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Abstract

Based on the large-scale penetration of electric vehicles (EV) into the building cluster, a multi-objective optimal

strategy considering the coordinated dispatch of EV is proposed, for improving the safe and economical operation

problems of distribution network. The system power loss and node voltage excursion can be effectively reduced, by

taking measures of time-of-use (TOU) price mechanism bonded with the reactive compensation of energy storage

devices. Firstly, the coordinate charging/discharging load model for EV has been established, to obtain a narrowed

gap between load peak and valley. Next, a multi-objective optimization model of the distribution grid is also

defined, and the active power loss and node voltage fluctuation are chosen to be the objective function. For

improving the efficiency of optimization process, an advanced genetic algorithm associated with elite preservation

policy is used. Finally, reactive compensation capacity supplied by capacitor banks is dynamically determined

according to the varying building loads. The proposed strategy is demonstrated on the IEEE 33-node test case, and

the simulation results show that the power supply pressure can be obviously relieved by introducing the

coordinated charging/discharging behavior of EV; in the meantime, via reasonable planning of the compensation

capacitor, the remarkably lower active power loss and voltage excursion can be realized, ensuring the safe and

economical operation of the distribution system.

Keywords: Distribution network, Electric vehicles, Multi-objective optimization, Coordinated dispatch, Advanced

genetic algorithm

1 Introduction

With the continuous development of energy industry,

the utilization of renewable energy as an alternative for

fossil fuels has become a common sense of some coun-

tries [1]. Recently, the integrated energy system (IES) has

been greatly supported by the Chinese government and

turned into a research hotspot, since it benefits the inte-

gration of renewable energy, and the coordinated devel-

opment of energy system. As the terminal node of IES,

the building integrated energy system (BIES) provides

customers with flexible cascades of different local energy

resources, not only facilitating the environmentally

friendly, but also reducing the cost for consumers simul-

taneously [2, 3]. The consumers in the building can be

classified as two types: stationed institutions, and electric

vehicles (EV) owners. EV is an important part for the fu-

ture power system, for the more and more intense coup-

ling with BIES. However, with the large-scale

penetration of EV, operation of the distribution network

is enormously impacted by these random charging loads,

since problems such as harmonic pollution, three-phase

voltage imbalance, and aging of the transformers are in-

duced. Especially, the enlarged load peak-valley gap puts

forward higher requirements for the power system. The

node voltage excursion as well as the active power loss is

usually regarded as a crucial indicator reflecting the op-

eration state of the distribution system. The peak load

arisen from the aggregated charging behavior of EV

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: skyhuang1985@hotmail.com
1Hunan college of information, Changsha, China
2College of electric and information engineering, Hunan university of

technology, Zhuzhou, China

Protection and Control of
Modern Power Systems

Huang et al. Protection and Control of Modern Power Systems             (2020) 5:7 

https://doi.org/10.1186/s41601-020-0154-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-020-0154-0&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:skyhuang1985@hotmail.com


owner probably leads to low voltage even collapse, con-

currently increased system loss. Hence, guiding mea-

sures for coordinated regulation should be taken, to

minimize the negative influences of EV while satisfying

the travel demands of customers.

As part of a vehicle to grid (V2G) system [4], EV also

can be regarded as controllable power resource, to

realize the bidirectional power flow between the building

and distribution system. Additionally, time-of-use

(TOU) price mechanism is an effective method for the

integrated demand side management, which creates an

economic incentive for users to adjust their charging/

discharging time. For example, residential customers

plug in their vehicles during off-peak hours. This helps

to reduce the potential of distribution transformer over-

loads, as well as stabilize the load fluctuation by valley

filling and peak shaving, thus balance the demand and

supply.

A voltage regulation model is proposed after regula-

tion of EV devices in [5], to reduce the voltage fluctu-

ation of the power system, while the active loss has not

been included in the optimization objective. Contras-

tively, the optimized model for distribution system re-

configuration is analyzed in [6], with the only

optimization function of power loss. Researches about

energy management and optimized operation of EV

based on microgrid are also explored in many papers [7,

8]. Reference [9] similarly establishes a coordinated

scheduling model of EV in response to TOU price. The

charging/discharging plan is generated with fixed peak

and valley periods, which maybe not suitable for the

time-varying loads.

In this paper, the standard IEEE 33-node system is

taken as an example, and measures of TOU price com-

bined with the reactive power compensation devices are

adopted. We select the tradeoff between power loss and

node voltage excursion as the optimal objective. Under

the designated simulation circumstance, the optimal

compensation capacity is dynamically solved by an im-

proved genetic algorithm. Through the peak shaving and

valley filling effects on the building load curve of coordi-

nated regulation of EV, the positive guiding role of TOU

price can be directly manifested. EV as controllable load

inside BIES can participate in energy management ef-

fectively. Besides, by statistical results comparison of

power loss and relative voltage excursion, the feasibility

of reactive power compensation approach is also

verified.

2 Modeling of coordinated dispatch for EV

In the presence of large-scale penetration of EV into

BIES, the load pressure, operating cost, and reliance on

distribution grid will be increased. Coordinated dispatch

facilitates to boost the utilization of EV and improve the

demand side flexibility. Due to the intrinsic advantages

such as operational safety and energy density, the lith-

ium ion batteries of 25 kWh are selected as the power

battery for EV [10–12], and the charging power main-

tains at 2.5 kW for a single vehicle. Concurrently, the

safety threshold of the state of charge (SOC) is set to be

[10%, 90%], hence it can be inferred that the charging

time could not be more than 8 h. As the traffic infra-

structure, supposing that power consumption for EV is

15 kWh per 100 km [13], and the theoretical endurance

mileage can be calculated as 133 km.

2.1 Structure of the BIES

BIES is mostly configured as an energy cascade

utilization system which enables free power flow

among different energy types. The building cluster

provides power to residents through external distribu-

tion power grid. As illustrated in Fig. 1, the demand

side is comprised of three kinds of loads (cooling

load, heating load, power load) and EV connections.

EV devices are not considered as traditional loads

since they can also act as a power supplier. For the

V2G application, EV charging devices not only pro-

vide customers with charging services, but also allow

the EV owners to sell excessive electricity to the

power system.

2.2 Aggregated charging of EV

Aggregated charging of EV could be explained as char-

ging behavior only according to customers’ travel needs

or living habits, without any guiding principle. As the

EV travel follows a probability density distribution repre-

sented in Fig. 2:

f d xð Þ ¼ 1

xσd
ffiffiffiffiffiffi

2π
p exp½− lnx−μdð Þ2

2σ2d
� ð1Þ

where μd = 3.20, σd = 0.88, x denotes the daily

mileage of EV (mostly lies between 32 and 97 km),

so a charged 25 kWh battery can provide sufficient

Fig. 1 Framework of BIES
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energy to meet daily driving requirements. Monte

Carlo random sampling can be used to predict the

charging power demand for a single EV during a

day. In this paper, 24 h in a day is divided into 96

periods, with sampling the state of EV per 15 min.

The charging expectation for a single vehicle is

shown in Fig. 3.

2.3 Coordinated dispatch of EV

The three-stage TOU price is designated to establish

a positive guidance for the charging/discharging

process of the EV owners. Depending on the load

change of the power grid, the corresponding electri-

city price level of each period is confirmed, to achieve

the peak shaving and valley filling. In the modeling

process of TOU price, minimizing the peak valley dif-

ference of the total loads in building cluster is chosen

as the optimization objective, and the application

background is specified as follows:

(1) the battery power meets the driving demand of the

EV owners, and there is no other power

consumption behavior beside the normal travel;

(2) user charge and discharge without exceeding the

safe range of the SOC, and 80% of the total owners

participate in the coordinated dispatch (λ = 0.8);

(3) pv, pp and pf are defined as the electricity price of

valley, peak and normal period respectively, then

the price model p(t) can be described as:

p tð Þ ¼
( pv t1≤ t≤ t2
pp t3≤ t≤ t4
p f else

ð2Þ

where t1-t4 represents the start and end moment of val-

ley period, as well as peak period, respectively;

(4) before charging/discharging, the user can query

the current battery status of the EV and

independently select the charging/discharging

time. The parameters tsc, tc, tsd, td are defined as

follows:

tsc, tsd -the start moment for users to charge/discharge;

.

tc, td -duration of charging/discharge process.

Users participating in the coordinated dispatch can se-

lect tsc or tsd according to Eqs. (3) and (4):

tsc ¼
(

t1 þ randc� t2−tcð Þ 0≤ tc≤ t2 −t1
t1 else

ð3Þ

tsd ¼
(

t3 þ randd � t4−tdð Þ 0≤ td ≤ t4 −t3
t3 else

ð4Þ

where randc and randd are random numbers in [0,

1]. It can be known that for the TOU price model,

parameters t1-t4 determine the peak and valley areas,

and consequent daily load characteristics. Hence, they

are key factors for optimal control of the distribution

network.

3 Modeling of distribution grid and var

compensator
The guiding ideology for the distribution network

optimization can be concluded as follows: on the prem-

ise that the parameters such as branches and loads are

known, and various constraints are satisfied, dynamically

adjust the output of the pre-set capacitor bank to

optimize the comprehensive indices of active power loss

and voltage excursion. Finally, the economical and safe

operation of the distribution power system can be

achieved.

3.1 Objective function

The optimization objective function comprises two im-

portant issues: active power loss and voltage excursion

of the distribution system.

Fig. 2 Probability of driving distance during 1 day

Fig. 3 Original charging requirement for a single EV
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3.1.1 Active power loss

The first objective is the minimization of the total active

power loss of the distribution network, which can be

mathematically modeled as Eq. (5):

min f 1 ¼

X

n

i¼1

X

n

j¼1

PLij

X

n

i¼1

X

n

j¼1

P
0

Lij

ð5Þ

where P’Lij、PLij respectively denote the active power

loss of the branch (i, j) before and after

optimization.

3.1.2 Voltage excursion

Node voltage is an important indicator reflecting

the security and service quality. To avoid all the

voltages moving toward their maximum limits after

optimization, the deviation of voltage from the

rated value is chosen as an objective function, that

is:

min f 2 ¼

X

n

j¼1

U j−U jN

� �

X

n

j¼1

U
0

j−U jN

� �

ð6Þ

where U’

j、Uj、UjN respectively represent the actual

voltage of the node j before and after optimization, and

the rated voltage of the node j.

Combining the above two indicators, the objective

function can be expressed as:

minF ¼ λ1

X

n

i¼1

X

n

j¼1

PLij

X

n

i¼1

X

n

j¼1

P
0

Lij

þ λ2

X

n

j¼1

U j−U jN

� �

X

n

j¼1

U
0

j−U jN

� �

þ μ
X

n

j¼1

ΔU j

U j max−U j min

� �2

ð7Þ

where λ1 and λ2 are the weight coefficients for the

two optimization objectives (λ1 = λ2 = 0.5). The penalty

function is used to deal with the node voltage out-of-

limit problem,Ujmin and Ujmax are the minimum and

maximum voltage values of the node j; while μ indi-

cates the penalty factor (μ = 1000), and ΔUj is defined

as (8):

ΔU j ¼
(

U j−U j max U j > U j max

0 U j min≤U j≤U j max

U j min−U j U j < U j min

ð8Þ

3.2 Constraints

The basic constraints of distribution power system

optimization mainly include equality constraints (power

flow) and inequality constraints as follows:

A. SOC of lithium battery constraint:

SOCmin≤SOC≤SOCmax ð9Þ

where SOCmin and SOCmax are the safety threshold

values of SOC, which are 10% and 90% respectively.

B. compensation capacity constraint:

0≤C j ¼ k jC jN ≤C j max ð10Þ

where Cj and Cjmax illustrate the output capacity of the

capacitor bank installed on the node j, and its maximum

capacity respectively; CjN is the capacity of a single cap-

acitor included in the capacitor bank; kj is the number of

single capacitors on the node j.

3.3 Algorithm

The purpose of multi-objective optimization is to deter-

mine a set of Pareto solutions, which compromise each

optimization objective. Herein, a novel genetic algorithm

based on elite preservation policy is introduced to solve

the optimization mathematical model established in 3.1

and 3.2. Principally, the crossover probability Pc and mu-

tation probability Pm are improved as follows [14]:

Pc ¼
( k1 Fmax−F

0ð Þ
Fmax−Favg

F 0
≥ Favg

k2 F 0
< Favg

ð11Þ

Pm ¼
( k3 Fmax−F

00ð Þ
Fmax−Favg

F 00
≥ Favg

k4 F 00
< Favg

ð12Þ

where k1-k4 are constant, which are set to be

0.5、0.9、0.02 and 0.05; while Favg、Fmax、F′ and

F″ respectively demonstrate the average and max-

imum fitness value of individuals, the better fitness

of the two crossover individuals, and the fitness of

the mutation individuals. By improving Pc and Pm, it

helps to duplicate the good individuals and elimin-

ate the bad solutions. In order to improve the cal-

culation efficiency, the elite preservation policy is

taken into consideration. After the power flow cal-

culation of the initial population, 20% of the indi-

viduals with the best compromise effects of network

loss and voltage fluctuation are reproduced directly
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to the next generation, while rest individuals are

randomly selected by the roulette wheel method and

produced according to the crossover and mutation

operations. The flowchart of the algorithm is shown

in Fig. 4.

4 Results and discussion
The standard IEEE 33-node power distribution sys-

tem shown in Fig. 5 is tested for verification, and

its load information is detailed in reference [15].

The basic parameters of the network for the per-

unit system are 10 MVA and 12.66 kV. It is

assumed that the building loads are evenly distrib-

uted on these four nodes: 3, 10, 18, 32. Consider-

ing the time-varying characteristics of the daily

loads, a series of building load data including cool-

ing load, heating load and power load, whereas

without EV integration, for a certain day are col-

lected in Fig. 6 (original building loads). Distrib-

uted generator DG1 and DG2 are respectively

installed on the node 2 and 5, with the output of

1 + j0.484 MVA. The capacitor banks for compen-

sation are installed on the node 17 and 32, with

the maximum capacity of 1 Mvar. EV scale inside

the buildings connected to the distribution grid is

500, with the charge/ discharge power of 2.5 kW.

Furthermore, the convergence accuracy of power

flow calculation is 10− 4.

Based on the building load curve in Fig. 6, the op-

timized result under the coordinated dispatch of EV

is obtained, as depicted in Fig. 7. For comparison,

the aggregated EV charging result is also exhibited.

It can be observed that the load area between 17:

00–20:00 is intensified by the aggregated EV char-

ging behavior, which puts forward higher require-

ments for the power supply. The attempt of

coordinated charging/discharging regulation could

realize the function of load peak shaving and valley

filling, circumventing above problem. By introducing

the TOU price, which makes full use of the schedul-

ability of V2G, the load curve can be smoothed,

while guaranteeing the charging demand of EV

owners.

Concretely, the distribution system is most prone

to black out at about 19:00 for the original build-

ing load curve, with the peak load of 3715 kW.

However, this would be further increased to 4167

kW under the access of aggregated EV charging.

After coordinated regulation, the peak load can be

optimized to 3608 kW (decreased by 13.41%). Ac-

cordingly, voltages for all of the nodes are also cal-

culated, as demonstrated in Fig. 8. Supposing that

a voltage dip lower than 0.95 p.u. or a voltage

higher than 1.05 p.u. is deemed as voltage out-of-

limit, then it is discovered that under the EV

aggregated charging, the system voltage drops ser-

iously. Only 11 node voltages are better than the

Fig. 4 Flowchart of the developed genetic algorithm

Fig. 5 IEEE 33-node system

Fig. 6 Daily original building load curve
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lower bound, and the worst one of 0.834 p.u. oc-

curs on the node 32. In contrast, the system volt-

age is overall heightened on coordinated regulation

mode, and the voltage of the node 32 is raised up

to 0.846 p.u., close to its value when the distribu-

tion system operates with original building loads

(0.844 p.u.).

Moreover, through the power flow analysis,

Table 1 illustrates the statistical results of the two

indices for the system under different EV regulation

modes. It’s obvious that the integration of building

loads increases the power supply burden of distri-

bution system, since the problems such as power

consumption and voltage quality are more serious.

By the introduction of TOU mechanism, the coor-

dinated management of flexible loads inside the

buildings not only boosts the utilization of EV, but

conducive to the economical and safe operation of

the grid, consistent with the concept of energy con-

servation and emission reduction of modern power

system.

DG1 and DG2 separately connected to the node 2

and 5 can further support the system voltage. After

the DG input, 12 nodes exceed the voltage lower

limit, the smallest value is still on the node 32,

which is raised to 0.874 p.u. The relative voltage

excursion of each node totally adds up to 2.327

p.u., decreased by 22.92% compared to 3.019 p.u. of

the original building loads. Finally, by employing

the improved genetic algorithm analyzed in 3.3, the

optimal compensation capacities of the capacitor

banks on the node 17 and 32 are solved as 0.95

and 0.81 Mvar respectively. The risk of voltage out-

of-limit is effectively reduced after reactive compen-

sation, which can be testified by the node voltage

of 32 (0.914 p.u.). Based on the coordinated

dispatch of EV devices, Fig. 9 declares the node

voltages of the distribution system before and after

compensation, emphasizing an excellent effect of

voltage fluctuation suppression. After reactive com-

pensation by DG and capacitor banks, the total

voltage excursion is optimized to 1.591 p.u. (de-

creased by 47.3% compared to that of the original

building loads).

In addition, as shown in Table 2, when DG and

capacitor are not installed, the active power loss of

the system is 647.2 kW; which is reduced to 411.9

kW when DG is put into operation but capacitor

compensation is not available. After both of the DG

and capacitor banks are put into use, the system

loss is further decreased to 397.3 kW. Compared

with power consumption of 666.9 kW for the ori-

ginal building loads, the reduction achieves 2.95%,

Fig. 8 Voltage curves under two operation modes of EV

Fig. 9 Comparison results of node voltages before and after

reactive compensation

Fig. 7 Load curves under two regulation modes of EV

Table 1 Indices under different EV regulation modes

Regulation mode Relative voltage excursion
(p.u.)

Power loss
(kW)

Without building loads 1.701 202.6

With original building
loads

3.019 666.9

Aggregated charging of
EV

3.199 755.2

Coordinated dispatch of
EV

2.978 647.2
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38.2% and 40.4% respectively. Therefore, the rea-

sonable dispatch of EV weakens the burden of the

distribution network for power supply, concurrently

the multi-objective optimization approach also en-

sures the significant improvements of system power

loss and node voltage excursion, proving that the

proposed strategy in this paper could obtain out-

standing performance.

It’s worth to note that the response degree of the

EV users λ also has an impact on the optimal ef-

fects for the distribution network. For the demand

side, participating in regulation favors the economic

interest of customers. For the network, a higher λ

definitely corresponds to a weaker difference be-

tween load peak and valley. This is conducive to

improving both the initiative of users and security

of the distribution system.

5 Conclusions

In dependence on the basic principle of optimal control

for distribution network, considering the popularization of

EV devices in BIES, an optimization strategy is put for-

ward in this paper. The strategy combines the pricing

mechanism in the buildings and the dynamic compensa-

tion of the energy storage device, which is designed to bal-

ance the optimization between system power loss and

node voltage fluctuation. By simulation analysis and com-

parison on the MATLAB, the overall ability of the

optimization strategy is illustrated. Firstly, BIES provides

access for EV, enhancing more space for schedulable re-

source capacity. Next, introduction of EV coordinated

dispatch by the TOU price mechanism promotes their ini-

tiative and utilization, and alleviates the power supply de-

mand of the distribution network by load peak shaving

and valley filling. Finally, under the condition of basic con-

straints, the optimal solution of compensation plan by

capacitor banks can be determined through an improved

genetic algorithm. After scheduled charging/discharging

of EV and reactive compensation, the active power loss

and risk of node voltage out-of-limit are improved simul-

taneously, promoting the economical and safe operation

of the distribution network. This optimal strategy can be

extended to other cases, and has great significance for the

optimal management of power grid.
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