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Abstract: Infrastructure design, construction and development experts are making frantic efforts
to overcome the overbearing effects of greenhouse gas emissions resulting from the continued
dependence on the utilization of conventional cement as a construction material on our planet.
The amount of CO2 emitted during cement production, transportation to construction sites, and
handling during construction activities to produce concrete is alarming. The present research work
is focused on proposing intelligent models for fly ash (FA)-based concrete comprising cement, fine
and coarse aggregates (FAg and CAg), FA, and water as mix constituents based on environmental
impact (P) considerations in an attempt to foster healthier and greener concrete production and aid
the environment. FA as a construction material is discharged as a waste material from power plants
in large amounts across the world. Its utilization as a supplementary cement ensures a sustainable
waste management mechanism and is beneficial for the environment too; hence, this research work is
a multi-objective exercise. Intelligent models are proposed for multiple concrete mixes utilizing FA as
a replacement for cement to predict 28-day concrete compressive strength and life cycle assessment
(LCA) for cement with FA. The data collected show that the concrete mixes with a higher amount of
FA had a lesser impact on the environment, while the environmental impact was higher for those
mixes with a higher amount of cement. The models which utilized the learning abilities of ANN
(-BP, -GRG, and -GA), GP and EPR showed great speed and robustness with R2 performance indices
(SSE) of 0.986 (5.1), 0.983 (5.8), 0.974 (7.0), 0.78 (19.1), and 0.957 (10.1) for Fc, respectively, and 0.994
(2.2), 0.999 (0.8), 0.999 (1.0), 0.999 (0.8), and 1.00 (0.4) for P, respectively. Overall, this shows that
ANN-BP outclassed the rest in performance in predicting Fc, while EPR outclassed the others in
predicting P. Relative importance analyses conducted on the constituent materials showed that FA
had relatively good importance in the concrete mixes. However, closed-form model equations are
proposed to optimize the amount of FA and cement that will provide the needed strength levels
without jeopardizing the health of the environment.
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1. Introduction
1.1. Fly Ash

Substantial research has been conducted to evaluate using various supplementary
cementitious materials (SCMs) such as fly ash (FA), slag, metakaolin, rice husk ash (RHA),
silica fume (SF), and natural pozzolan for the partial replacement of Portland cement,
which releases remarkable quantities of CO2 [1–4]. Almost 7% of global anthropogenic
greenhouse gas emissions originate from cement manufacturing [5–8]. Coal combustion
for energy production is the primary industrial process for generating FA. The reduction
in cement consumption, as well as eliminating fly ash disposal costs and environmental
risk, are the most striking bonuses of FA use in concrete [9]. Pozzolanic activity, low water
demand, reduced bleeding, and lesser heat evolution are some of the reasons why FA has
been widely adopted in the construction industry as a binder replacement [10–12]. While
fly ash continues to be produced in large volumes, especially in large cement-producing
countries such as China and India, other countries in Europe and North America have
discontinued coal-fired power plants for environmental considerations. In such countries,
the use of fly ash continues through beneficiating old fly ash deposits, including in landfills.

The amorphous silica in FA undergoes a chemical reaction with calcium hydroxide dur-
ing cement hydration and generates additional calcium silicate hydrate, further enhancing
its mechanical properties and durability [13–16]. Various studies have demonstrated that
the strength increment of FA continues for a longer period of time compared to ordinary
concrete, owing to pozzolanic reactions [17]. Hence, FA can improve the long-term com-
pressive strength of different types of concrete [18,19]. From a microstructural point of view,
FA concrete specimens after early-age curing exhibit a copious amount of un-hydrated
spherical FA particles. Therefore, low compressive strength has been reported during
the initial stages of curing. Conversely, un-hydrated FA particles are less present after
long-term curing. Hence, the microstructure of concrete incorporating FA becomes denser
in the long term [20]. Deign codes such as ACI 211 [21] indicate that replacing 15% to 25%
of cement with FA in high-strength concrete could be an optimum dosage. The particle size
of FA is another key factor that affects the compressive strength of concrete. It has been
reported that higher compressive strength was attained in concrete containing FA com-
posed of a finer particle size distribution, compared to that of ordinary FA [22]. In addition
to compressive strength, FA fineness has a significant effect on the shrinkage of concrete.
In concrete incorporating coarse FA, much lower drying shrinkage was reported [23]. It
has been posited that a 50% substitution of FA with OPC results in a 30% decrease in
shrinkage compared to typical concrete [24]. FA also affects the porosity and transport
mechanisms in concrete. For instance, Supit and Shaikh [25] depicted that FA presence
in concrete mitigated the amount of permeable voids by 6 to 11% compared to that in
concrete containing OPC. Ravina and Mehta [26] studied the effects of FA on the properties
of concrete made with FA in the range of 35 to 50%. They reported that the mixing water
required for a certain slump was reduced by 5 to 10% for concrete incorporating FA. A
mercury intrusion porosimetry test confirmed that FA promoted the density of the cementi-
tious matrix. The paste–aggregate interfacial bond in the concrete is also enhanced by FA.
Conversely, Mardani-Aghabaglou et al. [27] reported that concrete samples including FA
had much higher permeable voids when compared to OPC counterparts. It has been stated
that the void content could be increased by increasing the FA cement replacement level in
the mixture [28,29].

Sorptivity is also reduced by incorporating FA in concrete. It was found that FA
addition decreased the permeability of both cement paste and the transition zone around
the aggregates. Several studies have been conducted on the effects of class F FA on the
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compressive strength of concrete. It has been indicated that compressive strength is reduced
with the increment of FA content in concrete, as class F FA contains a small quantity of
lime. However, compressive strength is boosted at later phases of curing as a result of
pozzolanic activity [30–33]. Chloride ion penetrability in concrete can be notably decreased
by class F FA. Wang et al. [34] have expressed that class F fly ash is highly effective at
lessening chloride ion penetrability owing to its micro-filler effect and pozzolanic activity.
The influence of various replacement levels of FA on the chloride ion penetrability of
concrete was investigated by Chindaprasirt et al. [22] using three different test setups. In all
test procedures, as the amount of FA in the concrete increased, the chloride ion penetrability
in the concrete remarkably decreased.

Moreover, the source and type of FA could be another influential factor that affects
the mechanical properties of concrete. For instance, high-early compressive strength
could be achieved by high calcium FA compared to low calcium FA [35]. As reported by
Malhotra [36], compressive strength growth differs with variation in FA content, and this is
not consistent with the amorphous silica percentage; FA with high silica content results in
a slower strength increase in comparison with its counterparts.

1.2. Optimization Method

Kate et al. [37] evaluated and optimized the long-term mechanical characteristics of
concrete reinforced with crimped steel fibers. Multiple regression analysis was used to
examine the extent of FA influence on the mechanical characteristics of concrete. It was
claimed that the Taguchi methodology was an efficient strategy for reducing the total
amount of exploratory research. It was also mentioned that the mechanical properties
of high-strength, high-volume FA in steel-fiber-reinforced concrete offer an alternative
sustainable option for the concrete industry. In another study, the optimization of the
mixture proportions of green and sustainable concretes was accomplished [38]. In this
respect, the model to be optimized took concrete effect into account, as well as the unit
cost and environmental impact. As a result, a novel prediction technique dubbed “Marine
predator programming” was developed to model and anticipate certain functional features.
Three forecasting strategies were used to evaluate the effectiveness of the introduced
machine learning model: artificial neural networks, support vector machines, and second
polynomial regression. As a result, an innovative sustainable model was developed, and
mixture components of sustainable and green concrete types for various compressive
strength classes were designed. The findings suggest that marine predator programming is
highly capable of estimating a variety of tangible properties. Green mixtures lessened the
environmental index by 74.37% and 67.83%.

1.3. Environmental Evaluation

In recent decades, a myriad of research has been performed to mitigate the adverse
effects of using OPC in concrete. The most utilitarian method to understand the impact
of different SCMs on the environment is life cycle assessment (LCA). LCA is remarkable
in modeling the complex process of manufacturing concrete based on environmental
considerations [39,40]. Multifunctional processes are among the most challenging problems
in LCA [41]. Specifically, the production of electricity and FA from coal combustion cannot
be considered independently, and is a rather multifunctional process [42]. This distribution
of environmental impact is known as ‘allocation’. The findings of this allocation may
then be engaged in the evaluation of the environmental performance of FA later in its life
cycle, such as when it is mixed into concrete. The evaluation of environmental impact
corresponding to product stage was investigated by Chen et al. [43]. In this research, no
allocation procedure was performed for products of waste status. On the other hand,
economic ratio allocation approaches were applied for products of by-product status.
It is noteworthy that because of the importance of replacing OPC with different SCMs,
numerous LCA studies have been conducted on concrete incorporating FA [41–45]. Using
FA in concrete makes use of such a waste product and substitutes OPC in concrete, both
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of which are beneficial to the environment. It is generally known that a reduction in the
amount of OPC used in concrete could indeed boost the overall environmental efficiency
of mix designs since, by far, OPC is the ingredient which has the greatest environmental
impact [46]. From a greenhouse gas emission point of view, it has been demonstrated that
replacing OPC with FA is environmentally lucrative when the distance between coal and
cement plants is notably large [47]. Taking these key aspects into account, increased OPC
replacement with FA has significant environmentally positive impacts.

1.4. Research Significance

With the colossal global growth of greenhouse gas (GHG) emissions, polar ice caps
have been melting rapidly in the Antarctic and Arctic, extreme weather events have inflicted
economic damage, and climate change effects have been accelerating. The cement and
concrete industry contributes substantial GHG emissions [48,49]. Demand for concrete
continues to grow worldwide. The concrete ingredient that contributes the most to GHG is
Portland cement (PC). It is estimated that, by 2050, the consumption of cement will grow
from the current 4.2 to 5.2 billion tons [50,51]. Using the present techniques of cement
production, about 850 kg of CO2 is released into the atmosphere per each ton of clinker
produced [52]. Thus, alternative materials are needed for replacing cement to decrease the
negative effect of concrete production. Using recycled material or wastes in concrete could
alleviate its environmental footprint. Using supplementary cementitious materials (SCMs)
is a promising solution to decrease PC consumption while disposing of waste materials
from diverse industries [53–55]. SCMs have been a primary focus for enhancing concrete
sustainability [56,57]. Agricultural wastes such as palm oil fuel ash (POFA), rice husk
ash (RHA), olive pomace ash (OOA), sugarcane bagasse ash (SBA), and industrial wastes
such as fly ash (FA) and silica fume (SF) can be used as partial replacements for cement
in sustainable concrete [58,59]. It is annually estimated that the worldwide production
of fly ash surpasses 900 million tons [60], with 580 million tons produced in China [61],
43.5 million tons of contribution by the United States [62], 169.25 million tons in India [63],
and 14 million tons in Australia [51]. Fly ash has been used for centuries as an ingredient
in cement, but its current utilization rate is only about 53.5% [60]. Waste management
can lead to a number of problems, including pollution, water shortages, and the spread
of disease [51]. Over the past few years, much investigation has been carried out on the
application of concrete with mineral admixtures. The reaction with pozzolan, by which
FA improves the microstructure and physical properties of concrete, is usually slow, so the
improvements which are given to the material properties of concrete and its microstructure
are mainly reflected at later stages. As a result, the early strength of concrete with FA is
lower [64]. FA is a replacement material for construction which is beneficial because of its
chemical features. For instance, by using FA instead of PC in concrete production, you can
reduce the amount of both PC and water needed. The result is a more robust concrete that is
stronger, more durable, and has higher mechanical performance [65]. Additionally, several
studies have shown that fly ash enhances the durability and workability of concrete when
used in concrete. Using fly ash instead of PC induces more porosity without eroding the
average pore size, according to Chindaprasirt et al. [66]. Moreover, by increasing the content
of fly ash, the volume of the gel pore increases by 5.7 for 10 nm. Adding large amounts of
fly ash makes it harder for chloride ions in water to penetrate into the concrete, which helps
prevent corrosion [67]. A study performed by Hussain et al. [68] investigated whether fly
ash concrete from high-strength samples had equivalent compressive strengths to plain
concrete; fly ash concrete had greater compressive strengths than ordinary concrete. Fly ash
(as a partial replacement for cement) decreases the initial strength of concrete, but after 56
to180 days, concrete strength increases considerably (after exposure to high temperatures)
and concrete strength is greatly increased by using fly ash [69]. Mabibi reported [70] that
concrete’s resistance and chloride migration coefficient could be improved by replacement
with fly ash, as could the alkali–silicon reaction, although carbonization resistance would be
reduced. As for fine aggregates and cement, Liu et al. [51] investigated shrinkage in creep
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and curing, compression strength, and carbon dioxide emissions from concrete containing
fly ash or ground granulated blast-furnace slag (GGBS). Their proposed model accurately
predicted the creep strain of concrete by including a parameter to take into account the
effect of fly ash content. Various waste products were used to partially replace sand and
cement in Garg et al.’s study [71]. They proposed a model for predicting the compressive
strength of concrete made up of fly ash and slag using an adaptive fuzzy logic model.
SCC was used in Zhao et al.’s study, which employed FA at five levels (0, 20, 30, 40, and
50 percent) [72]. The mechanical properties and water porosity of the FA series SCCs, as
well as their transportation properties, were investigated.

In this research work, intelligent models are proposed using three different opera-
tive algorithms—ANN (GA, GRG and BP), genetic programming (GP), and evolutionary
polynomial regression (EPR)—to test the compressive strength of 28-day-cured concrete
containing fly ash (FA) based on environmental impact assessment considerations for
minimizing global warming potential (GWP) effects. Figure 1 presents the structural and
environmental benefits of adding FA as a supplementary cement in concrete, and shows
the primary focus of this research work.
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2. Research Methodology
2.1. Data Collection

The extensive literature search conducted for the present research work showed that fly
ash (FA) has been studied for its potential as an alternative and/or partial replacement for
cement in the fight against global warming resulting from the production, transportation,
and utilization of cement. The mission to save our planet from the plaguing greenhouse
gas emissions (GHGE) emanating majorly from PC is in top gear, and one of those steps
has been to gradually eliminate the use of PC in concrete production and construction
activities entirely. Results from recent research works on the utilization of fly ash in concrete
production [73–85] were gathered, and multiple data were collected, tabulated, and utilized
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to propose intelligent predictions for a design, production, and performance evaluation of
FA-based concrete.

2.2. Collected Database and Statistical Analysis

At the end of the literature search, 112 records were collected from experimental tested
concrete mixtures with different component ratios. Each record contained the following
data: water content (W) kg/m3, cement content (C) kg/m3, fly ash content (FA) kg/m3,
fine aggregate (sand) content (FAg) kg/m3, coarse aggregate content (CAg) kg/m3, 28-day
cylinder compressive strength of the concrete (Fc28) MPa, and environmental impact factor
(P). The collected records were divided into a training set (90 records) and a validation
set (22 records). Table 1 includes the complete dataset, while Tables 2 and 3 summarize
their statistical characteristics and the Pearson correlation matrix. Table 2 presents the
minimum (Min) and maximum (Max) values of the studied data against the parameters of
the 28-day-cured FA-based concrete. The average (Avg), the standard deviation (SD), and
variance (Var) of the data are also presented in Table 2. These are presented for the training
sets and validation sets. Table 3 shows how consistently correlated the input parameters
are with the concrete strength (Fc) and environmental impact factors (P). Cement also
showed a higher and more consistent correlation with the outputs (Fc and P) than any other
parameter in the study. However, intelligent models are being proposed to optimize the
consistency and relationship between FA and the outputs (Fc and P). Achieving this would
achieve the optimal utilization of FA in the place of PC (C) to attain a safer environment and
minimize the impact of concrete production and construction activities on the environment
(P). Finally, Figure 2 shows the histograms for both inputs and outputs. While the studied
input parameters showed a unimodal distribution of data, FAg and CAg showed a bimodal
unsymmetrical distribution. Meanwhile, the output variables Fc and P showed unimodal
unsymmetrical data distribution. In the Fc28 data distribution, it appears that the concrete
strength in the 40MPa and 50MPa bin had the highest frequency, while in the P data
distribution, the environmental impact % of 7 to 9 had the highest frequency. Meanwhile,
Fc28 seems to partially skew towards the left.

Table 1. Utilized database.

W C FA Fag Cag Fc28 P

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa -

Training dataset

171.58 199.19 85.79 388.65 835.47 34.5 5.3
202.16 459.46 68.92 326.13 713.03 42.5 9.5
220.48 237.29 34.60 770.12 352.57 27.1 4.9
252.37 283.79 167.24 667.68 305.88 33.6 8.3
233.76 477.06 71.56 383.18 585.98 36.9 9.8
150.14 101.71 101.71 542.80 754.80 8.5 4.0
196.07 435.71 65.36 295.71 771.13 41.1 9.0
155.22 168.32 147.16 357.72 879.94 25.4 6.0
161.46 322.92 107.64 376.63 785.04 41.7 7.9
172.12 278.58 119.39 335.14 828.50 53.0 7.4
160.62 160.62 160.62 364.24 860.37 33.0 6.1
258.82 324.80 187.77 637.66 292.24 39.5 9.4
154.59 107.41 146.56 386.88 884.30 13.4 5.0
162.20 226.28 226.28 320.43 831.12 48.0 8.5
223.88 238.81 59.70 756.47 346.29 29.2 5.5
146.40 385.27 96.32 216.44 952.93 27.7 8.8
242.48 538.85 80.83 365.71 549.76 42.0 11.0
154.46 94.28 146.44 395.32 882.93 10.5 4.7
220.25 199.32 64.78 773.17 354.07 22.9 4.9
171.55 239.98 103.13 372.31 820.54 45.5 6.4
161.67 425.45 47.27 212.46 935.37 38.2 8.5
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Table 1. Cont.

W C FA Fag Cag Fc28 P

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa -

Training dataset

257.16 234.58 234.58 390.51 581.41 20.9 8.8
171.55 239.98 103.13 372.31 820.54 47.0 6.4
150.94 131.47 68.17 545.71 752.41 11.9 3.8
171.58 199.19 85.79 388.65 835.47 33.5 5.3
173.01 286.71 88.98 518.31 645.04 43.7 6.9
213.26 197.47 29.62 794.88 363.82 21.3 4.2
290.79 379.62 67.32 372.02 554.49 19.9 8.0
178.50 311.39 54.54 348.25 821.22 50.0 6.7
200.55 435.97 65.40 333.89 722.64 40.7 9.0
198.28 450.64 67.60 319.87 732.08 43.6 9.3
150.99 116.89 87.67 545.87 749.42 7.4 4.0
150.70 102.09 102.09 544.84 751.22 5.8 4.0
244.25 321.65 105.54 685.94 313.97 42.5 7.8
125.31 250.63 205.06 379.92 830.85 35.6 8.6
252.27 390.92 69.33 383.09 602.78 32.0 8.3
199.96 425.45 63.82 339.08 724.87 38.9 8.8
154.76 125.62 146.72 377.93 883.29 17.1 5.3
225.86 513.31 77.00 338.79 623.73 43.9 10.5
237.33 241.35 120.68 717.57 328.73 28.5 6.7
232.81 200.70 115.40 739.77 338.63 20.0 5.9
151.80 132.21 68.55 545.76 750.22 8.8 3.9
231.42 279.30 69.82 729.15 333.97 35.6 6.3
105.59 211.17 258.10 381.99 855.63 24.0 8.9
203.96 485.63 72.84 317.49 702.32 48.4 10.0
216.33 240.48 240.48 400.33 635.89 38.8 9.0
230.38 548.51 82.28 324.45 608.54 47.9 11.2
232.71 484.81 72.72 380.34 585.88 37.7 9.9
202.29 430.41 64.56 334.99 721.96 40.3 8.9
249.55 323.31 136.39 668.08 305.58 42.7 8.4
130.56 343.57 147.24 220.58 971.16 22.5 9.0
253.69 347.61 115.22 385.24 596.58 30.3 8.4
241.52 281.77 120.76 698.01 319.65 36.5 7.4
297.03 228.26 228.26 379.99 529.80 16.6 8.6
196.93 468.88 70.33 286.11 758.61 46.1 9.7
138.68 118.87 178.30 496.49 771.89 10.1 5.8
234.12 508.97 76.35 370.78 578.11 40.3 10.4
149.86 116.02 87.01 544.79 753.39 10.4 3.9
154.36 83.19 146.34 401.91 882.33 8.4 4.5
254.63 324.62 162.31 651.85 298.78 41.2 8.9
247.22 282.53 141.27 683.56 313.19 35.5 7.8
217.32 198.47 49.62 782.23 358.46 22.4 4.6
161.60 195.52 195.52 358.39 826.09 41.5 7.4
196.93 468.88 70.33 286.11 758.61 47.3 9.7
229.22 200.20 100.10 749.77 343.07 21.4 5.6
242.07 242.07 141.21 704.62 322.38 26.9 7.1
198.88 405.87 60.88 346.21 731.71 37.2 8.4
214.66 310.50 166.73 397.23 644.16 45.0 8.8
172.12 278.58 119.39 335.14 828.50 50.5 7.4
225.59 479.99 72.00 349.67 633.94 39.9 9.9
202.16 459.46 68.92 326.13 713.03 43.1 9.5
235.58 318.08 49.70 717.32 328.87 39.3 6.6
294.42 294.42 158.10 376.65 540.14 19.9 8.3
138.68 118.87 178.30 496.49 771.89 9.6 5.8
227.80 277.32 39.62 744.96 341.42 33.0 5.7
231.63 454.17 68.13 393.07 593.85 35.2 9.3
223.69 199.72 84.88 761.67 348.85 22.7 5.3
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Table 1. Cont.

W C FA Fag Cag Fc28 P

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa -

Training dataset

178.19 222.50 39.38 400.28 824.38 33.0 4.8
231.14 240.15 100.06 732.67 335.68 29.8 6.3
227.94 239.94 79.98 743.87 340.67 29.6 5.9
155.62 131.30 68.08 542.01 748.28 9.6 3.8
203.96 485.63 72.84 317.49 702.32 47.3 10.0
212.44 401.17 71.14 393.13 655.13 47.4 8.5
172.12 278.58 119.39 335.14 828.50 50.5 7.4
150.70 102.09 102.09 544.84 751.22 6.1 4.0
195.08 433.52 65.03 296.92 772.97 39.0 8.9
151.27 117.11 87.84 543.86 750.84 7.9 4.0
292.59 337.75 111.96 374.32 547.36 21.0 8.2
199.96 425.45 63.82 339.08 724.87 38.4 8.8
240.49 320.65 80.16 700.02 320.27 41.4 7.3

Validation dataset

171.55 239.98 103.13 372.31 820.54 49.5 6.4
150.94 131.47 68.17 545.71 752.41 12.5 3.8
224.52 510.27 76.54 339.96 626.77 43.2 10.5
171.58 199.19 85.79 388.65 835.47 33.5 5.3
122.64 126.87 296.02 394.96 837.80 30.6 8.2
178.12 356.23 62.86 374.87 764.13 48.9 7.6
236.72 280.86 95.29 713.23 326.56 36.2 6.9
146.87 132.18 137.08 506.00 762.97 13.1 5.2
255.12 302.83 162.61 387.42 590.31 32.7 8.6
146.87 132.18 137.08 506.00 762.97 11.2 5.2
196.98 198.87 56.82 574.90 609.75 23.2 4.7
202.29 430.41 64.56 334.99 721.96 39.6 8.9
196.57 446.75 67.01 331.02 725.75 44.0 9.2
145.75 116.60 87.45 547.51 757.15 9.0 4.0
126.32 210.53 210.53 393.26 834.18 66.5 8.0
196.57 468.03 70.20 285.59 760.33 45.1 9.6
223.52 475.57 71.34 352.37 637.53 38.9 9.8
170.60 293.59 142.83 450.21 687.75 54.3 8.1
150.14 101.71 101.71 542.80 754.80 7.3 4.0
213.58 356.64 118.22 395.25 649.47 43.2 8.6
114.09 300.23 200.15 224.89 990.10 21.6 9.3
177.96 267.93 47.46 390.90 805.02 44.5 5.8

Table 2. Statistical analysis of collected FA–concrete database.

W C FA FAg CAg Fc28 P

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa -

Training set

Min. 105.6 83.2 29.6 212.5 292.2 5.8 3.8
Max. 297.0 548.5 258.1 794.9 971.2 53.0 11.2
Avg. 201.1 292.7 105.2 469.7 635.1 31.7 7.3
SD 42.2 125.5 50.8 165.3 202.0 13.0 2.0

VAR 0.2 0.4 0.5 0.4 0.3 0.4 0.3

Validation set

Min. 114.1 101.7 47.5 224.9 326.6 7.3 3.8
Max. 255.1 510.3 296.0 713.2 990.1 66.5 10.5
Avg. 178.1 276.3 111.9 425.1 727.9 34.0 7.2
SD 37.5 127.4 59.7 109.5 125.3 15.9 2.1

VAR 0.2 0.5 0.5 0.3 0.2 0.5 0.3
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Table 3. Pearson correlation matrix of the FA–concrete parameters.

W C FA FAg CAg Fc28 P

W 1.00
C 0.47 1.00

FA −0.19 −0.36 1.00
FAg 0.29 −0.44 −0.11 1.00
CAg −0.78 −0.11 0.15 −0.80 1.00
Fc28 0.23 0.68 −0.10 −0.34 −0.03 1.00

P 0.40 0.88 0.12 −0.54 −0.03 0.68 1.00
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2.3. Research Program and Modelling Plan

Five different artificial intelligence (AI) techniques were used to predict the confined
compressive strength of the concrete short rectangular column wrapped with FRP sheets
using the gathered dataset. The implemented techniques were “artificial neural network
(ANN-BP, ANN-GRG and ANN-GA)”, “genetic programming (GP)” and “evolutionary
polynomial regression (EPR)”. All these techniques were used to predict both 28-day
compressive strength (Fc28, MPa) and the environmental impact factor (P) using water
content (W, kg/m3), cement content (C, kg/m3), fly ash content (FA, kg/m3), fine aggregate
(sand) content (FAg, kg/m3) and coarse aggregate content (CAg, kg/m3).

Each implemented technique was based on a different approach: mimicking the
human brain for ANN, the optimization of mathematical regression for EPR, and simulating
the evolution of natural creatures for GP. However, for all techniques, their accuracies were
evaluated in terms of the “sum of squared errors (SSE)”, “root mean squared errors (RMSE)”,
and the “determination coefficient (R2)”.

2.3.1. Genetic Algorithm (GA)

The GA is a mathematical technique which simulates the evolution process of biologi-
cal creatures [60]. It depends on one simple rule: “The most fitting creature will survive”.
To apply this principal on optimization, there must be a pool of solutions for the considered
problem, fitting criteria, and a procedure to generate new solutions by mixing the existing
ones [60]. Biological creatures transfer their data to the next generation in an arranged
series of genes called “chromosomes”; similarly, the GA presents the solution (chromosome)
as an arranged list of steps (genes) [60]. This allows the GA to apply genetic operations
(such as crossover and mutation) to the solutions [60]. Crossover is a mixing procedure
used to generate two new solutions from two existing ones by swapping the head and tails
of the two existing solutions [60]. Mutation presents the random change in genetic data
due to radiation, chemicals, and copying errors; it is applied by randomly changing a step
of the considered solution. The algorithm cycle begins with generating a set of random
solutions for the considered problem (population), evaluating the fitness of each solution
using the fitting criteria, selecting the best fitting solutions and deleting the rest, and finally
restoring the original population size by mixing the survival solutions (using crossover and
mutation procedures) to generate new ones, and then the cycle starts again [60]. Cycle after
cycle, the fitting of the solutions increases until the accepted level is reached.

2.3.2. Genetic Programming (GP)

GP is an application of the previously mentioned GA technique [60]. It depends on
using the GA as a “multi-variable and structure-free regression technique”, where the
population is a set of randomly generated mathematical formulas and the fitting criteria is
the “Sum of Squared Errors (SSE)” between the predicted values and the correct values
of the training dataset [60]. In order to apply genetic operations, each solution (formula)
must be presented in genetic form (as chromosome). Instead of the steps list of the GA,
the chromosome consists of two parts; the first is a list of mathematical operators (=,
+, −, *, /, . . . ) and the second one is a list of variables [60]. Crossover and mutation
procedures are applied to both formula operators and variables separately to generate new
formulas (solutions). Cycle after cycle, the SSE decreases, and the accuracy of the solutions
(formulas) increases. Finally, the accuracy of the developed formula is tested using a new
validation dataset.

2.3.3. Evolutionary Polynomial Regression (EPR)

EPR is another application of GA, and it depends on optimizing the number of terms
of the “Traditional Polynomial Regression (TPR)” [60]. TPR is a well-known mathematical
regression technique that uses the “Least Squared Error” principle to find the optimum
coefficient values of a certain polynomial function to fit a certain dataset [60]. The consid-
ered polynomial may be single or multi-variable depending on the considered problem
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configuration (dataset) [60]. The chosen polynomial degree (its highest power) depends
on the complexity of the considered problem; first-degree polynomials (linear) may be
used for simple problems, while for more complicated ones, second-degree (quadratic),
third-degree (cubic) of higher degrees may be required [60]. The number of polynomial
terms dramatically increases with increasing variable numbers and polynomial degree; for
example, a two-variable second-degree polynomial has only 6 terms (X2 + Y2 + XY + X +
Y + C), while a three-variable third-degree polynomial has 20 terms, and a four-variable
fourth-degree polynomial has 70 terms, and so on [60]. As the number of polynomial
terms increases, it becomes more difficult to apply them less practically. Hence, the EPR
technique aims to optimize the TPR by eliminating the less important terms and keeping
only the most effective ones using the GA technique [60]. Thus, the population (solutions)
consists of a set of polynomials, the fitting criteria is the “Sum of Squared Errors (SSE)”, the
chromosome consists of a list of polynomial terms, and the length of the chromosome is
the chosen number of terms. Cycle after cycle, the most important terms accumulate in the
survival chromosomes, and the less important ones are deleted.

2.3.4. Artificial Neural Network (ANN)

The ANN is an umbrella of a wide range of AI techniques that depend on mimicking
the behavior of biological neurons [60]. They all consist of nodes (cells or neurons) and
link to connect the nodes, but they have different neuron arrangements and connection
patterns [60]. “Multi-Layer Perceptron (MLP)” is one of the earliest and most common
ANN type. It is the commonly used type for regression problems [60]. It consists of a
number of nodes arranged in layers; the first layer is called the “Input layer”, and it is used
to receive the input values, while the last layer is called the “Output layer”, and it is used to
deliver outputs values [60]. Between the input and the output layers, there are a number of
intermediate layers called “Hidden layers” which are responsible for predicting the outputs
from the inputs. MLP must have one hidden layer at least. Each node in a certain layer is
connected to all the nodes in the previous and the next layers by links, but the nodes of
each layer are not connected to each other [60]. Each link has an importance factor called
“Weight”, and each node has a triggering formula called “Activation Function”, this could
be any nonlinear function, but the most popular ones are the sigmoid, the hyper-tan, and
the ramp functions, which are responsible for the nonlinear capability of the ANN [60].
Due to the variation in ranges of input values, all inputs must be scaled to a unified range;
this process is called “Standardization” if the input variance is divided by its standard
deviation (SD), “Normalization” if the inputs are scaled between 0 and 1, and called “Hyper
normalization” if the inputs are scaled between -1 and 1. The scaled inputs propagate
from the input layer to the output layer through the hidden layers. The output of a certain
node is the result of applying its activation function on the summation of the node inputs
multiplied by the corresponding link weights [60]. After the output layer, the outputs
must be de-scaled to their original renege. Any ANN model must be trained using a given
dataset; during the training process, the weight values of the model’s links are adjusted to
predict the correct outputs from the inputs [60]. There are many training techniques that
could be used to find the optimum values for links’ weights, such as “Back Propagation
(BP)”, the “Gradually Reduced Gradient (GRG)” and the “Genetic Algorithm (GA)”.

ANN Using “Back Propagation (ANN-BP)”

BP is the earliest ANN training technique, and has become the default training tech-
nique in most ANN commercial software [60]. During the training process, the data
propagate forward from the input layer to the output layer to calculate the outputs’ values;
then, the calculated values are compared to the correct ones from the training dataset,
and the errors are back-propagated from the output layer to the input layer, which is why
it is called “Back Propagation” [60]. During the back propagation, the error values are
divided on the links according to their weights. The updated weights are equaled to the
original weight by subtracting the share of error. BP is a sequential training technique
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where the ANN weights are updated record by record [60]. This iterative process is slow,
but it requires limited computational capability.

ANN Using “Gradually Reduced Gradient (ANN-GRG)”

GRG is a well-known mathematical regression technique [60]. It is used to optimize the
coefficients of a certain formula to fit a certain dataset by minimizing the SSE between the
predicted and the correct values of the database [60]. The technique begins with assuming
random values for the coefficients of the formula, and then continues by gradually changing
the values of the coefficients one by one while monitoring the SSE value [60]. If changing
the value of a certain coefficient decreases the SSE value, the process continues, and if it
increases the SSE value, the change is applied with the opposite sign. This cycle continues
until the minimum SSE value is achieved. This technique is used to train the ANN models
by considering the whole ANN as one huge and extremely complicated formula, and the
links’ weights are its coefficients. The GRG is used to gradually adjust the values of the
weights (coefficients) to minimize the SSE of the ANN [60]. This training technique is
classified as the “Batch technique” because it deals with the error of the whole dataset at
once, unlike sequential procedures such as BP. Hence, it is faster than BP but requires much
more computational capability to deal with the whole dataset together.

ANN Using “Genetic Algorithm (ANN-GA)”

Similar to GRG, the GA technique deals with the ANN as one huge formula that
needs optimization [60]. The GA training technique begins with generating a random set
of solutions; each solution is a list of ANN weights [60]. Next, the fitness of each solution
(SSE) is evaluated, and the most fitting solutions are selected and used to generate new
solutions (lists of weights) by applying crossover and mutation [60]. In this technique,
crossover is applied at multiple points along the chromosome, not just at the middle as
in the original GA technique [60]. Cycle after cycle, the model converges to the optimum
list of weights. The accuracy of this technique is not as sharp as BP and GRG because the
initial weight values of the randomly generated solutions are not changed during training,
only the combinations of the weights are changing [60]. For example, if the initial random
values of a certain weight are 0.214, 0.558 and 0.331 and the correct value is (0.472), then
(0.558) will appear in the final model [60]. Although this may not be the optimum value, it
is the closest available one to the optimum. However, this error could be insignificant if
the random population is large enough; for example, the error of a randomly generated
population of 1000 records with a uniform probability density function is 1/1000 of the
weight range, which is insignificant [60]. As an AI technique, the GA is less efficient than
the GRG for a problem with a limited number of variables, but as the number of variables
increases, GRG becomes very complicated and requires a lot of time and computational
resources, and hence GA presents a much faster and less resource-consuming technique.

2.3.5. Model Performance Assessment

The models were evaluated by using indices of performance evaluation including the
coefficient of determination (R2), the sum of squares errors, and the root mean squared
error, which is embedded in Taylor’s diagram. The R2 shows how well the developed
models fit the measured data. For example, an R2 value of 0.85 shows that 85% of the
studied data fit the models. Generally, the R2 ranges between −1 and 1 on the two sides of
zero (0), which shows a perfect fit, while zero shows a no fit, and literally it ranges between
0 and −1 and 0 and 1. It is statistically computed as follows:

R2 =
SSregression

SStotal
(1)

where SSregression is the sum of the squares due to regression and SStotal is the total sum of
the squares. Additionally, SSE is the measure of the discrepancy between the measured
data and the estimated models. This is a commonly used statistical error measurement
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previously used in recent research works. The next section presents the results of each
technique and their accuracy metrics.

3. Results and Discussion
3.1. Behavior of the Concrete Mixes and Environmental Impact (EI)

It is conventional that an increase in the amount of Portland cement utilized in concrete
increases its mechanical properties, including compressive strength (Fc). From the collected
data in Table 1, it can be observed that our results are consistent with the known results
of the increase in cement amounting to increasing strength. However, the focus of this
work is on underscoring what effect the addition or replacement of cement with FA has
on concrete strength and, of course, the environmental impact of this mixing process. For
example, a mix ratio that recorded a relatively high compressive strength of 42.5 MPa
contained 459.46 kg/m3 of cement and 68.92 kg/m3 of FA with an environmental impact
potential (EIP or P) of 9.5%. Meanwhile, another concrete mix recorded 33.6 MPa with a
cement content of 283.79 kg/m3 and a FA content of 167.24 kg/m3; however, it had an
environmental impact potential of 8.3%. This shows a reduced impact on the environment
with a higher amount of FA compared to the first mix. However, the P was still high. The
mix with the lowest EIP of all the concrete mixes recorded 3.8%; the amount of cement
needed to achieve this was 131.47 kg/m3 with a fly ash content of 68.17 kg/m3, which
resulted in a compressive strength of 11.9 MPa. Thus, there is an urgent need to keep the
amount of cement as low as possible in order to maintain a reduced impact (P) on the
environment as well as develop a relatively high-strength concrete that meets the minimum
requirements for constructed infrastructure. Certainly, from the results of the literature
search [13–16], it has been observed that increased FA increases the mechanical properties
of concrete due to the amorphous silica in FA, which undergoes a chemical reaction with
Ca(OH)2 to generate the strength-based compound of calcium silicate hydrate (CSH).
However, the early-stage strength of concrete is compromised due to the delay in strength
gain resulting from FA inclusion. The developed intelligent models were used to determine
the optimized combinations, i.e., the minimum amount of cement and the maximum
amount of FA needed to develop an FA-based concrete with the required and/or minimum
strength for constructed infrastructure with the lowest amount of environmental impact.

3.2. Prediction of Compressive Strength (Fc) and Environmental Impact (P)
3.2.1. Model (1)—Using the GP Technique

The developed GP model had six levels of complexity. The population size, sur-
vivor size, and the number of generations were 250,000, 50,000, and 500, respectively.
Equations (2) and (3) present the output formulas for Fc28 and P. The average errors in %
of the total dataset were 19.1% and 0.8%, while the coefficient of determination (R2) values
are 0.788 and 0.999, in order.

Fc28 =
1

11 (0.54 X) 9.15X , X =

(
W
C

)0.75
(2)

P =
Ln(C)(C + FA)(Ln(FA) + C + 5)

(60C.Ln(C)− 20C)
(3)

3.2.2. Models (2, 3, and 4)—Using ANN Techniques

Three models were developed using the ANN technique. All the models had the
same layout (5:7:2), normalization method (−1.0 to 1.0), and activation function (hyper-
tan). However, each model utilized a different training algorithm as follows: model (2)
used the traditional “Back Propagation (BP)” algorithm; model (3) used the well-known
mathematical algorithm “Gradually Reduced Gradient (GRG)”, and model (4) used the
famous AI optimization technique of the “Genetic Algorithm (GA)”.
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These three developed models were used to predict Fc28 and P values. The used
network layout is illustrated in Figure 3, while the weights matrixes of each model are
shown in Tables 4–6. The average errors in % of the total dataset were (5.1%, 2.2%),
(5.8%, 0.8%) and (7.0%, 1.0%), and the (R2) values were (0.986, 0.994), (0.983, 0.999) and
(0.974, 0.999), respectively. The relative importance values for each input parameter are
illustrated in Figure 4, which indicates that cement content (C) was the most important
factor, then aggregate content (FAg and CAg). Fly ash and water content came last in the
importance ranking.
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Table 4. Weights matrix for the developed ANN-BP model.

Hidden Layer

(1–1) (1–2) (1–3) (1–4) (1–5) (1–6) (1–7)

Input Layer

(Bias) −0.20 1.95 1.47 1.09 0.14 1.86 −0.11
W 0.22 1.09 1.48 0.44 −0.05 0.63 0.05
C 0.15 −3.86 −1.37 0.45 0.38 −3.43 −0.20

FA −0.16 -0.80 1.58 0.18 0.10 -0.68 −0.32
FAg −0.12 1.79 3.03 0.07 0.24 1.15 −0.31
CAg 0.30 −0.59 −2.40 −0.14 0.27 −1.01 0.02

Hidden Layer

(1–1) (1–2) (1–3) (1–4) (1–5) (1–6) (1–7) (Bias)
Output
Layer

Fc28 −0.83 −2.73 −0.37 1.67 3.25 3.56 1.04 −2.04
P 2.15 0.01 −0.11 0.13 1.05 0.15 -2.47 −0.25
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Table 5. Weights matrix for the developed ANN-GRG model.

Hidden Layer

(1–1) (1–2) (1–3) (1–4) (1–5) (1–6) (1–7)

Input Layer

(Bias) 0.96 0.88 1.05 2.79 −0.95 0.74 −2.50
W 2.00 −0.89 0.17 −0.28 −1.25 0.15 1.32
C −6.73 0.18 −0.76 1.52 6.05 0.44 −0.97

FA −2.04 −0.44 −0.49 1.09 1.81 0.09 1.41
FAg 3.24 −0.08 0.29 −0.84 −2.77 −0.56 2.17
CAg −0.95 0.93 0.34 −0.88 1.17 −0.47 −2.07

Hidden Layer

(1–1) (1–2) (1–3) (1–4) (1–5) (1–6) (1–7) (Bias)

Output
Layer

Fc28 −3.70 2.16 −0.60 −0.43 −4.52 4.12 0.89 −2.63
P −0.08 -0.03 −3.29 3.18 -0.08 -0.02 −0.02 −0.33

Table 6. Weights matrix for the developed ANN-GA model.

Hidden Layer

(1–1) (1–2) (1–3) (1–4) (1–5) (1–6) (1–7)

Input Layer

(Bias) 1.77 0.32 0.61 −0.57 0.61 −1.43 1.87
W 0.89 −0.18 2.78 −2.57 1.11 −4.93 4.45
C −2.52 2.07 −2.30 3.37 6.53 6.68 −7.43

FA −1.62 1.38 −1.34 1.46 1.08 0.61 −0.87
FAg 1.42 −0.14 −1.13 0.80 −1.50 -3.41 4.18
CAg 1.67 −0.20 1.19 −1.25 −0.27 1.31 −1.03

Hidden Layer

(1–1) (1–2) (1–3) (1–4) (1–5) (1–6) (1–7) (Bias)

Output
Layer

Fc28 −0.07 −1.84 2.73 2.55 2.63 3.93 4.33 −2.41
P −3.10 3.27 −0.08 −0.11 0.30 −0.07 −0.09 −0.18
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3.2.3. Model (5)—Using the EPR Technique

Finally, the developed EPR model was limited to the cubic level for Fc28 and the linear
level for P. For 5 inputs there were 56 possible terms (35 + 15 + 5 + 1 = 56) for Fc28 and only
6 terms for P, as follows:

i=5

∑
i=1

j=5

∑
j=1

k=5

∑
k=1

Xi·Xj·Xk +
i=5

∑
i=1

j=5

∑
j=1

Xi·Xj +
i=5

∑
i=1

Xi + C (4)

The GA technique was applied to these polynomials to select the most effective 28 terms
to predict Fc28 and 3 terms to predict P. The outputs are illustrated in Equations (5) and (6).
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The average error in % and R2 values were 10.1%—0.957 and 0.4%—1.000 for Fc28 and P,
respectively. The results of all the developed models are summarized in Table 7. Figures 5–7
graphically compare the accuracies of the developed models. The relations between the
calculated and predicted values are shown in Figures 8 and 9.

Table 7. Performance and accuracies of the developed models.

Item Technique Model SSE Avg. Error % R2

Fc28

GP Equation (1) 4238 19.1 0.788
ANN-BP Figure 3, Table 3 306 5.1 0.986

ANN-GRG Figure 3, Table 4 392 5.8 0.983
ANN-GA Figure 3, Table 5 568 7.0 0.974

EPR Equation (3) 1195 10.1 0.957

P

GP Equation (2) 0 0.8 0.999
ANN-BP Figure 3, Table 3 3 2.2 0.994

ANN-GRG Figure 3, Table 4 0 0.8 0.999
ANN-GA Figure 3, Table 5 1 1.0 0.999

EPR Equation (4) 0 0.4 1.000
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Khursheed et al. [73] investigated predictions for the compressive strength of fly ash
concrete by adopting minimax probability machine regression (MPMR), a relevance vector
machine (RVM), genetic programming (GP), an emotional neural network (ENN) and
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an extreme learning machine (ELM). In this research into the 28-day-cured compressive
strength of concrete, it was judged that MPMR with a performance index of 0.992 was the
decisive model for the forecasting of concrete strength. Meanwhile, in comparison with
the model decision of Khursheed et al. [73], the present research paper used the learning
abilities of ANN (BP, GRG, and GA), GP and EPR, and it has been shown that ANN-BP
with a performance index of 0.986 outclassed other techniques and was adjudged the
decisive technique. However, compared to the previous work [73], ANN-BP achieved
98.6% efficiency with minimal errors. Clear statistical parameters, figures of distribution,
best-fit diagrams, and Taylor diagrams were used to judge the accuracy of these models.
A further step has been taken in this present research work to predict the environmental
impact effect of the concrete materials (P). The above intelligent techniques as used in
predicting Fc28 were also used, and the outcome showed that EPR with a perfect coefficient
of determination outclassed the other techniques in the following order: GP-0.999, ANN-
GRG-0.999, and ANN-BP-0.994. This time, EPR was adjudged the decisive technique for
predicting life cycle assessment and the environmental impact potential of utilizing the
concrete constituents. Finally, FA was adjudged to have a 62% degree of importance which,
being a good degree above average, could replace cement.

Fc28 =
929 W−60 FAg−178 FA−194,750

C
+

57 FA+161 FAg−148 CAg
W + 583 C−912,613

FAg

− 12.7 C
FA − 40 C

CAg + 22,200,000
W.C + 1,200,000

W.FA

+ 34,000,000
W.FAg − 197,000,000

W.CAg − 737,787
C.FA

− 14,000,000
C.FAg + 363,000,000

FAg.CAg +
FAg.CAg

171 +
W.CAg

217

− C.FA
220 − C.FAg

574 − C.CAg
231 − C2

256 + W2

86 − 21 W
+3.8 C + 6856

(5)

P = 0.24 +
C

58.5
+

FA
51

(6)

4. Conclusions

This research presents three models using five AI techniques (GP, ANN-BP, ANN-GRG,
ANN-GA, and EPR) to predict both 28-day compressive strength (Fc28) and the environ-
mental impact factor (P) of FA-based concrete using water content (W), cement content (C),
fly ash content (FA), fine aggregate (sand) content (FAg) and coarse aggregate content (CAg)
as the independent variables of the concrete mixes. First, it can be remarked that the con-
crete mixes with a higher amount of cement than FA showed higher compressive strength
and environmental impact, while those with a higher amount of FA showed relatively
lower strength and environmental impact. Meanwhile, the closed-form equations and
the proposed models present optimization models with which the optimal amount of FA
needed to achieve optimal strength and minimal environmental impact can be determined
prior to the design and production of concrete. This agrees with previous research works
on the utilization of high-volume fly ash in concrete [75–81]. The results of comparing the
accuracies of the developed models can be concluded in the following points:

• Regarding Fc28, the GP model was the simplest and the least accurate one (80.9%).
Then, EPR had an accuracy of 89.9%, and finally the three ANN models had almost
the same accuracy of ≈94.0%;

• Regarding P, all five models had almost the same accuracy (99.0%);
• The prediction accuracy of the EPR model was lower than the ANN models, but

their outputs were closed-form equations that could be used manually or as software,
unlike the ANN output, which cannot be used manually;

• The results indicate that the accuracy of the ANN model was slightly affected by the
training algorithm. The back propagation (BP) showed the best level of accuracy (94.9%
and 97.8%), gradually reduced gradient (GRG) came in the second with accuracies of
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94.2% and 99.2%, and the genetic algorithm (GA) showed the lowest level of accuracy
with 93.0% and 99.0% for Fc28 and P, respectively;

• The summation of the absolute weights of each neuron in the input layer of the
developed ANN model indicated that for both Fc28 and P, cement content (C) was the
most important factor, and then aggregate content (FAg and CAg). Fly ash and water
content came last in the importance ranking;

• Both the GP and EPR models indicated that the environmental impact factor (P)
depended only on the cementitious materials (C and FA);

• The GA technique successfully reduced the 56 and 6 terms of conventional polynomial
regression quadrilateral formula to only 28 and 3 terms for Fc28 and P, respectively,
without a significant impact on accuracy;

• Similar to any other regression technique, the generated formulas were valid within
the considered range of parameter values; beyond this range, the prediction accuracy
should be verified.
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