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 Multi-Objective (MO) optimization is a well-known research field with respect to the complexity 
of production planning and scheduling. In recent years, many different Evolutionary 
Computation (EC) methods have been applied successfully to MO production planning and 
scheduling. This paper is focused on making a review of MO production scheduling methods, 
starting from production scheduling presentation, notation and classification. The research field 
of EC methods is presented, then EC algorithms` classification is introduced for the purpose of 
production scheduling optimization. As a main goal, MO optimization is focused on hybrid EC 
methods, and presenting their advantages and limitations. Finally, a survey of five scientific 
databases is presented, with the analysis of the scientific publications the terminology 
development of the scientific field is presented. Using the citation analysis of the scientific 
publications, the application for the MO optimization in manufacturing scheduling is discussed. 
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1. Introduction 

 
The focus of production optimization is moving increasingly from mass production to mass 
customization. The production planning and scheduling of such production systems is very important, 
due to competitive business conditions. Short production times of orders, high reliability of delivery 
times, low stocks, high flexibility (Yang & Takakuwa, 2017) and a favourable cost-time profile (Rivera 
& Chen, 2007), are linked to the manufacturing value flow, and they are becoming the key production 
goals, which can be achieved mainly with appropriate MO production optimization (Ojstersek & 
Buchmeister, 2017). The main goals indicate cost savings through rational and continuous use of working 
assets, materials and contractors. Stochastic arrivals of orders, different sequences, and the high-mix low-
volume production system, can lead to a very uneven capacity utilization, resulting in a longer flow time 
of operations and in the deviation of delivery times. The essence of the problem lies in the well-founded 
way to create a queue of orders for all jobs in a short time. The introduction of modern technologies, 
supported by the concept of Industry 4.0 (Marilungo et al., 2017; Bartodziej, 2016), brings into 
production processes new challenges that require sophisticated, innovative and revolutionary solutions, 
especially in the field of MO production optimization. Pinedo (2005), presents in his book the importance 
of transferring the theoretical methods and knowledge of production planning and scheduling to 



  

 

360 

application solutions. The presented methods (Pinedo, 2012) provide the basis for the areas of planning, 
scheduling and optimization of production systems. The methods and algorithms of production system 
optimization are presented as a user manual for the design of production facilities (Sule, 2008). 
Application solutions enable the realization of basic ideas, supported by theories, algorithms and systems 
(Pinedo, 2012). Researchers present various approaches for production system performance analysis, 
based on the used algorithms and approaches (Altiok, 2012), in order to evaluate the production system 
optimization methods. With the development of new technologies and the rapid complexity growth of 
the production systems, the need for using Evolutionary Computation (EC) methods (Bäck et al., 1997) 
is increasing for the purpose of solving Nondeterministic Polynomial-time hard problems (NP-hard) (Du 
& Leung, 1990). The optimization models are divided into deterministic ones, which can be described 
precisely by mathematical models and stochastic ones, which are described as NP-hard models. Both 
groups of models can be solved as static problems, e.g. using the Mote Carlo method, or dynamic 
(Hinderer et al., 2016), where we use continuous or discrete models. Researchers focus primarily on 
solving single-objective problems, which are based on determining a satisfactory solution of only one 
objective. In doing so, other objectives are considered as constants in a variable time interval. The 
optimization results led to unsatisfactorily obtained single-objective solutions, especially for NP-hard 
problems. In this case, we want to achieve better solutions in optimizing complex production systems, 
which leads to the use of MO methods in evolutionary approaches for the purpose of planning, scheduling 
and optimizing production systems (T’Kindt & Billaut, 2006; Nguyen et al., 2017). The basic MO 
methods are supplemented by the use of Genetic Programming (GP), where genetic algorithms are 
crucial. Genetic algorithms lead to sophisticated solutions to optimize the operation of machine tools and 
to place orders and jobs in an optimized production system (Askin & Standridge, 1993). Planning and 
scheduling in geographical area refers, in particular, to small and medium enterprises (Buchmeister & 
Palcic, 2015), which are very important all around the world, from smaller high-mix low-volume 
enterprises to mass production enterprises. During the rapid growth of mass production, the market 
became saturated with less quality widely available products. The last trends of mass production have, 
recently, been transformed into mass customization production, as more consumers want something 
different, something personal.  
 
2. Production scheduling 

Production planning and scheduling are defined as decision-making processes that are used on a daily 
basis in many production and service enterprises. The importance of the decisions taken is, consequently, 
reflected in the fields of jobs orders, production, transport and distribution of the final products (Becker 
& Scholl, 2009). Production scheduling is the process of optimizing, controlling and determination of 
the limited production system resources (machines, humans, finances etc.). 

2.1. Notation 

A notation presented by Graham et al. (1979) will be presented next. 

i job (i = 1, …, n) 
j machine (j = 1, …, m) 
k operation (k = 1, …, oi) 
h resource (h = 1, …, s) 
n number of jobs 
m number of machines 
oi number of operations of job Ji 

s number of limited resources 
pi, pij processing time of job Ji on machine Mj 

pik, pikj processing time of operation Oik on Mj 
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ri release date of job Ji 

di due date of job Ji 

wi weight of job Ji importance  
 

2.2. Classification 

Table 1 presents production scheduling classifications made by Graham et al. (1979), which have made 
the production scheduling classification in three fields: Shop environment, job characteristics and 
optimality criteria. 
 
Table 1  
Classification of production scheduling 

Shop environment Optimality criteria 

 1 Single machine  Cj Completion time 

O Open shop Li/Lmax Lateness/maximum lateness 

F 
FF 
AF 

Flow shop 
Flexible Flow shop 
Assembly Flow shop 

Ti/Tmax Tardiness/maximum tardiness 
Ui Unit penalty 
Cmax Makespan 

J 
JF 

Job shop 
Flexible job shop 

∑ Cj Total completion time 
∑ (di - Ci) Total earliness 

P 
Q 
R 

P identical machines in parallel 
Q machines in parallel with different 
speeds 
R unrelated machines in parallel 

∑ Ti Total tardiness 

∑ Ui Number of late jobs 

∑ wiCj Total weighted completion time 

∑ wiUj Weighted number of tardy jobs 

∑ wiTi Total weighted tardiness 

∑ wi(di - Ci) Total weighted earliness 

Planning and scheduling in the production systems are based on mathematical and heuristic methods 
(Meolic & Brezocnik, 2018), which enable the proper distribution of limited production capacities 
according to the necessary production activities (Mirshekarian & Šormaz, 2016). Production activities 
must be carried out in such a way that the company optimizes its performance while achieving the set 
goals (Alghazi, 2017). The importance of planning and scheduling job shop production is reflected in a 
broad, yet deepened research field. Job shop production is one of the most active research areas in the 
planning and scheduling of production systems. The frequency of the job shop type production systems 
worldwide is the basis for all other production systems types in the field of Planning, Scheduling and 
Optimization, from small to large enterprises. The mentioned type of production is most often seen in 
the production of a small number of products where the subscriber can choose the characteristics of the 
product himself. Due to dynamic product changes, optimization problems are defined as NP-hard 
problems. Scheduling of job shop production is defined by four main research problems: 

 Job Shop Scheduling Problem (JSSP), 

 Flexible Job Shop Scheduling Problem (FJSSP), 

 Dynamic Job Shop Scheduling Problem (DJSSP), 

 Flow Shop Scheduling Problem (FSSP). 
 

Their characteristics are: 
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JSSP: In a production system we have n orders J1, J2, ..., Jn with different process times. Individual tasks 
must be performed on m machines that can be different from one another. The tasks must be performed 
according to the previously specified sequence of operations. In solving the JSSP problem, we focus on 
reducing the total makespan of orders (Cmax) (Pinedo, 2005), the calculation is represented by the Eq. (1). 

Cmax = max {Ci}, 1 ≤ i ≤ n (1) 

In Eq. (1) the Ci presents the time of determining the task i, i = 1, ..., n. 

FJSSP: Is a more realistic derivative of the JSSP, where jobs can be performed on machines from a set 
of machines suitable for carrying out the jobs. The choice of the machine is made according to the 
occupancy of the machine and the suitability of the machine to perform the operation. The number of 
jobs and number of machines are given. Each job has a specific sequence of operations, and operations 
can only be performed on individual machines. The processing time of the operation may vary, depending 
on the machine on which it is running, and the machine can only perform one operation at a time. At 
FJSSP, we can optimize several objectives at the same time, for example: Total flow time, total tardiness, 
total lateness, maintenance time, makespan, etc.  

DJSSP: Unlike JSSP, which represents a static optimization problem, the DJSSP is a dynamic 
optimization problem. It is characterized by dynamic production system models, such as: Random 
arrivals of orders, accidental machine failures, changes in production times, etc. Dynamic variables 
represent a more realistic optimization problem, whose solutions can be transferred easily directly to real-
world applications (Tasic et al., 2007). 

FSSP: Is the optimization problem in which we want to optimize the sequence of individual orders on 
available machines. We have m orders that we want to implement on n available machines. Each job has 
a precisely determined number of n operations, which are all in the same sequence. The ith operation must 
be performed on the ith machine. Each machine can only perform one operation, the time of which is 
specified. FSSP is a typical representative of an MO optimization problem, in which we most often 
optimize the following parameters: Average flow time Σ wiFi, time of execution of all Cmax orders, and 
total tardiness of orders Σ wiTi. Wi represents the vector of weights, i = 1, ..., n, where the operative weight 
i represents the relative importance of the operation from the point of the optimization objective. The 
optimization parameters are calculated with equation (2), which represents the calculation of the average 
flow time. 

F = 1/n × ∑(Ci – Si), i = 1, …, n (2) 

In this case, Ci represents the execution time of the task i, i = 1, ..., n, Si is the starting time of execution 
of the task. The time of execution of all orders is represented by Eq. (1). The tardiness of the orders is 
calculated with Eq. (3). 

Ti = max {0, Ci – di} (3) 

The di parameter presents the due date of the order i. 

Regarding the optimization problems presented above, it can be assumed that the planning and 
scheduling of job shop production present the basic concepts and methods that are very important for the 
other types of production processes optimization (Xu et al., 2013). For the most common cases, we use 
heuristic algorithms, which serve as decision-making systems for real-time order management in a 
production environment (Saha et al., 2016). The aforementioned algorithms are based mostly on the use 
of EC, the results of which show satisfactory solutions. Researchers most often solve planning and 
scheduling problems by introducing the theory of Particle Swarm Optimization (Shi & Eberhart, 1999), 
Neural Networks, Fuzzy Logic, and Genetic Algorithms (Rajasekaran & Pai, 2003). For modelling, 
simulating and application, researchers use various software tools, which allow the transfer of theoretical 
knowledge to application solutions. Thus, in the field of Production Scheduling, a number of research 
subsections can be found on the order, which are related to convex optimization problems, as well as to 
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the design and introduction of new evolutionary methods. The knowledge that researchers use in this 
field is an interdisciplinary mix of the fields of Production Systems, EC and discrete event simulation 
methods.  

3. Multi-objective optimization 

MO optimization is an area that deals with MO decision-making of mathematically difficult optimization 
problems (Lin & Gen, 2018). Optimization problems include more than one target optimization function, 
where multiple variable functions need to be optimized at the same time. The characteristic of the MO 
optimization problem is that there is no single solution as the final result, which can, simultaneously, 
optimize a particular criterion (Miettinen, 2012). Therefore, in this case, the criterion functions are 
contradictory (Branke et al., 2008). For these functions, there is an unlimited number of Pareto optimal 
solutions (Deb et al., 2000). Pareto solutions are non-dominated, Pareto optimal, Pareto effective (Deb 
& Jain, 2014). All Pareto optimal solutions in the Pareto area solution are considered equally good. 

 

Fig. 1 Graph of Pareto frontier. 

An example of the Pareto optimal solution for the functions f1 and f2 is presented on the two-dimensional 
graph in Figure 1, on which the quadratic points represent possible solutions. Point Z is not located in the 
Pareto solution, since it is dominated by points X and Y. Points X and Y are not dominated to each other, 
therefore both are in the Pareto frontier. The classification of MO decision-making optimization methods 
are presented in Table 2. 

Table 2  
Classification of MO decision-making optimization methods. 

Type Method Algorithm Abbreviations 
A priori Utility function method   

Lexicographic method 
Goal programming 

A posteriori Mathematical programming DSD Direct Search Domain 
SPO Successive Pareto Optimization 
NC Normal Constrain 
NBI Normal Boundary Intersection 

Evolutionary Computation MOGA Multi-Objective Genetic Algorithm 
MOPSO Multi-Objective Particle Swarm Optimization 
SA Simulated Annealing 
SPEA Strength Pareto Evolutionary Algorithm 
NSGA-II Non-dominated Sorting Genetic Algorithm-2 
PESA-II Pareto Envelope-based Selection Algorithm-2 

Interactive Semi-interactive method   
Progressively interactive method NIMBUS Nondifferentiable Interactive Multi-objective 

BUndle-based optimization System 
PI-EMO-VF Evolutionary Multi-Objective algorithm using 

Value Function 
Hybrid    
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Hao et al. (2017) commission the use of MO optimization in the field of Production Scheduling, and bi-
criteria optimization for the stochastic JSSP. The algorithm optimizes the average flow time and total 
tardiness of work orders. Combining heuristic methods and multi-criterion optimization (Pérez & Raupp, 
2016; Hultmann et al., 2017) allows solving complex manufacturing processes. The basic algorithm is 
based on the application of priority rules and Genetic Algorithms (Huang & Süer, 2015). Further research 
work on EC, Particle Swarm theory and improved Genetic Algorithms leads to Pareto optimal solutions 
(Li et al., 2016; Wisittipanich & Kachitvichyanukul, 2013; Ripon et al., 2011). MO optimization is used, 
not only in the field of Production Planning and Scheduling, but MO algorithms also prove useful in the 
field of Machines and Devices` Location Planning (Lukic et al., 2017; Mousavi et al., 2017). Lately, 
great attention has been focused on the introduction of assessment methods for the purpose of MO 
production optimization. The researchers implement the Kalman algorithm method (Pakrashi & 
Chaudhuri, 2016; Ojstersek et al., 2017; Lin & Wang, 2013) as an evaluation method for determining 
Pareto optimal solutions by introducing a set of optimal solutions (optimal solutions` clustering) 
(Toscano & Lyonnet, 2012). The proposed introduction of evaluation methods improves Pareto optimal 
solutions significantly, since we choose the best from the whole set of solutions (Su et al., 2017). The 
problem of the proposed method is efficient only in low-demanding cases, but problems still occur in 
cases that are more complex, where the mathematical complexity of the algorithm is increased. The 
problem of the proposed method is efficient only in low-demanding cases, but problems still occur in 
cases that are more complex, where the mathematical complexity of the algorithm is increased (Ojstersek 
et al., 2019). The model considered is a randomly routed job shop. The manufacturing system consists 
of six workstations, and each workstation consists of one machine. Each job is assigned a random routing 
sequence, the processing  time for each machine and the due date. The routing sequences assigned to jobs 
have an undirected flow. The assumptions of the manufacturing system are as follows: operations cannot 
be pre-empted; each machine can process only one task at a time; and, the queues are managed by the 
Earliest Due Date (EDD) policy to improve  lateness performance. In this research, the material handling 
time is included in the machining time, and the handling resources are always available. The 
manufacturing system is characterized by one bottleneck, as described in Section 4. 

3.1. Hybrid Multi-Objective Optimization 

Optimization algorithms are divided into three major groups: Exact, approximating, and heuristic 
algorithms. Exact algorithms are designed so that the solution of the optimization problem is always 
optimal at a specific known time interval. The disadvantage of this group of algorithms is the difficulty 
of applying them to more complex optimization problems, i.e. NP-hard optimization problems. In this 
case, the time-end interval is exponentially longer with an additional problem dimension complexity. 
The second group are approximation algorithms, based on satisfactory solutions determined close to the 
optimal solutions (the differences between the solutions obtained and the optimal solution are known). 
Heuristic optimization algorithms, whose characteristic is that they do not find optimal solutions but 
satisfactorily good solutions (Pareto optimal solutions) in a shorter time than approximation algorithms, 
define the third group (Gen et al., 2015). Heuristic algorithms are intended for specific use on a particular 
problem, which must be described well mathematically (Sundar et al., 2017; Siddique, 2013). However, 
when we want to use heuristic algorithms on several different optimization algorithms applied on real 
world optimization problems, we are talking about metaheuristic algorithms (Zhang et al., 2017). 
Metaheuristic algorithms are designed for highly demanding NP-hard problems; in this case, algorithms 
give near optimum results (J. Li et al., 2016; Marinakis & Marinaki, 2012). Metaheuristic methods are 
defined as higher levels of epistemes, with which we can find, generate or determine near optimum 
solutions to applicative optimization problems (Glover & Kochenberger, 2006). We use metaheuristic 
methods in particular when we do not have all the desired system data available (Meeran & Morshed, 
2014; Frutos et al., 2016), and in the case of limited processing power. Compared to the exact and 
approximating algorithms, with the metaheuristic algorithms we cannot provide global optimal solutions, 
and we do not know the error between the obtained and the optimal solution. Therefore, in many cases, 
we introduce various stochastic approaches into metaheuristic algorithms, which allow us to determine 
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the solutions according to a set of randomly generated variables (Kundakci & Kulak, 2016; Liu et al., 
2008). For combinatorial optimization problems, such as production systems` planning and scheduling, 
metaheuristic algorithms are obtained with a satisfactory solution. Metaheuristic methods are presented 
satisfactorily in the following areas: 

 Simultaneous scheduling of machines and transport robots in the FJSSP environment using a hybrid 
metaheuristic based on a clustered holonic multiagent model (Nouri et al., 2016). 

 Improved heuristic Kalman algorithm for solving MO FJSSP, where researchers present a totally new 
approach for optimizing production system makespan, machine workload and workload of the most 
loaded machine (bottleneck determination) (Ojstersek et al., 2018). 

 Hybrid algorithm based on priority rules for simulation of workshop production (Zupan et al., 2016). 
 A bare-bones MO Particle Swarm Optimization algorithm for environmental economic dispatch 

(Zhang et al., 2012). 
 Ant colony optimization system for a multi-quantitative and qualitative objective job shop parallel 

machine scheduling problem (Chang et al., 2008) etc.  
The above mentioned methods are showing satisfactorily good solutions in the field of Production 
Planning and Scheduling as a method of MO optimization using different EC methods, like hybrid 
Genetic Algorithms (Gen et al., 2015). The weaknesses due to the lower robustness of the algorithm have 
been improved with the help of a Fuzzy Logic approach, Particle Swarm theory and Genetic Algorithms 
used to determine the optimal production and manufacturing layout (Wang et al., 2011). 
 
4. Methodology 

When reviewing the existing relevant scientific literature, we focused on a search with three appropriate 
selected keywords. The selected keywords were "multi-objective optimization", "production scheduling" 
and "evolutionary computation". Our search was limited to the five most relevant databases: Web of 
Science (WoS), ScienceDirect, Scopus, IEEE Xplore and Springer Link. The obtained results from 
January 2019 are presented in Table 3. The chosen search time for published publications was limited 
between 2005 and 2019. At that time, the mentioned three research areas were the most relevant and, 
thus, provided state-of-the-art research work results. 

Table 3  
Number of hits for “multi-objective optimization”, “production scheduling” and “evolutionary 
computation” 

Database  Hits 
WoS 126 
Science Direct 3345 
Scopus 6814 
Springer Link 2854 
IEEE Xplore 25 

 
Fig. 2. Terminological development of research field regarding publication hits 
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Given the fact that Table 3 shows the number of scientific works published in the five most important 
databases, in Fig. 2, we want to show terminological development in the research field of Multi-objective 
Production Scheduling Optimization using evolutionary computation methods. The number of published 
works relates to two databases (ScienceDirect and Scopus). The results presented in the graph confirm 
the basic hypothesis about the development of the mentioned research field, since the publications of 
scientific works in recent years have been increasing. Particularly significant progress has been made 
since 2013 and to the present, since the number of annual publications has increased by 100 %. A positive 
trend in the growth of research publications in this field can also be expected in the future, as the current 
concept of Industry 4.0 is based on the applied application of the presented methods (Yao et al., 2017). 

5. Evolutionary Computation in Production Scheduling 

MO production systems` optimization is a very complex task. It is extremely difficult to solve it with 
conventional methods. That is why researchers use Evolutionary Computation (EC) methods and other 
approaches. Evolutionary Computation is fundamental for evolutionary algorithms, which are 
population-based metaheuristic optimization algorithms, constructed by four-step biological evolution: 
Reproduction, mutation, recombination and selection. Thus, the framework in Figure 3 can define the 
evolutionary computation methods generally as follows. 

 
Fig. 3. Evolutionary computation methods` general framework 

Generally, evolutionary computation methods are divided into Genetic Algorithms (GA) (Kramer, 2017; 
Mitchell, 1998), Genetic Programming (GP) (Al-Kazemi, 2002; Eberhart & Kennedy, 1995), Evolution 
Programming (EP) and Evolutionary Strategies (ES) (Yager & Filev, 1994) etc. GA, due to their 
advantages, are used for a wide range of discrete and combinatorial optimization problems, like traveller 
salesman problem, multiple knapsack problems (Shah-Hosseini, 2008), automated guided vehicle 
problem etc. In addition, they also have some limitations related to the difficulty in determining the 
initialization parameters, and, in some cases, the results do not represent optimal solutions.  

Table 4  
EC methods` classification with a summary of the advantages and limitations related to production 
scheduling literature 

EC methods Advantages Limitations Application use References  

GA Good solver for combinatorial 
problems 
Wide range of obtained solutions 

Difficult to obtain the optimal 
solution in all cases 
Hard to choose initial parameters  

Discrete 
optimization 

(Konak et al., 2006; 
Holland & Goldberg, 1989) 

GP Competes with neural nets and alike Slow convergence 
Needs huge populations for efficient 
computation 

Machine learning (Lee & Asllani, 2004) 

EP Open framework  
Self-adaption of parameters 

No recombination Machine Learning, 
Optimization 
problems 

(Marler & Arora, 2004) 

ES Fast optimising approach for real-
valued optimization 
Self-adaption 

Falling into local optimum 
More initial data needed  

Numerical 
optimization 

(Loukil et al., 2005)   



R.
 O

jst
er

se
k 

et
 a

l. 
/ I

nt
er

na
tio

na
l J

ou
rn

al
 o

f I
nd

us
tri

al
 E

ng
in

ee
rin

g 
Co

m
pu

ta
tio

ns
 1

1 
(2

02
0)

 
36

7

Ta
bl

e 
5 

 
Su

m
m

ar
y 

of
 se

le
ct

ed
 a

lg
or

ith
m

s a
nd

 th
ei

r c
om

po
ne

nt
s s

or
te

d 
by

 p
ro

po
se

d 
ta

xo
no

m
y 

Al
go

rit
hm

 
Pr

od
uc

tio
n 

Ty
pe

 
In

iti
al

iz
at

io
n 

 
D

ef
in

iti
on

 o
f S

to
p 

Co
nd

iti
on

 
Ad

va
nt

ag
es

 
Va

lid
at

io
n 

D
D

PS
O

 
(Z

ha
o 

et
 a

l.,
 2

01
4)

 
JS

SP
 

Ra
nd

om
 

10
0 

ite
ra

tio
ns

 
 

D
ec

lin
e 

di
stu

rb
an

ce
 in

de
x 

in
tro

du
ce

d.
 

 
H

ig
h 

co
nv

er
ge

nc
e 

sp
ee

d.
 

 
Si

ng
le

 a
nd

 m
ul

ti-
ob

je
ct

iv
e 

op
tim

iz
at

io
n 

fu
tu

re
s. 

 
Fi

sh
er

 a
nd

 T
ho

m
so

n 
(ft

06
, f

t1
0,

 
ft2

0)
, 

 
La

w
re

nc
e 

(la
01

 –
 la

36
). 

G
A

 a
nd

 co
ns

tr
ai

n 
pr

og
ra

m
in

g 
(S

io
ud

 e
t 

al
., 

20
12

) 

JS
SP

 
Ps

eu
do

-
ra

nd
om

 
50

00
0 

ite
ra

tio
ns

 
 

Po
sit

io
n 

do
m

ai
n 

se
t. 

 
Ps

eu
do

-ra
nd

om
 tr

an
sit

io
n 

ru
le

. 
 

Ef
fic

ie
nt

 h
yb

rid
 c

ro
ss

ov
er

. 
 

Lo
o k

-a
he

ad
 a

pp
ro

ac
h 

fo
r i

m
pr

ov
e 

so
lu

tio
ns

 q
ua

lit
y.

 

 
Ra

ga
tz

 (1
5,

 2
5,

 3
5,

 4
5 

jo
bs

), 
 

G
ag

ne
 (5

5,
 6

5,
 7

5,
 8

5 
jo

bs
). 

PS
O

 a
nd

 S
A

 (X
ia

 a
nd

 
W

u,
 2

00
5)

 
FJ

SS
P 

Ra
nd

om
 

40
00

 it
er

at
io

ns
 

 
G

oo
d 

qu
al

ity
 re

su
lts

 in
 a

 re
as

on
ab

le
 ti

m
e 

lim
it.

 
 

M
ul

ti-
ob

je
ct

iv
e 

op
tim

iz
at

io
n 

fu
tu

re
s. 

 

 
K

ac
em

 (8
x8

, 1
0x

10
, 1

5x
10

). 

FL
 a

nd
 E

A
 

(K
ac

em
 et

 a
l.,

 2
00

2)
 

FJ
SS

P 
Lo

ca
liz

at
io

n 
30

0 
ite

ra
tio

ns
 

 
Bi

ol
og

ic
al

 c
on

ce
pt

 o
f G

M
O

 fo
r f

in
al

 so
lu

tio
ns

 q
ua

lit
y 

en
ha

nc
em

en
t. 

 
St

ro
ng

 re
pr

es
en

ta
tio

n 
ca

pa
bi

lit
ie

s o
f F

L 
to

 c
on

tro
l E

A
s. 

 
K

ac
em

 (4
×5

, 1
0×

7,
 1

0×
10

, 1
5×

10
). 

PS
O

 a
nd

 L
S 

(M
os

le
hi

 
&

 M
ah

na
m

, 2
01

1)
 

FJ
SS

P 
Ra

nd
om

 
12

0 
ite

ra
tio

ns
 

 
Co

m
pe

tit
iv

e 
so

lu
tio

ns
 o

bt
ai

ne
d 

at
 sa

tis
fa

ct
or

y 
co

m
pu

ta
tio

n 
tim

es
. 

 
M

ed
iu

m
-s

iz
ed

 p
ro

bl
em

 h
ig

h 
ef

fic
ie

nc
y.

 
 

 
K

ac
em

 (4
×5

, 1
0×

7,
 1

0×
10

, 1
5×

10
). 

M
O

EA
-b

as
ed

 
Pr

ed
ic

tiv
e-

re
ac

tiv
e 

Sc
he

du
lin

g 
M

et
ho

d 
(S

he
n 

&
 Y

ao
, 2

01
5)

 

D
JS

SP
 

H
eu

ris
tic

 
str

at
eg

ie
s 

20
00

0 
ite

ra
tio

ns
 

 
D

yn
am

ic
 m

ul
ti-

ob
je

ct
iv

e 
op

tim
iz

at
io

n 
m

od
el

. 
 

Sh
op

 e
ffi

ci
en

cy
 a

nd
 st

ab
ili

ty
 o

pt
im

iz
at

io
n 

ap
pr

oa
ch

. 
 

Re
al

-ti
m

e 
ev

en
ts 

dy
na

m
ic

 c
ha

ng
es

 a
dd

re
ss

ed
. 

 
In

iti
al

 1
0x

10
 st

at
ic

 F
JS

SP
 in

sta
nc

e,
 

 
en

ha
nc

ed
 b

y 
M

TB
F 

an
d 

M
TT

R 
tim

es
 fo

r D
JS

SP
. 

H
M

O
G

W
O

 (L
u 

et
 a

l.,
 

20
17

) 
D

JS
SP

 
Ra

nd
om

 a
nd

 
N

EH
 m

et
ho

d 
10

00
00

 it
er

at
io

ns
 

 
M

ul
ti-

ob
je

ct
iv

e 
m

at
he

m
at

ic
al

 m
od

el
 w

ith
 c

on
sis

tin
g 

th
re

e 
dy

na
m

ic
 e

ve
nt

s. 
 

Ra
nd

om
 g

en
er

at
ed

 in
sta

nc
es

 w
ith

 re
ga

rd
 to

 
co

nv
er

ge
nc

e,
 sp

re
ad

 a
nd

 c
om

pr
eh

en
siv

e 
m

et
ric

s. 

 
Ra

nd
om

ly
 g

en
er

at
ed

, 
 

nu
m

be
r o

f j
ob

s (
20

, 4
0,

 6
0,

 8
0,

 
10

0)
. 

 
nu

m
be

r o
f m

ac
hi

ne
s (

4,
 5

, 6
, 7

, 8
). 

D
D

E 
al

go
ri

th
m

 (P
an

 
et

 a
l.,

 2
00

9)
 

FS
 

N
EH

 a
nd

 
ED

D
 

he
ur

ist
ic

s 

20
00

 it
er

at
io

ns
 

 
N

o-
w

ai
t f

lo
w

 sh
op

 sc
he

du
lin

g 
ap

pr
oa

ch
. 

 
Jo

b-
pe

rm
ut

at
io

n-
ba

se
d 

en
co

di
ng

 sh
am

e.
 

 
Pa

re
to

-b
as

ed
 se

le
ct

io
n 

op
er

at
or

. 

 
Ca

r0
1 

– 
Ca

r0
8,

 
 

H
el

1 
an

d 
H

el
2,

 
 

Re
c0

1 
– 

Re
c4

1.
 

H
M

O
IA

 
(M

og
ha

dd
am

 e
t a

l.,
 

20
07

) 

FS
 

ET
S 

50
0 

ite
ra

tio
ns

 
 

U
se

fu
l c

om
pa

ris
on

 m
et

ric
s. 

 
La

rg
e-

siz
ed

 p
ro

bl
em

 h
ig

h 
ef

fic
ie

nc
y.

 
 

Se
lf-

pr
op

os
ed

 sm
al

l a
nd

 la
rg

e-
siz

ed
 

pr
ob

le
m

s. 

 



  

 

368 

The second group of EC are GP methods, which are used primarily in Machine learning, where their 
limitation regarding slow convergence and the required large population size have less influence on the 
obtained solutions. Lately, in order to solve optimization problems, new methods of EP have appeared 
in Machine Learning, where the open framework, and the possibility of parameters` self-adaption, allows 
near optimal solutions with the limitation, due to the no recombination nature of the EP. In contrast to 
GP, the EC methods feature a fast optimization approach for real-value numerical optimizations. ES 
methods allow self-adaption, which generally requires more initialization parameters, which, in some 
cases, can lead to falling into the local optimums. In Table 4, we can see EC methods` division in 4 main 
groups. The Table summarises the advantages and limitations of the individual subgroups. The general-
purpose use is defined, and key literature is given referring to the production scheduling in Table 5.  

6. Applications 

In a time of rapid development of companies that meet in the global market with the introduction of the 
Industry 4.0 concept based on mass personalization of customised products, MO optimization with EC 
is very important. That is why researchers want to test their optimization algorithms with the use of 
simulation methods for the purpose of production systems` modelling and analysing (Law et al., 2007), 
which defined the basic simulation methods. In order to optimise production, researchers use a wide 
range of software environments to analyse and optimise production processes (Leite, 2010; Joines & 
Roberts, 2013). Due to the wide range of different simulation methods and their advantages and 
disadvantages, it is essential that the correct choice of simulation methods is made with respect to the 
optimization problem`s characteristics (Pegden, 2008). For the purpose of production system testing, 
researchers use activity-based simulation, in which time is broken up into small slices, and the system 
state is updated according to the set of activities happening in the time slice (Dehghanimohammadabadi 
& Keyser, 2017). Because discrete-event simulations do not have to simulate every time slice, they can, 
typically, run much faster than the corresponding continuous simulation (Fishman, 2013). Considering 
that, in Section 2, we presented the basic types of production problems, in this chapter we want to present 
how the theoretical models are transferred to real-world production systems. We have analysed 126 
references from Table 3 in the WoS database, and differentiated them according to the type of production 
systems between JSSP, FJSSP, DJSSP, Flow Shop (FS) and evolutionary computation methods used in 
general optimization approaches for production systems. The results, shown in Figure 4, show that the 
majority of applicative EC methods are transferred to the general JSSP. Out of the total of 126, 20 of 
them solve this problem. Recently, publications in the field of FJSSP and DJSSP, which represent a more 
realistic type of production, are dominated according to the publication time. Together, they represent 22 
publications, which, however, will definitely intensify, given the trend of increasing publications in the 
past years. Both of these production systems types represent a very active research area, where 
optimization methods of Evolutionary Computation and multi-objective optimization represent the basis 
for problem solutions. Flow Shop production type is also very active in the optimization area. The results 
in Figure 4 represent 15 % of all publications in the EC Production Scheduling field. The presented 
solutions show the advantage of the methods in the real-world applications. We have added some 
important references in Table 6. According to Figure 4, we can see that as many as 64 references are 
related to the general type of production systems. In this case, researchers perform experiments on 
benchmark cases, or they present general optimization approaches for solving various optimization 
problems, which can be usable for different types of production systems. 
Table 6  
Relevant references for production planning applications.   

JSSP FJSSP DJSSP FS General 
(Esquivel et al., 2002; 
Zhao et al., 2014; 
Sioud et al., 2012) 

(Tay & Ho, 2008; Jia 
& Hu, 2014; Li et al., 
2010; Li et al., 2011; 
Zhang et al., 2009; 
Singh & Mahapatra, 
2016) 

(Abello et al., 2011; 
Lu et al., 2017; Shen 
& Yao, 2015) 

(Arroyo & 
Armentano, 2005; 
Murata et al., 1996; 
Ishibuchi & Murata, 
1998) 

(Klancnik et al., 
2016; Xiang et al., 
2015; Granja et al., 
2014) 
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Fig. 4. Division of Evolutionary Computation methods according to the production type 
 
 
7. Discussion 

In this research work, we have presented the research field of Multi-objective Optimization using 
Evolutionary Computation methods in Production Scheduling. We have studied five scientific relevant 
databases systematically, using the three key words “multi-objective optimization”, “production 
scheduling” and “Evolutionary Computation”. Table 7 shows the number of citations in relation to the 
individual production type. Research was carried out with a detailed analysis of 126 references (Table 3) 
in the WoS database. We have found that most citations relate to solving the FJSSP, which can be 
attributed to its applicative nature and higher interest for solving it in recent years. With its citations, 
FJSSP represents 50.5 % of all citations within the 126 references. MO and EC methods used to solve 
general problems within Production Scheduling contribute up to 520 citations, representing 22.2 % of all 
citations. The activity and topicality of the field is also reflected in the Flow Shop optimization, where 
408 citations represent 17.4 %. The smallest number of citations in this category are provided by JSSP 
(136 citations or 5.8 %) and DJSSP (95 citations or 4.1 %). JSSP, with its theoretical background, is the 
basis for testing new proposed methods and approaches, but it is used significantly less in more applied 
cases. Recently, when the concept of Industry 4.0 has been influencing the optimization of dynamic 
production systems increasingly (Shin et al., 2018), it also benefits from the DJSSP, which is reflected 
in the high activity of research work done in the recent period. The results presented in Table 7 show the 
activity and importance of multi-objective optimization investigation using evolutionary methods in 
Production Scheduling. Considering that the multi-objective production scheduling optimization is an 
NP-hard optimization problem, our survey confirmed the appropriateness of the use of Evolutionary 
Computation methods. The number of published research works has been increasing over recent years, 
and published research work is increasingly being transferred from conceptual methods to application 
solutions to real-world problems within production systems. Most recently, researchers have been 
focusing on flexible and dynamic production systems, for which multi-objective optimization is crucial. 

The main purpose of this paper was the classification, presentation and evaluation of the published 
research work in the field of Multi-objective Optimization in Production Scheduling using the 
Evolutionary Computation methods. The main purpose was giving the current data on the citation, 
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topicality and applicative applicability of individual methods, with an emphasis on advantages and 
limitations. These data can serve readers as guidelines in their research work, based on which they can 
choose a research problem, methods, and they can evaluate effectiveness of the individual approach. 

 
Table 7  
Number of citations and most cited references.  

 JSSP FJSSP DJSSP FS General 

Number of 
citations 

136 1183 95 408 520 

Share (%) 5.8 50.5 4.1 17.4 22.2 

Most cited (Esquivel et al., 

2002; Zhao et al., 

2014; Sioud et al., 

2012) 

(Kacem et al., 

2002; Xia & Wu, 

2005; Moslehi & 

Mahnam, 2011) 

(Lu et al., 2017; 

Abello et al., 

2011; Shen & 

Yao, 2015) 

(P. C. Chang et al., 

2008; Tavakkoli-

Moghaddam et al., 

2007; Pan et al., 

2009) 

(Moon & Seo, 

2005; Duhamel et 

al., 2011; Elloumi 

& Fortemps, 2010) 

 

7.1. Issues and open questions  

Our research has shown quite a few problems and differences in which open questions arise, which 
science will have to answer in the near future. The results presented confirm the hypothesis about the 
actuality of the research field, which, in the reflection of dynamic and flexible production systems, makes 
huge progress. The authors present their research work in two separate groups. Some researchers perform 
experiments on benchmark datasets (Palacios et al., 2016), while others perform their optimization 
algorithms in applied cases. In doing so, there is a problem of mutual evaluation and comparison, since, 
in some cases, it is impossible to transfer parallels.  

Subsequently, a lot of research work has to be done on the research of fundamental methods, their 
robustness, and the transfer to applied cases. The help of algorithms` hybridization can link together 
individual algorithm advantages, and eliminate their limitations. Such a step, and the applicability of the 
proposed solutions, will enable the progress and development of the mentioned research area, which is 
gaining more and more attention at the expense of the increasingly complex industrial systems of Industry 
4.0. 

8. Conclusions 

In this paper, we present a research survey based on MO optimization with EC methods for Production 
Scheduling problems, which reduces the gap in this research field. First, we presented the research field 
of Production Scheduling, notation and basic classification, supported by mathematical formulation. 

We continued with the presentation of MO optimization and its classification, which are the basis for the 
advanced Production Scheduling. This section summarizes the main MO approaches, methods and 
algorithms. This is followed by the hybrid methods, which have recently been used more and more in the 
mentioned research field.  

In the section Methodology, we presented a literature review in five relevant research databases (WoS, 
Scopus, ScienceDirect, IEEE Xplore and Springer link), where we have focused on the terminological 
development of the research area between 2005 and 2019. The results obtained confirm the basic 
hypothesis that the research field of Production Scheduling Multi-objective Optimization with the EC 
methods has been developing in recent years. The number of references found using three keywords 
"multi-objective optimization", "production scheduling" and "Evolutionary Computation" confirm this. 
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The use of EC methods for the purpose of Multi-objective Production Scheduling Optimization is 
presented, where we have shown the general framework used in EC methods. The basic division of EC 
methods is given, and individual advantages and limitations are presented. In Table 4, which summarizes 
the EC methods, we present the most important references in relation to Production Scheduling. The 
general applicability of the individual approach is defined. 

The importance of transferring theoretical approaches, methods and algorithms to application examples 
is presented, where we present the analysis of the WoS database by dividing the Production Scheduling 
into four types of production systems (JSSP, FJSSP, DJSSP and Flow Shop). The distribution of 
references in the WoS database also includes general approaches for Multi-objective Production 
Scheduling Optimization. Depending on the individual production type, we propose guidelines for 
readers and researchers in the field, who can understand and find out the most appropriate approaches 
and current research area with the help of the cited data. 

Given the fact that we presented the research field which, individually, represents three very topical 
problems (Multi-objective Optimization, Production Scheduling and Evolutionary Computation), we can 
claim that the researchers managed to connect them, and, thus, came up with new methods, approaches 
and solutions of application problems. Given the limitations presented, we can note that there is still a lot 
to be done in the research area, which will focus on solving the flexible, dynamic and self-adaptive 
production systems in the further development phase. In doing so, researchers will use methods of 
hybridization, simulation and mathematical modelling. 
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