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Abstract

Aluminum hybrid composites have the potential to satisfy emerging demands of lightweight materials with enhanced mechan-

ical properties and lower manufacturing costs. There is an inclusion of reinforcing materials with variable concentrations for 

the preparation of hybrid metal matrix composites to attain customized properties. Hence, it is obligatory to investigate the 

impact of different machining conditions for the selection of optimum parameter settings for aluminum-based hybrid metal 

matrix composite material. The present study aims to identify the optimum machining parameters during wire electrical 

discharge machining of samples prepared with graphite, ferrous oxide, and silicon carbide. In the present research work, 

five different process parameters and three response parameters such as material removal rate, surface roughness, and spark 

Gap are considered for process optimization. Energy-dispersive spectroscopy and scanning electron microscopy analysis 

reported the manifestation of the recast layer. Analytical hierarchy process and genetic algorithm have been successfully 

implemented to identify the best machining conditions for hybrid composites.

Keywords Wire electrical discharge machining · Optimization · Analytical hierarchy process · Genetic algorithm · Metal 

matrix composites

Abbreviations

Al  Aluminum

MMC  Metal matrix composites

Al-MMC  Aluminum metal matrix composites

WEDM  Wire electrical discharge machining

Gr  Graphite

Fe2O3  Ferrous oxide

SiC  Silicon carbide

AHP  Analytical hierarchy process

GA  Genetic algorithm
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SEM  Scanning electron microscope

EDS  Energy-dispersive X-ray spectroscopy

DOE  Design of experiments

MRR  Material removal rate  (mm3/min)

SR  Surface roughness (μm)

SG  Spark gap (mm)

Ip  Pulse peak current (A)

Ton  Pulse-on-time (μs)

Toff  Pulse-off-time (μs)

WF  Wire feed rate (m/min.)

WT  Wire tension (G)

SV  Spark gap-set voltage (V)

Ra  Average Surface Roughness (μm)

SN ratio  Signal-to-noise ratio

Wg  Gap width (μm)

B  Width of cut (μm)

D  Diameter of wire electrode (μm)

Cm  Machining speed (mm/min)

H  Height of workpiece (mm)

dB  Decibels

rij  Normalized matrix

aij  Decision matrix

n  Number of entries

Vi  Statistical variance

Wi  Objective weight

MRRMAX  Maximization of material removal rate

SRMIN  Minimization of surface roughness

SGMIN  Minimization of spark gap

ZMIN  Multi-objective function minimization

1 Introduction

MMC materials are an exciting alternative to counter the 

growing demand for lighter materials as they exhibit high 

strength specifically for dynamic structures [1]. Due to cus-

tomized properties, these materials have been consistently 

used for armored vehicles, driveshafts, turbine rotors, light-

weight bicycle frames, and engine components [2]. Some of 

the major automobile manufacturers such as Honda, General 

Motors, Toyota, and Nissan are using MMCs for production 

of engine blocks, piston rings, connecting rods, calipers, lin-

ers, etc. [3]. The performance advantages of MMCs are their 

tailored thermo-physical properties that include low density, 

high fatigue strength, good thermal conductivity, and wear 

resistance [4]. Al, in alloy form, is the best-sought matrix 

for the fabrication of MMCs due to the reason that these 

are economical and possess good compatibility with a wide 

range of ceramic reinforcements. The mechanical proper-

ties of Al-MMC can be tailored by selectively introducing 

ceramic particulates in the matrix phase, i.e., Al alloy. Al-

MMCs are specifically used for multichip electronic modules 

and Printer Circuit Board heat sinks by Alcoa Innometalx 

and Lanxide, respectively [3]. The materials such as  Al2O3, 

SiC, Gr,  SiO2, B,  B4C, BN, and AlN are among the choices 

to reinforce the metal/alloy matrix [5]. These materials 

are finding myriad applications in the aerospace, defense, 

electronic packaging, and automotive industry [6]. MMCs 

can be fabricated through a wide range of manufacturing 

methods. These include liquid metallurgy and powder met-

allurgy, deposition of matrix vapor phase [7, 8]. Processing 

through the liquid metallurgy route has proven to be eco-

nomical [9]. Further, stir casting is a comparatively simpler 

and economical choice to produce MMC materials in bulk. 

In such methods, the solidification rate of the molten alloy, 

which is added with reinforcement material, influences the 

microstructures of the cast MMC. The hybrid MMCs are 

gaining popularity owing to better property combinations 

offered by multiple reinforcements being incorporated in 

the matrix phase [10]. Reportedly, many researchers have 

taken a keen interest in the processing of composites made 

of combinations of alloys/metals and reinforcing materials. 

Interestingly, the simultaneous addition of soft reinforce-

ments such as graphite improves the wear behavior of the 

composite materials which were made harder by the addition 

of SiC as a ceramic reinforcement [11].

Having witnessed the vulnerability of the conventional 

tools in the machining of MMCs, the researchers are rely-

ing on non-conventional machining methods. One of such 

prospectuses, i.e., electrical discharge machining technol-

ogy, has caught decent attention from manufacturing engi-

neers owing to its proven potential in cutting intricate shapes 

in dies, punches, and molds made of materials known for 

superior mechanical properties [12, 13]. Over the years, 

the Electrical Discharge Machining process has become a 

key machining intervention to cut electrically conductive 

materials without worrying about their range. WEDM has 

taken greater attention of researchers in the last decade due 

to the supply of soft computing techniques such as genetic 

algorithm, fuzzy logics and artificial neural network [14]. 

Besides advanced algorithms, conventional optimization 

techniques such as Taguchi and principal component analy-

sis have been widely adopted as modeling methods [15]. The 

objective function in the Electrical Discharge Machining and 

WEDM processes can be defined in many ways to offer solu-

tions to multi-response optimization problems.

Rajyalakshmi and Ramaiah [16] applied the Taguchi and 

grey relational analysis during an experimental study on 

Inconel 825 using WEDM process. The study was focused 

to improve the MRR, SR, and SG. The experiment was con-

ducted using  L36  (21 ×  37) orthogonal array design based 

upon Taguchi’s method and finally, the response graph plots 

for grey relational analysis were produced. Theory of grey 

relational analysis convincingly overcomes the shortcomings 

of conventional statistical methods and only requires limited 

information to predict the behavior of uncertain and complex 
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systems. Fard et al. [17] investigated dry WEDM using 

integrated Adaptive Neuro-Fuzzy Inference System models 

with the Artificial Bee Colony algorithm. So, researchers 

assigned weights to different responses to meet different 

machining requirements. Krishna and Rao [18] applied a 

harmony search algorithm to simultaneous optimization of 

performance measures such as wire wear and kerf width and 

successfully proposed an optimal set of machining control 

parameters.

In an attempt to investigate the mechanical strength, 

hardness, and wear resistance of aluminum reinforced with 

silicon carbide and tungsten, Fenghong et al. [19] used the 

stir casting technique for sample preparation. Improvement 

in mechanical strength, hardness, and wear resistance was 

experienced due to uniform distribution of reinforcements. 

Palanisamy et al. [20] studied the impact of three process 

parameters of EDM on surface finish, tool wear, and mate-

rial removal rate while machining of stir-casted Al-MMCs. 

Grey relation analysis technique was implemented to iden-

tify optimum conditions, and maximum impact of discharge 

current was observed. In a recent study [21], composites 

were prepared using AA6061 as matrix material and SIC as 

reinforcement along with jute ash to highlight agriculture 

waste management. It was observed that tensile strength, 

wear resistance, and hardness of stir-casted samples were 

increased due to proper dispersion of reinforcements. More-

over, the presence of SiC enhanced the wear resistance and 

hardness.

Yadav et al. [22] reported an improvement in bonding 

strength of matrix material (Al) reinforced with SiC and 

titanium diboride. Stir casting has been used to prepare 

test samples of Al reinforced by tungsten carbide; findings 

reveal that there was an increase of 62% and 6% in tensile 

strength and hardness respectively [23]. On the other hand, 

the flexural strain was reduced with an increase in molybde-

num disulfide powder in AA6061-T6 [24]. In another study, 

the doping of graphite manifested better wear resistance as 

compared to than molybdenum disulfide particles-based 

composite for the selected parameters at a normal environ-

ment. Moreover, under all conditions, the wear rate increases 

with an applied load and sliding distance [25]. Kumar et al. 

[26] predicted the optimum conditions for maximized wear 

resistance and tensile strength of Al reinforced with SiC par-

ticles. It was found that 15 s dispersion time with 45° blade 

angle and stirring speed of 250 rpm yielded the best results.

Computational fluid dynamics was used to predict the 

best blade design based on hardness and compressive 

strength of stir-casted aluminum composites [27]. Research-

ers [28] have also investigated the vortex pressure through 

computational fluid dynamics during composite preparation 

as it significantly affects particle distribution. The flow pat-

tern of reinforcements was visualized and optimized using 

the Taguchi DOE method. It was deduced that holding time 

of ten minutes and 45º stirrer blade angle resulted in maxi-

mum homogeneity. Finite element modeling studies have 

been performed to compare the tensile strength during 

experimentation and simulation [29]. The best results were 

found with 15% reinforcement of SiC, and simulation results 

were supported by experimental data.

Literature survey and recent studies [30] reveal that some 

experimental work has been conducted and optimization 

tools are implemented to optimize surface finish, material 

removal rate, mechanical and morphological properties of 

stir-casted Al-MMCs during EDM. The practical limita-

tions of these studies are the lack of advanced optimization 

tools such as AHP and GA which solve complex problems 

with multiple and conflicting responses. There is a lack of 

acceptable and of adequate analytical models to predict the 

machine response characteristics due to the stochastic nature 

of WEDM and the presence of the reinforcements in the 

host matrix material adds more complexity. It necessitates 

experimental investigations of WEDM using samples of 

aluminum-based MMC, and further developing predictive 

regression models. Because many machining parameters 

influence the process and uncertain nature of these pro-

cesses, realizing the best performance is a challenge, which 

needs to apply research on this area. At the production 

stage, manufacturing industries use such optimization tools 

for multi-objective optimization which yields maximized 

output. For meeting these challenges, the present work is 

focused on multi-objective optimization wherein weights 

have been assigned to various performance measures to cater 

to the need of various sectors. The outcome of the study 

presented in this research work will be able to give new 

guidelines to researchers and practitioners to understand the 

influence of various parameters on responses for machining 

Al/(SiCp +  GrP +  Fe2O3p) hybrid MMC.

2  Materials and Methods

The aluminum hybrid composite sample used for the present 

study has been casted by preheating SIC), Gr and  Fe2O3 

followed by mold cavity preparation. Afterward, the alu-

minum was stir-casted using an electric motor for uniform 

and vortex flow.

Electronica Sprincut-734 made WEDM was used 

for experiments. The MRR and average SR were meas-

ured during WEDM operations. The WEDM machine 

tool was programmed to cut the workpiece into a size of 

5 mm × 5 mm × 12 mm in each machining operation. The 

machined surface roughness height was measured at three 

different positions, and the mean values were taken for ana-

lyzing the machined surface quality using surface roughness 

heights measuring instrument (supplied by Surfcom 130A, 

Zeiss, Japan). The SR is based upon roughness average (Ra), 
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which is desired to be minimum, hence considered as output 

for the present study. An evaluation length of 4 mm was 

used to determine SR after each experiment. The average 

cutting speed data (mm/min) are measured upon with refer-

ence to the original length of cutting operation for each trial. 

The width of cuts (B, mm) was evaluated using Digimatic 

Caliper Mitutoyo, Japan. The relation as per Eq. (1) has got 

in use to determine the spark gap width (Wg, μm) for each 

experiment [30].

MRR for each experiment performed is based upon Eq. (2) 

[30].

Taguchi DOE technique is used for current experimenta-

tion as it has got an edge with the potential of considering 

multiple factors at once and determining the optimal param-

eters with lesser experimental trials than the conventional 

DOE approach. As per this approach, the  L27 orthogonal 

array was selected for performing the experimental inves-

tigation. According to a chosen orthogonal array, only 27 

experiments are required to be performed to study the entire 

control parameter space using the  L27 orthogonal array. Each 

control parameter is assigned to a column, and 27 control 

parameter combinations are needed.

Table 1 describes the WEDM parameters considered for 

experiments along with their chosen levels. Further, 27 com-

binations involving each factor as well as their levels in equal 

ratio to retain the orthogonality of the design of experiments 

were formulated [19]. The flowchart of the present method-

ology is shown in Fig. 1.

The SN ratio is defined in mathematical form for higher-

the-better (i.e., maximization of output, example: MRR) and 

shown as Eq. (3) [30]:

and for lower-the-better (i.e., minimization of output, exam-

ple: SR) and shown as Eq. (4) [30]:

(1)2 Wg + D = B

(2)MRR =
(

C
m

. B. H
)

mm
3∕min

(3)SN Ratio � = −10 log10

⌊

1∕n

n
∑

i=1

1
/

y2
i

⌋

Figure 2a plots the EDS spectra of a machined sample 

which indicates the presence of carbon, zinc, silicon, mag-

nesium, and oxygen, while aluminum has a major concentra-

tion at 1.5 keV. The presence of oxygen indicates the deion-

ization of dielectric fluid at elevated temperatures which 

occurs due to high pulse-on time. This phenomenon is con-

firmed by the porosity manifested in the machined surface as 

visualized in the SEM micrograph in Fig. 2b. Some cracks 

can be noticed on the machined surface owing to the high 

temperature generated from the recast layer during WEDM 

machining. However, most areas of the machined surface are 

free from cracks owing to moderate tensile residual stress in 

the recast layer. Figure 2c shows the elemental concentration 

retrieved from SEDS testing.

3  Results and Discussion

In the present work, the effect of six independent variables 

viz. Ip,  Ton, Toff, WF, WT, SV on three different dependent 

variables viz. MRR, SR and SG is investigated using regres-

sion tools, AHP, and GA.

The SN ratios of MRR, SR, and SG in all the 27 experi-

mental runs have been calculated using Minitab 19 analyti-

cal tool and are shown in Table 2. The specimen prepared 

during experimentation is displayed in Fig. 3.

As per 3D response surface plots, the interaction effects 

of Ip, Ton, Toff, WF, WT, SV on MRR are recovered. As per 

the WEDM process, the process of melt removal occurs on 

the machined surface in the form of craters. The MRR value 

starts increasing with an increase in the peak current but 

instead decreases with the pulse peak current rising further, 

as shown in Fig. 4a. The simultaneous effect of Ton and WF 

on MRR is shown in Fig. 4b. In the machining zone, the rise 

in pulse peak current provides greater electrical discharge 

energy, fostering deeper craters on the machined surface, 

leading to higher MRR. But deeper craters minimize the 

energy density of the discharge on the electrical discharge 

(4)SN Ratio � = −10 log10

⌊

1∕n

n
∑

i=1

y2
i

⌋

Table 1  Levels of variables 

used during experimentation
S. No Input parameters Notation Level Unit

1 2 3

1 Pulse peak current (Ip) A 80 100 120 A

2 Pulse-on-time (Ton) B 0.5 0.8 1.1 µs

3 Pulse-off-time (Toff) C 20 16 12 µs

4 Wire feed rate (WF) D 5 7 9 m/min

5 Wire tension (WT) E 850 1000 1200 G

6 Spark gap-set voltage (SV) F 25 30 35 V
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spot and thus decrease the MRR. With the decrease in pulse-

off time, it is shown that the values of MRR continue to 

increase disingenuously. The frequency of discharges over 

a machining period has been correlated with this case. The 

high number of discharges within a specific interval of time 

has a tendency to produce more melt and hence more MRR. 

The presence of ceramic reinforcements can diffuse a signifi-

cant amount of thermal energy which can decrease the MRR 

at a low-level setting of pulse-on-time. However, extended 

pulse duration renders a sharp spike in thermal energy and 

hence causes more erosion of the workpiece. The increase 

in wire feed had a positive impact on MRR.

Figure 5a plots the effect of Ton and WF on MRR. The 

increase in WF induced a slight increase in surface rough-

ness, and maximum surface roughness of 1.6  µm was 

achieved at 9 m/min. Whereas the increase in Ton increases 

the roughness to 1.5 µm up to 0.85 µs, it remains constant 

with further increase in Ton. The abrupt initial increase in 

roughness of materials occurs due to higher Ton, the spark 

time is elongated which erodes higher material. The phe-

nomenon of pit formation is observed at higher Ton condi-

tions which decrease the surface clarity. However, this phe-

nomenon led to a higher material removal rate as discussed. 

Figure 5b shows initially the SR increase with an increase 

Fig. 1  Process flowchart for experimentation
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in spark voltage, while after 30 V, the SR is decreased. The 

increase in SR at the medium range may be attributed to 

unstable spark at this level which created non-uniform mate-

rial removal from the surface leading to asperities. However, 

the lower and upper range yields good surface finish values 

due to uniform erosion. On other hand, SR is directly pro-

portional to wire tension. The increased frequency of oscil-

lation of wire results in the deterioration of material surface.

In Fig. 6a, the effects of Toff and Ip on SG are shown. The 

linear existence of SG variance with a time off pulse was 

observed. The breakage in pulse slightly increases the gap 

between tool and workpiece. For all current set values, the 

SG increases with the decrease in Toff. Higher spark voltage 

and lower WT combination can be shown to result in lower 

SG (see Fig. 6b). The spark voltage and wire tension are the 

most significant parameters which influence the spark gap.

4  Multi‑Objective Optimization

As discussed in the previous section, the impact of each 

parameter on output is different and non-uniform. Moreo-

ver, the parameters are interacting with each other, and 

hence it is difficult to identify optimum conditions for 

three response parameters. Conventional optimization 

techniques cannot suggest a single set of parameters for 

attaining the best values of MRR, SR, and SG for the 

present context. Hence, there is a need to implement an 

(b) 

(a)

(c)

0 1 2 3 4 5 6 7
keV

0

1

2

3

4

5

6

7

 cps/eV

 Al  O  Mg  Zn  Si  C 

Object 3077

Fig. 2  a EDS spectra of the processed specimen b SEM image of surface c weight percentage of elements
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advanced optimization technique that may suggest the 

optimum parametric settings. In the present study, regres-

sion analysis is implemented followed by GA and AHP.

4.1  Regression Analysis

The regression method is applied to investigate the effect 

of input on output. SPSS software is used to apply the 

regression method. The present work is focused on three 

response parameters; therefore, four single objective 

equations are formulated with the help of the regression 

method. In the manufacturing environment, numerous 

variables influence the output parameters. The mathemati-

cal model defines a relationship between independent and 

response parameters as shown in Eq. 5 [31].

For six variables, Eq. 5 can be written as shown in Eq. 6, 

where  C1,  C2,  C3,  C4,  C5,  C6 are the process parameters and 

Y denotes the response parameters [31].

(5)

Y = �0 +

n
∑

i=1

�i × Ci +

n
∑

i=1

�ii × C2
i
+

n
∑

i=1

�ij × Ci Cj

Table 2  SN ratios for MRR, 

SR, and SG for each experiment
Exp

No

Control parameters S/N ratios

(dB)

A

(Ip)

B

(Ton)

C

(Toff)

D

(WF)

E

(WT)

F

(SV)

MRR SR SG

1 80 0.5 20 5 850 25 14.3201 0.19322 35.8097

2 80 0.5 20 5 1000 30 14.1514  − 1.82630 35.6503

3 80 0.5 20 5 1200 35 14.9015  − 3.26323 35.3401

4 80 0.8 16 7 850 25 16.3381  − 0.83575 34.5632

5 80 0.8 16 7 1000 30 18.7604  − 1.83334 33.4733

6 80 0.8 16 7 1200 35 18.1911  − 1.91036 33.2309

7 80 1.1 12 9 850 25 19.4162  − 1.01069 32.7278

8 80 1.1 12 9 1000 30 19.6905  − 4.38645 32.6157

9 80 1.1 12 9 1200 35 19.2663  − 4.88059 32.4685

10 100 0.5 16 9 850 30 17.5704  − 3.22736 33.6387

11 100 0.5 16 9 1000 35 17.7050  − 3.76732 33.7649

12 100 0.5 16 9 1200 25 17.5716  − 5.67959 33.1122

13 100 0.8 12 5 850 30 21.1761  − 2.54210 32.6902

14 100 0.8 12 5 1000 35 21.7343  − 3.33452 32.2879

15 100 0.8 12 5 1200 25 20.9299  − 5.50162 32.7278

16 100 1.1 20 7 850 30 19.6155  − 3.26323 32.0065

17 100 1.1 20 7 1000 35 19.1808  − 2.05553 32.2879

18 100 1.1 20 7 1200 25 19.0578  − 3.18533 32.7278

19 120 0.5 12 7 850 35 18.6900  − 2.57445 33.1122

20 120 0.5 12 7 1000 25 17.7298  − 3.78419 32.5786

21 120 0.5 12 7 1200 30 17.5012  − 3.96214 32.4320

22 120 0.8 20 9 850 35 18.6566  − 0.98436 32.3597

23 120 0.8 20 9 1000 25 18.4856  − 2.58090 32.1110

24 120 0.8 20 9 1200 30 18.8461  − 4.43350 32.4685

25 120 1.1 16 5 850 35 19.7157  − 3.11886 32.0065

26 120 1.1 16 5 1000 25 20.1439  − 4.36546 32.1110

27 120 1.1 16 5 1200 30 19.6155  − 3.14914 31.9376

Fig. 3  Specimen prepared after machining
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In the present context, there are six input variables of the 

WEDM process, whereas MRR, SR, and SG are output 

parameters. Three Eqs. (7, 8, and 9) are developed, one for 

each output, using regression methods, where maximiza-

tion of MRR and minimization of SR and SG are objectives 

respectively.

(6)

Y = �
0
+ �

1
C

1
+ �

2
C

2
+ �

3
C

3
+ �

4
C

4

+ �
5

C
5
+ �

6
C

6
+ �

7
C

1
× C

2

(7)

MRR
MAX

= −94 + 0.53 A − 35.1 B + 1.74 C + 4.9 D + 0.148 E + 3.98 F − 0.00233 A × A + 26.6 B × B

− 0.056 C × C + 0.0999 D × D − 0.000036 E × E − 0.0431 F × F − 0.000486 A × E − 0.0261 A × F − 0.0324 B × E

+ 2.28 B × F + 0.00240 C × E − 0.116 C × F − 0.0111 D × E − 0.536 D × F + 0.00581 A × D × F − 0.130 B × D × F

+ 0.000217 D × E × F

Fig. 4  a Effect of Ip and Toff on MRR b Effect of Ip and WF on MRR

Fig. 5  a Effect of Ton and WF on SR b Effect of WT and SV on SR

Fig. 6  a Effect of Toff and Ip on SG b Effect of SV and WT on SG
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Surface plots showed that there is a non-uniform impact 

of each process parameter on MRR, SR, and SG of parts 

processed through WEDM process. The optimum paramet-

ric settings of MRR would adversely impact the SR and SG 

and vice versa. Hence, there is a need to identify a single 

set of parameters that would yield satisfactory results in 

terms of MRR, SR, and SG. This multi-objective problem 

of WEDM can be solved by implementing AHP and GA. 

Conventionally, the weighted sum approach, distance func-

tion method, min–max, and Taguchi techniques are used for 

solving multi-objective problems. However, the accuracy of 

these methods depends upon the knowledge of the expert 

who decides the ranking and relative importance of objec-

tive functions. Discontinuity of objective function is another 

limitation of these techniques. Hence, the combination of 

AHP and GA is used in the present study of multi-objective 

problems [32]. GA is a robust technique that eliminates the 

requirement of gradient information and inherent parallelism 

for locating design space. The primary aim is to determine a 

single combination of WEDM process parameters within the 

constraints which would simultaneously maximize the MRR 

and minimize the SR and SG. Initially, three equations for 

each objective function (MRR, SR, and SG) are converted 

into a single equation as a multi-objective function as shown 

in Eq. 13.

4.2  Implementation of AHP

The simple method to convert single objective equations into 

a multi-objective equation is a weighted sum method and the 

same technique is adopted in the present work. The weight-

age is assigned to single objective equations to formulate 

a multi-objective equation. In this research work, a hybrid 

methodology is adopted to assign the weightage to objec-

tive functions. The AHP and statistical variance are used to 

assign subjective weights and objective weights respectively 

[33]. Afterward, AHP is implemented to assign different 

(8)

SR
MIN

= −91.4 + 0.615 A − 5.5 B + 2.69 C + 4.14 D + 0.0937 E + 0.430 F − 0.00307 A × A + 3.95 B × B

− 0.0828 C × C + 0.0282 D × D − 0.000024 E × E − 0.0252 F × F − 0.000302 A × E + 0.00892 A × F

− 0.01836 B × E + 0.215 B × F + 0.001266 C × E − 0.0464 C × F − 0.00721 D × E − 0.159 D × F

+ 0.00043 A × D × F + 0.0572 B × D × F + 0.000161 D × E × F

(9)

SG
MIN

=0.088 − 0.000749 A − 0.0247 B − 0.00456 C − 0.00143 D − 0.000067 E + 0.00405 F

+ 0.000006 A × A + 0.0219 B × B + 0.000156 C × C − 0.000083 D × D + 0.000000 E × E + 0.000006 F × F

+ 0.000000 A × E − 0.000048 A × F + 0.000026 B × E + 0.00112 B × F − 0.000003 C × E + 0.000059 C × F

+ 0.000009 D × E − 0.000263 D × F + 0.000004 A × D × F − 0.000267 B × D × F − 0.000000 D × E × F

types of objective weights to each response and displayed 

in Table 3.

AHP is the most commonly used multi-criteria decision-

making tool to find the subjective priority of attributes. The 

nine-point Satty’s scale was used to develop a pairwise com-

parison between response parameters. The expert’s opinions 

were taken to formulate the pairwise comparison matrix 

[32].

Objectives weights of attributes can be determined using 

the statistical variance concept. The steps involved in finding 

the values of objective weights are mentioned below:

Step 1 Decision matrix: The values of attributes in a tabu-

lar form.

Step 2 Normalized matrix: The normalized matrix can be 

developed using Eq. 10 [33].

Step 3 Compute the values of statistical Variance: The 

values of statistical variance are found using Eq. 11 [33]:

(10)rij = aij∕

n
∑

i

aij

Table 3  Subjective weights for AHP

MRR SR SG Subjec-

tive 

weights

MRR 1 1/2 2 0.297

SR 2 1 3 0.54

SG 1/2 1/3 1 0.163

Table 4  Different objective weights assigned to response parameters

MRR SR GG

AHP Weights 0.297 0.540 0.163

Equal weights 0.333 0.333 0.333

Objective weights 0.506 0.332 0.162

Hybrid weights 0.381 0.405 0.214
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(11)V
i
=

1

n

n
∑

i=1

{

rij −

(

rij

)

mean
}2

Step 4 Determine objective weights: The objective 

weights are computed using Eq. 12 [33].

Fig. 7  Steps in implementation 

of genetic algorithm in present 

study

Selection of parent chromosomes from the population

Define fitness function

Generate Initial random population of chromosomes

Evaluate fitness for each chromosomes

Optimal or good 

solution achieved

Crossover to form new offsprings

Mutate new chromosomes

Replace the old population of chromosomes 

with the new population

End

generation=generation+1

Table 5  Single and multi-

objective optimization results
Optimization type Goal Ip Ton Toff WF WT SV

Single objective MRRMAX 80.000 0.500 12.000 5.000 850.000 35.000

Single objective SRMIN 80.000 0.500 12.000 9.000 850.000 35.000

Single objective SGMIN 120.000 1.100 12.000 9.000 1200.000 25.000

Multi-objective using equal weights ZMIN 80.000 0.500 12.000 5.000 850.000 35.000

Multi-objective using AHP weights ZMIN 80.000 0.500 12.000 5.000 850.000 35.000

Multi-objective using Objective weights ZMIN 80.000 0.500 12.000 5.000 850.000 35.000

Multi-objective using Hybrid weights ZMIN 80.000 0.500 12.000 5.000 850.000 35.000
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The hybrid weights are computed using the geometric 

mean of AHP and Equal weights. Each value of the geomet-

ric mean is divided by the sum of all geometric values. The 

objective weights assigned to different response parameters 

are shown in Table 4.

4.3  Implementation of Genetic Algorithm (GA)

GA is a nature-based algorithm and used to solve nonlin-

ear objective functions. Holland [34] developed the GA and 

further modified by Goldberg [35] in 1989. GA is used to 

achieve the best fitness values, and its results are more reli-

able, especially in a constrained optimization problem. The 

process flowchart of the genetic algorithm is shown in Fig. 7.

(12)
W

i
=

V
i

n
∑

i=1

V
i

(13)

Z
MIN

= −W
1
(−94 + 0.53 A − 35.1 B + 1.74 C + 4.9 D + 0.148 E + 3.98 F − 0.00233 A × A + 26.6 B × B

− 0.056 C × C + 0.0999 D × D − 0.000036 E × E − 0.0431 F × F − 0.000486 A × E − 0.0261 A × F

− 0.0324 B × E + 2.28 B × F + 0.00240 C × E − 0.116 C × F − 0.0111 D × E − 0.536 D × F

+ 0.00581 A × D × F − 0.130 B × D × F + 0.000217 D × E × F) + W
2
(−91.4 + 0.615 A − 5.5 B + 2.69 C

+ 4.14 D + 0.0937 E + 0.430 F − 0.00307 A × A + 3.95 B × B − 0.0828 C × C + 0.0282 D × D

− 0.000024 E × E − 0.0252 F × F − 0.000302 A × E + 0.00892 A × F − 0.01836 B × E + 0.215 B × F

+ 0.001266 C × E − 0.0464 C × F − 0.00721 D × E − 0.159 D × F + 0.00043 A × D × F + 0.0572 B × D × F

+ 0.000161 D × E × F + W
3
(0.088 − 0.000749 A − 0.0247 B − 0.00456 C − 0.00143 D − 0.000067 E

+ 0.00405 F + 0.000006 A × A + 0.0219 B × B + 0.000156 C × C − 0.000083 D × D + 0.000000 E × E

+ 0.000006 F × F + 0.000000 A × E − 0.000048 A × F + 0.000026 B × E + 0.00112 B × F

− 0.000003 C × E + 0.000059 C × F + 0.000009 D × E − 0.000263 D × F + 0.000004 A × D × F

− 0.000267 B × D × F − 0.000000 D × E × F)

MATLAB is used to run the genetic algorithm program 

codes, and the results are summarized in Table 5. The 

result of multi-objective optimization showed that the 

value of SG set voltage is constant in all conditions of 

optimization. The value of Ip, Ton and Toff is also same 

in all conditions of multi-objective optimization.

It can be concluded that values remain constant for 

equal weight, AHP weight, objective weight, and hybrid 

weight functions. Moreover, values for pulse-off time 

remain constant for all weights while values differ for the 

two parameters in the case of MRR, SR, and SG weight 

settings.

Figure 8 shows the best individual value of each param-

eter for multi-objective optimization using hybrid weights. 

It can be deduced that a total number of 72 generations 

were involved when genetic algorithm codes were exe-

cuted by MATLAB for finding the best results. Moreo-

ver, the mean and best fitness values are very close to 

each other which confirms the accuracy of the results. It is 

advised that the value of pulse peak current must be set at 

80A, pulse-on-time at 0.5 µs, pulse-off-time at 12 µs, wire 

feed rate at 12 m/min., wire tension at 850G, spark gap-set 

voltage at 35 V. The confirmatory experiments (Table 6) 

were performed at suggested set of parameters, and it was 

observed that there is an improvement in all the response 

parameters.

5  Conclusions

The hybrid aluminum metal matrix composites have been 

machined using the WEDM process under five different 

machining conditions, and output is computed in terms 

of MRR, SG, and SR. It was found that different param-

eters, i.e., Ip, Ton, Toff, WF, WT, and SV have a conflict-

ing influence on the response which led to the need for the 

Fig. 8  Current best individual using genetic algorithm
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implementation of advanced optimization tools for the selec-

tion of optimum parameters. The combined implementation 

of regression, weighted sum method, AHP, and GA has been 

performed to identify optimum parametric settings for differ-

ent objective weights. The manufacturers have the flexibility 

to adopt suggested combinations of parameters for achieving 

desired results. The following conclusions are derived from 

present experimentation:

• The results of multi-objective optimization advised to set 

the value of Ip at 80 A, Ton at 0.5 µs, Toff at 12 µs, WF 

at 5 m/min, WT at 850 G, and SV at 35 V to get optimum 

values of response parameters.

• The percentage improvement of 13.79%, 19.16%, and 

12.50% has been observed as compared to individual best 

values during the confirmatory experiments.
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