto front of

optimum solutions in terms of maximal dimensional deviation and its constitu-

tive points are stored. This procedure, depicted in Figure .3, is repeated for each
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slice of the discrete hypervolume. Finally, all the particular fronts are combined

to obtain the global Pareto front for the particular system, as illustrated in Figure

.4.

The global front represents the feasible manufacturing tolerances regarding the

nominal clearance and the groove depth for a particular rotor, while ensuring

stable operation (i.e. satisfaction of a minimal performance metric). Depending

on the accuracy of the considered manufacturing techniques, designers can then

select a solution along the Pareto front suiting best their needs and possibilities,

depending on the actual context.

Bearing model

The HGJB can be efficiently modelled by the Narrow Groove Theory introduced

by Vohr and Pan, which assumes an infinite number of grooves along the bear-

ing cricumferential direction. Lund’s perturbation method [11] can be applied

around the equilibrium position to predict the frequency-dependent impedances

and then determine the critical mass for the whirl stability. The NGT is applied

here assuming the following points:

• The bearing is operated at a concentric positions

• The lubricant is an ideal gas in laminar regime

9



• The fluid film is isothermal and isoviscous

• Ambient conditions are met at the axial bearing boundaries (z̄ =±L/D)

• No axial mass flow at z̄ = 0 (bearing symmetry)

The modified Reynolds equation obtained from the NGT is fully developed in

[12]. The final non-dimensional expression is repeated in Eq. 3 in cylindrical

coordinates, with the coefficients explicited in the Appendix.

∂θ [P̄( f1∂θ P̄+ f2∂z̄P̄)]+∂z̄ [P̄( f2∂θ P̄+ f3∂z̄P̄)]

+cs (sinψ∂θ ( f4P̄)� cosψ∂z̄( f4P̄))

�Λ∂θ ( f5P̄)�σ∂t̄( f5P̄) = 0

(3)

The general nomenclature of the HGJB is summarized in Figure .5.

Lund’s method is applied and the critical mass is obtained, following the proce-

dure described in [18]. The critical mass defines the theoretical mass a bearing

can support at a given compressibility number before being unstable. It is non-

dimensionalized as follows:

mcrit =
mcritPah5

0

2LR5µ2
(4)

The critical mass of HGJB is not necessarily decreasing with the compressibility

number. Therefore, the minimum value of the critical mass between rest and

maximum compressibility number has to be evaluated.
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The prediction of the minimum critical mass is tested with the numerical data of

Fleming and Hamrock [8] who optimized the geometry of HGJB to maximize

this metric. The results, showed in Figure .6 for a bearing with L/D = 1 and the

grooved member rotating, exhibit a maximum relative deviation of 1.4%.

Experimental validation

The concept of NGT-predicted critical mass has been used by the authors for the

design of numerous prototypes of high speed HGJB-supported rotors operating

at different compressibility numbers. The parameters of the bearings are reported

in Table .1, with the ratio between predicted minimum critical mass and actual

rotor mass (Mr = m̄c,min/m̄rotor) reported in Figure .7 against the maximum com-

pressibility number. All the reported systems achieved stable operation up to

nominal speed, which supports the reliability of the model to practically predict

the stability of HGJB-rotor systems.

RESULTS AND DISCUSSION

Computation of the non-dimensional design space

The computation of the universal non-dimensional 6D stability matrix is compu-

tationally expensive, since it can easily exceed 1010 evaluation points to obtain
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a sufficiently tight grid. In order to reduce this amount, the present analysis ex-

cludes the parameters γ and L/D, which are both set to 1 to maximize the stabil-

ity of a bearing with the grooved member rotating [8]. The matrix is constituted

of 3.2 ·107 elements in the following ranges of parameters:

Λ 2 [0,200] 450 steps (5)

α 2 [0.4,0.6] 10 steps (6)

β 2 [10�,80�] 70 steps (7)

δ̄ 2 [0,8] 100 steps (8)

Case study of the gas bearing supported rotor

A case rotor is defined for the dimensionalization of the pre-computed 4-D sta-

bility matrix and the determination of the optimal manufacturing tolerances. The

rotor is taken as symmetric in order to have half the mass supported by each of

the two journal bearings. Its main characteristics are listed in Table .2.

In a first approach, the centrifugal growth of the rotor is neglected. The critical

mass is evaluated for 10 speeds between standstill and the maximum regime, in
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the following range of parameters:

h0 2 [4µm,13µm] (9)

δ 2 [2µm,28µm] (10)

α 2 [0.4,0.6] (11)

β 2 [10�,80�] (12)

The lower bound of the clearance was chosen as a limit beyond which rarefied

gas effects should have been considered. A groove depth of 0 µm was not in-

vestigated, since it corresponds to a plain bearing, which is unstable at concen-

tric position. In each slice of the final stability matrix, 3 · 105 random tolerance

windows are generated, whose centers are located in the stable domain of the

slice, if any. An example of the stability limit for three values of groove angle

is shown in the groove depth-clearance domain in Figure .8, for α = 0.6. The

arrows along the curves indicate the orientation towards the stable domain. It is

interesting to note that for angles below 25 the stable region is fully contained

between the corresponding contour. However, for an angle of 28 the topology

of the feasible region changes. The stable region is a more complex one since

it is delimited by two concentric contours, yielding an unstable region centered

around the considered range of clearance and groove depth. The advantage of
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the implemented methodology is that it can easily handle such changes in topol-

ogy of the mathematical response surface.

Nominal case

For the nominal rotor, the tolerancing algorithm outputs the Pareto curve shown

in Figure .9. The Pareto curve indicates clearly that the two tolerances are com-

peting: they can not be maximized both simultaneously. The maximum tolerance

on the groove depth is roughly 5 times larger than the tolerance on the bearing

clearance, indicating a lower sensitivity of the stability on this parameter. The

extremities of the front are not particularly interesting from a manufacturing

point of view, since a small concession on the maximized variable allows a large

gain on the other. In this particular case, if one targets a large clearance toler-

ance, a reduction of 0.25 µm on ∆h0 from its maximum value, allows to increase

the tolerance of delta-groove depth from nearly 0 to 4.5 µm on ∆δ .

The parameters α and β of the points in the Pareto front are shown in Figure .10.

A rising trend for β is visible as the tolerance on the clearance increases, rang-

ing from 22� to 27�. No specific trend is visible for α , as optimal solutions are

found over the entire range of this parameter. This suggests that although impor-

tant when considering the maximum stability point, α is not as significant when
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considering the stability tolerance. The nominal clearance and groove depth val-

ues corresponding to the Pareto front are shown in Figure .11. The trend is rising

on both values as the tolerance on the clearance increases. Past a value for ∆h0

of 0.5 µm, the trend for h0,⇤ follow a linear trend roughly expressed as follows:

h0,⇤ = ∆h0 + 4µm, meaning that the optimal tolerancing window is bounded

by the lower limit for the bearing clearance set for this particular study. Inter-

estingly, for ∆h0 < 0.5µm, this limit is not bounding the rectangles in the h0

direction.

Comparison with stability maximization

For comparison purpose, the results of the optimization of the bearing parame-

ters for the maximization of the stability without considering the effect of toler-

ancing is performed. In this case, the bearing nominal clearance is varied from 4

to 10 µm and the set of α , β and δ maximizing the minimum critical mass along

the speed range is found in the dimensional look-up table. The results are shown

in Figure .12. The parameters clearly deviate from the one shown in Figures .10

and .11. At equal bearing clearance, the groove angle tend to be higher and the

grooves deeper when maximizing the tolerance windows and not the stability.

This highlights the fact that a pure optimization for the maximization of the crit-
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ical mass does not yield the same bearing parameters as an optimization max-

imizing the tolerances along h0 and δ under the constraint of stable operation,

therefore justifying a dedicated optimization procedure.

Sensitivity analysis

Starting from the studied rotor, the influence of the dimensionalization parame-

ters on the manufacturing tolerances are studied. These parameters are the am-

bient pressure and viscosity, the rotor radius, mass and speed. Each parameter

is varied of ±20% and the resulting global Pareto fronts are computed. Results

are visible in Figure .13 to .17. The variations on the maximum achievable tol-

erances on the bearing clearance and groove depth are summarized in Figures

.18 and .19 respectively. A variation on the radius has the largest effect on the

tolerance windows with an relative variation on the maximum tolerances more

than twice the radius relative variation. For the other parameters have an influ-

ence smaller than their own variation. For the specific rotor studied here, the

maximum rotor speed exhibits a negligible effect on the tolerances, meaning that

the stability bottleneck is not located at the maximum speed, but at a lower rotor

speed. Considering that the presented strategy is based on the minimum critical

speed encountered from rest to maximum speed, increasing the target speed can
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either have a negative effect or no effect at all, but cannot improve the manufac-

turing tolerances.

In relative proportions, the tolerance on the bearing clearance is systematically

more sensitive to parametric variations than the groove depth tolerance, suggest-

ing that the designers should wisely select the rotor parameters if the goal is to

ensure a possibly large tolerance on the bearing clearance. As design guidelines,

the results indicate that lighter rotors with a larger diameter at bearing locations,

operating at lower ambient pressures and higher temperatures (associated with

higher gas viscosities) allow to achieve a broader manufacturing tolerance.

Effect of centrifugal growth

Typical high-speed rotors undergo a centrifugal growth leading to a significant

reduction of the bearing clearance. The centrifugal growth is proportional to Ω
2,

R3 and to ρ/E. The effect of the centrifugal growth is investigated here by set-

ting the absolute radial growth of the rotor at maximum speed and to scale it for

the different speeds from rest to the target rotor speed as follows [1]:

∆hgrowth = ∆hgrowth,maxΩ
2/Ω

2
max (13)

which is used to compute the actual clearance:

hr = h0 �∆hgrowth (14)
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The maximum expansion is set from 0 to 3 µm with a 1 µm interval. Results

in form of Pareto fronts are represented in Figure .20. Centrifugal growth has a

slight positive effect of the maximum clearance tolerance. At a radial expansion

of 3 µm, the maximum tolerance field is 10.0% higher than the nominal case

without centrifugal growth. Interestingly, the maximum groove depth tolerance

remains unaffected. The centrifugal growth appears to have a stabilizing effect

by reducing the effective clearance. However, as the stability bottleneck happens

at a lower speed than the target speed and considering the quadratic dependency

of the expansion with the angular velocity, the overall effect is modest.

CONCLUSION

A generalized method to perform a multi-objective optimization of a mechanical

system for maximizing the manufacturing tolerances was presented. A computationally-

intensive dimensionless look-up table of a feasibility criteria, covering all the

design space is computed only once. This matrix is then converted into a dimen-

sional, system-specific matrix at a very low computational cost. From this ma-

trix, the Pareto front of competing manufacturing tolerances is found, allowing

the designers to select the appropriate trade-off depending on the available re-

sources. This data-driven methodology to identify the robustness limits with re-
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gards to dimensional deviation can be applied to any design problem that can be

represented in a non-dimensional form. In this paper the method was applied to

the problem of rotors supported on herringbone grooved journal bearings, where

the critical mass is the feasibility criteria, and the clearance and groove depth the

design parameter whose tolerance has to be maximized. A case rotor is investi-

gated, and the influence of multiple rotor parameters on the manufacturing toler-

ances was analyzed. The conclusive remarks for this particular design problem

are:

• The determination of the manufacturing tolerances on the clearance is

competing with the tolerance on the groove depth

• The groove depth tolerance field is significantly larger than the tolerance

range on the bearing clearance

• The classical maximization of critical mass does not yield the bearing pa-

rameters corresponding to an optimal manufacturing tolerances.

• Low ambient pressures, high gas viscosities, large rotor diameters and low

rotor masses allow a larger manufacturing tolerance of the HGJB in both

groove depth and bearing clearance

• The centrifugal growth of the rotor has a slight positive influence on the
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manufacturing tolerance of the bearing clearance but not on the groove

depth

The presented method allows to progress toward a cost-oriented design of high-

speed gas bearing supported rotors, improving the marketability of such ma-

chines.
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Nomenclature

Roman symbols

a Groove length

b Ridge length

cs NGT coefficient

D Diameter

f NGT coefficient

g NGT coefficient

h Clearance

h0 Nominal clearance

hg Groove clearance

hr Ridge clearance

L Bearing axial length

M,m Rotor mass

N Rotor speed

P Pressure

R Radius

z Axial coordinate

Greek symbols
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α Groove aspect ratio a/(a+b)

β Groove angle

γ Land over length ratio (1-Lland/L)

∆h0 Tolerance on the nominal clearance

∆δ Tolerance on the groove depth

δ Groove depth

δ̄ Relative groove depth δ/h0

θ Circumferential coordinate

Λ Compressibility number

µ Dynamic viscosity

σ Squeeze number

Ω Angular velocity

Superscripts

� Non-dimensional

Subscripts

a Ambient condition

crit Critical

g Groove

growth Cetrifugal growth
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min Minimum

nom Nominal

r Ridge, ratio

rotor Rotor

⇤ Nominal

Acronyms

HGJB Herringbone grooved journal bearing
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Appendix

The terms composing equation 3 are developed here.
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h̄r =
hr

h0

(.1)

h̄g =
hg

h0

(.2)

g1 =h̄3
gh̄3

r
(.3)

g2 =(h̄3
g � h̄3

r )
2α(1�α) (.4)

g3 =(1�α)h̄3
g +α h̄3

r
(.5)

cs =�
6µΩR2

pah2
0

α(1�α)δ̄ sinψ (.6)

f1 =
g1 +g2 sin2 ψ

g3

(.7)

f2 =
g2 sin β̂ cosψ

g3

(.8)

f3 =
g1 +g2 cos2 ψ

g3

(.9)

f4 =
h̄3

g � h̄3
r

g3

(.10)

f5 =α h̄g +(1�α)h̄r
(.11)

Λ =
6µΩR2

Pah2
r

(.12)

σ =Λ
ω

Ω

(.13)
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Tables

Table .1: Non-dimensional parameters of stable HGJB-supported prototypes tested by the au-

thors

Case α β [�] γ h̄g L/D Λ mcrit,min mrotor

1 0.6 15 1 3.00 1 46.00 0.57 0.21

2 0.6 15 1 3.00 1 27.10 4.41 0.57

3 0.55 41 0.95 2.60 1.8 20.67 2.99 0.64

4 0.6 20 1 2.75 1 38.04 10.77 0.65

5 0.65 19 1 2.71 1 17.85 7.31 2.45

6 0.65 20 1 2.60 1 10.44 4.17 1.97

7 0.74 10 0.75 3.13 1.175 28.48 1.47 0.93

8 0.65 22 1 3.14 1 7.825 15.53 6.31

9 0.65 19.1 1 3.40 1 12.11 12.42 1.37

10 0.6 20 1 3.43 1 16.99 10.6 1.29

11 0.65 17 1 3.89 1 20.77 8.76 0.91

12 0.65 17 1 3.89 1 19.63 3.42 0.71
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Table .2: Parameters of the studied rotor

R 5mm

mrotor 0.075kg

Nmax 200 krpm

Pa 105 Pa

µa 18.5 µPa · s
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Figure .5: Description and nomenclature of the HGJB geometry
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Figure .8: Examples of stability limits for the considered rotor and α=0.6. The arrows indicate

the orientation of the stable domain
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Figure .9: Global Pareto front for the nominal rotor-bearing system
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Figure .13: Effect of the ambient pressure on the global Pareto front
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Figure .14: Effect of the gas viscosity on the global Pareto front
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Figure .15: Effect of the rotor radius on the global Pareto front
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Figure .16: Effect of the rotor mass on the global Pareto front
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Figure .17: Effect of the rotor maximum speed on the global Pareto front
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Figure .18: Effect of parametric variation on the maximum clearance tolerance
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Figure .19: Effect of parametric variation on the maximum groove depth tolerance
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