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Abstract: When a permanent magnet synchronous motor (PMSM) is designed according to the
traditional motor design theory, the performance of the motor is often challenging to achieve the
desired goal, and further optimization of the motor design parameters is usually required. However,
the motor is a strongly coupled, non-linear, multivariate complex system, and it is a challenge
to optimize the motor by traditional optimization methods. It needs to rely on reliable surrogate
models and optimization algorithms to improve the performance of the PMSM, which is one of the
problematic aspects of motor optimization. Therefore, this paper proposes a strategy based on a
combination of a high-precision combined surrogate model and the optimization method to optimize
the stator and rotor structures of interior PMSM (IPMSM). First, the variables were classified into
two layers with high and low sensitivity based on the comprehensive parameter sensitivity analysis.
Then, Latin hypercube sampling (LHS) is used to obtain sample points for highly sensitive variables,
and various methods are employed to construct surrogate models for variables. Each optimization
target is based on the acquired sample points, from which the most accurate combined surrogate
model is selected and combined with non-dominated ranking genetic algorithm-II (NSGA-II) to find
the best. After optimizing the high-sensitivity variables, a new finite element model (FEM) is built,
and the Taguchi method is used to optimize the low-sensitivity variables. Finally, finite element
analysis (FEA) was adopted to compare the performance of the initial model and the optimized ones
of the IPMSM. The results showed that the performance of the optimized motor is improved to prove
the effectiveness and reliability of the proposed method.

Keywords: IPMSM; sensitivity analysis; surrogate model; Taguchi method

1. Introduction

Due to its high power factor, high torque density, high efficiency, high reliability,
and other advantages, PMSM is widely used in electric vehicles, aerospace, and other
vital fields [1–3]. To design an efficient and reliable PMSM, the researchers optimized
both the controller and the body structure of the PMSM. The structure optimization of
the PMSM is mainly divided into single-objective optimization [4,5] and multi-objective
optimization [6–26] of the motor. Traditional single-objective optimization methods often
consider only individual motor performance. In contrast, the overall performance of the
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PMSM is affected by output torque, torque ripple, speed range, loss, temperature rise,
and many other factors. In [4,5], a method for effectively weakening the tooth groove
torque of the motor is proposed; however, other performance indicators, such as average
torque, loss, efficiency, etc., are not taken into account. Although this single-objective
optimization method can significantly improve the particular performance index of the
motor, it is always premised on sacrificing other performances of the motor, which is
not conducive to the overall performance improvement of the PMSM. Therefore, the
current PMSM optimization study is mainly a multi-objective optimization method. In the
literature [6–8], the parametric scanning method is applied to optimize the performance
of the motor. This method can effectively find out the combination of design variables
that meet the objective conditions, but this process requires much computation, is very
time-consuming, and is not suitable for application in the case of many design variables.
In order to reduce the computation time, in the literature [9–11], the Taguchi method is
introduced to optimize the objective performance of the motor. This method finds the
best combination of design variables based on orthogonal test design and analysis. It can
effectively optimize the performance of the motor with fewer trials, and the optimization
efficiency is high. Therefore, the Taguchi method is often used by designers to optimize
the design of mechanical structures. However, in the case of large value ranges of design
variables, the Taguchi method has a large span of adjacent value levels in the design space,
and many high-quality design variables will be ignored. The optimization accuracy is
insufficient. To overcome this difficulty, in the literature [12,13], the combination of fuzzy
theory and the Taguchi method is introduced to convert multiple objectives to a single
objective and update the value ranges of design variables in the optimization process based
on the sequential Taguchi method, and then again optimize the performance of the IPMSM,
thereby effectively improving the optimization accuracy. However, this method requires
much manual calculation with complicated data processing.

To further improve the multi-objective optimization effect of the PMSM, in addition to
the aforementioned Taguchi method, the response surface method [14,15], and the intelli-
gent optimization algorithm [17–25], other methods are also applied in the optimization
design of the motor and provide more optimization solutions to improve the performance
of the motor. In the literature [14,15], the response surface method is adopted to obtain the
non-linear relationship between variables and objectives and perform a comprehensive
analysis to obtain the best combination of design variables of the performance of the motor.
The motor optimization design based on the intelligent optimization algorithm is mainly
used to build the surrogate model and then be combined with the optimization algorithm
to look for the combination of variables that meet the requirements [16]. The surrogate
models commonly used in optimization problems of the PMSM are the response surface
method (RSM) model [17], the Kriging model [18], the support vector regression (SVR)
model [19], etc. The reliability of the whole optimization is directly determined by the
goodness of the surrogate model. If the surrogate model does not accurately reflect the
mapping relationship between the design variables and the optimization objectives, even if
it is combined with the optimization algorithm, it cannot produce accurate and effective
results. The optimization algorithms commonly used in optimizing the PMSM are genetic
algorithms [20], particle swarm algorithms [21], etc. In the literature [22], radial basis func-
tion (RBF) neural network and multi-island genetic algorithm (MIGA) are combined for the
torque performance optimization of the motor. In the literature [23], the average torque, the
torque ripple, the average suspension force, and the suspension force ripple of the motor are
taken as the optimization objectives. In the optimization process, the combination of RSM
and improved MOPSO is adopted. The results show that the torque Performance of the mo-
tor is improved. However, the RSM usually uses the relationship between the second-order
polynomial fitting variables and the objective performance. The fitting accuracy cannot
be guaranteed to be high enough when there are many variables. In the literature [24], to
obtain a more accurate approximation relationship between the design variables and the
optimization objectives, a variety of different surrogate models are established, analyzed,
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and compared. The best-performing random forest (RF) surrogate model is selected to
optimize the performance indicators of the motor in combination with NSGA-II. Although
the surrogate model combined with the intelligent optimization algorithm can effectively
obtain the optimal combination of design variables in the optimization design of the PMSM,
as the number of design variables increases, the accuracy of the surrogate model decreases,
and the convergence of the optimization algorithm is more difficult. It is a challenge to
obtain the optimal value. In this case, the optimization strategy of the PMSM is very critical.
By taking into account many design variables [25], the sensitivity analysis method can be
used to divide the design variables into two layers of sensitivity and insensitivity and then
optimize them, respectively. The results show that this strategy can effectively solve the
optimization problem of many design variables. However, in that paper, only the torque
performance of the motor is considered. In the literature [26], a strategy for optimizing
the structure of the IPM motor based on deep learning is proposed. The process trains
the model by inputting a cross-sectional image of the rotor structure of the motor and the
corresponding output performance data. Then it selects the best combination of design
variables based on the trained model. However, the data samples required by the method
are too large, and the technique is very time-consuming.

In this paper, a multi-objective optimization strategy based on a combined surrogate
model and the optimization algorithm is proposed to optimize the average torque, the
torque ripple, and the loss of the IPMSM. The rest of this paper is as follows: The FEM
model of the IPMSM is established, and the optimization process of IPMSM is introduced
in Section 2. In Section 3, the optimization variables and objectives are determined, and
the optimization variables are divided into high-sensitivity variables and low-sensitivity
variables according to the comprehensive sensitivity analysis. The high-sensitivity vari-
ables are optimized by using the surrogate model in combination with NSGA-II, and
the low-sensitivity variables are optimized by using the Taguchi method. In Section 4,
the performances of the pre-optimization and post-optimization motors are verified and
contrasted. Conclusions are drawn in Section 5.

2. IPMSM Models and Optimization Process

In this paper, an IPMSM is taken as the optimization specimen. The FEM of IPMSM
is shown in Figure 1a, and the main parameters of the IPMSM are shown in Table 1. The
main dimensions of the motor are set within the reasonable design range, and the PMs are
inserted into the V-shaped structure rotor core.
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Table 1. Primary parameters of the IPMSM.

Parameter Unit Value

Rated speed rpm 3000
Rated power kW 30
Rated voltage V 336

Stator outer radius mm 210
Stator inner radius mm 136.5
Rotor outer radius mm 135

Axial length mm 210
PM - NdFe35

Number of poles/slots - 8/48

The flowchart of the multi-objective optimization method of the motor proposed in
this paper is shown in Figure 2. The optimization steps are present as follows:
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Figure 2. Flowchart of multi-objectives optimization method.

1© Determining the optimization objectives and variables and establishing the parame-
terization model of the motor through parameterization settings.

2© Performing subsequent optimizations by dividing the optimization variables into two
layers of high-sensitivity and low-sensitivity according to the sensitivity value of the
optimization variables toward the optimization objectives.

3© Obtaining sample datasets by using LHS and FEM for high-sensitivity optimiza-
tion variables and then constructing a high-precision surrogate model based on the
sample datasets.
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4© Obtaining the optimal combination of high-sensitivity optimization variables based on
the high-precision surrogate model and NSGA-II and optimizing the low-sensitivity
optimization variables with the Taguchi method.

5© Evaluating the performances of the initial and optimized motors.

3. Multi-Objective Optimization of IPMSM
3.1. Determination of Optimization Variables and Optimization Objectives
3.1.1. Determination of Optimization Objectives

An electromagnetic (EM) torque is one of the vital performance indicators of the
IPMSM, and the interaction of the magnetic field around the IPMSM stator current and the
PM generates an electromagnetic torque. During the operation of the IPMSM, the value
of the EM torque is not constant and fluctuates around the average torque. The degree of
fluctuation can be expressed by torque ripple. The torque ripple is a ratio of the difference
between the maximum peak value and the minimum peak value of the electromagnetic
torque to the average torque. During motor operation, as the torque ripple increases, the
vibration of the motor increases, and stability decreases. The calculation equation of the
electromagnetic torque and the torque ripple can be expressed as [27]:

Tem =
3
2

p
[
ψ f iq + (Ld − Lq)idiq

]
(1)

Ta = avg(Tem) (2)

Tr =
Tem_max − Tem_min

Ta
× 100% (3)

where Tem is the electromagnetic torque; p is the polar logarithm; ψf is the PM chain;
Ld and Lq are the d-axis and q-axis inductances of the motor, respectively; and id and iq
are the d-axis and q-axis currents of the motor, respectively. Tem_max is the maximum
peak value of the electromagnetic torque, and Tem_min is the minimum peak value of the
electromagnetic torque.

In the process of electromechanical energy conversion within the IPMSM, there should
be a certain loss that includes copper loss, iron loss, PM eddy current loss, and additional
loss, among which iron loss and copper loss are dominated. Over-loss leads to a reduction
in motor efficiency and an increase in temperature, so it is significant to reduce the loss
during the operation of the motor. Based on the above analysis, average torque, torque
ripple, iron loss, and copper loss of the motor are selected as the optimization objectives.
The iron loss of the motor can be expressed as [28]:

p f e = ph + pc + pa = kh f Bα
m + kc f 2B2

m + ka f 1.5B1.5
m (4)

where ph is the hysteresis loss, pc is the eddy current loss, pa is the abnormal eddy current
loss, Bm is the magnetic density amplitude of the iron core, f is the frequency, kh is the
hysteresis loss coefficient, ka is the abnormal eddy current loss coefficient, and α is the
Stamets coefficient.

The copper loss pCu of the IPMSM can be expressed as [29]:

pCu = mI2R (5)

where m is the number of phases, I is the effective value of the phase current, and R is the
phase resistance.

3.1.2. Selection of Optimization Variables

As shown in Figure 1b, the installation position of PM in the core of the motor rotor
depended on the dimensions of hpm, wpm, rib, hrib, o2, and b1. Changes in the usage and
position of the PM cause changes in the internal magnetic field intensity distribution of
the motor, thus affecting the output torque performance of the motor. The stator bs0 in
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the iron core of the stator has a great impact on the air gap magnetic conductance of the
motor, which affects the tooth groove torque of the motor. The tooth groove torque causes
the motor to vibrate and run unstably, which is one of the main causes of excessive torque
ripple, so optimizing bs0 can play a role in suppressing the torque ripple of the motor.
The area of each groove in the iron core of the stator is mainly determined by wt and hs2.
Changes in wt and hs2 affect the magnetic field distribution of the teeth and the yoke of
the stator. Therefore, it has a great and certain impact on the iron loss and the copper loss,
respectively, during the motor operation. On the other hand, the conversion efficiency of
electromechanical energy is mainly affected by the air gap dimension between the outer
surface of the rotor and the inner surface of the stator. Therefore, the length of the air gap is
a crucial dimension and has a significant impact on the performance of the motor. Based
on the above analysis, the structural parameters of hs2, bs0, wt, hg, rib, wpm, o2, b1, hrib, and
hpm were selected as the variables for this optimization. The value range for each variable
is presented in Table 2. To facilitate the subsequent change in the structural parameters of
the motor, it is necessary to parameterize the relevant structural parameters in the FEM of
the motor and as shown in Figure 1b.

Table 2. Initial values and value ranges for optimization variables.

Symbolic Representation Initial Value (mm) Value Range (mm)

hs2 21 18–24
hpm 4.5 4–5
bs0 2 1.5–3
wt 4.53 4–5
hg 0.75 0.5–1
o2 20 18–22
b1 4 3.5–4
rib 6 5–7

hrib 2.4 2–3
wpm 33 32–36

3.2. Sensitivity Analysis

Because the number of optimization variables is up to 10, if the polynomial fitting or
the surrogate model is used to construct the functional relationship of these ten optimization
variables and the optimization objectives simultaneously, it is not easy to ensure that the
surrogate model has enough fitting quality. In particular, some non-sensitive optimization
variables are easily ignored. Moreover, multi-objective optimization algorithms require
more computational time when dealing with many optimization variables, even if it
is difficult to converge. Therefore, it is necessary to reduce the dimensionality of the
optimization variables. The original ten optimization variables are divided into two groups
with low and high sensitivity. To rationally allocate the combination of the optimization
variables, it is necessary to analyze the sensitivity of each optimization variable to the
optimization objective and allocate the sensitivity of the optimization objectives according
to the optimization variables. The sensitivity analysis step is as follows: First, the input
variables (optimization variables) and the output objectives (optimization objectives) are
determined, Secondly, sampling the input variable by the sample extraction method DOE
(Design of Experiment). Then, the output objectives of the corresponding samples are
obtained based on FEA. Finally, the sensitivities of each variable to the output objectives
are calculated.

The value ranges for optimization variables are shown in Table 2. Since the motor is
a strongly coupled, non-linear complex system, it is necessary to consider the interaction
between the variables when sampling the sample points. In the sampling process, if a simple
random sampling (SRS) method is used to sample the variables within the value ranges, the
previously generated samples are not considered when developing each new model, which
has large randomness and uncertainty and may not be able to obtain uniformly distributed
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samples. Therefore, a stratified sampling technique LHS [30] is introduced, and the specific
implementation steps are as follows:

1© Distributing the range of the value for each variable into n intervals of the same length.
2© Taking only one sample in each interval of each variable and taking the samples in

each interval at random.
3© Randomly combining the samples sampled in step 2©.

There are some variables in the IPMSM, and minor changes in these variables will
have an enormous impact on the performance of the motor. Therefore, the number of
samples in this sampling is selected as 100, ensuring that the distance between adjacent
samples drawn for each variable is small enough. After LHS processing, the samples are
sufficiently representative to consider the interaction between the variables adequately.

After obtaining a uniformly distributed sample, the output value of each sample is
calculated by FEA. Then the Pearson correlation coefficient (PCC) is used to reflect the
degree of sensitivity between the optimization variable and the optimization objective.
The value of the PCC ranges from −1 to 1. When the PCC is greater than 0, it indicates
a positive correlation between the optimization variable and the optimization objective.
When the PCC is less than 0, it indicates a negative correlation between the optimization
variable and the optimization objective. The absolute value of the PCC closer to 1 indicates
that there is a strong correlation, and the PCC’s calculation equation is:

ρ(X, Y) =
COV(X, Y)

σXσY
(6)

where COV (X, Y) is the covariance of the optimization variable X, and the optimization
objective Y, σX, and σY are the standard deviations of X and Y, respectively.

The sensitivity of each optimization variable to the optimization objective is calculated
according to Equation (6), and the results are shown in Figure 3. Each optimization
variable is different for the PCC of the different optimization objectives. For instance, the
optimization variables with a significant impact on Tr are bs0, wt, hg, rib, and wpm. The
optimization variables with an enormous impact on pCu are hs2 and wt. The optimization
variables with a significant impact on Ta are bs0, wt, and wpm. The optimization variables
with an enormous impact on pfe are hs2, wt, and hg. Based on the above analysis, the
optimization variables that have a significant effect on each optimization objective are
not identical, and it is impossible to select the key optimization variables. Therefore, it is
necessary to study the sensitivity of each optimization variable as follows:

Senc(xi) = ω1|STa(xi)|+ ω2|STr (xi)|+ ω3

∣∣∣Sp f e(xi)
∣∣∣+ ω4

∣∣SpCu(xi)
∣∣ (7)

where xi is the optimization variable; STa(xi), STr(xi), Spfe(xi), and SpCu(xi) are the sensitivity
values of xi to Ta, Tr, pfe, and pCu, respectively; Senc (xi) is the comprehensive sensitivity
of the optimization variable xi; ω1, ω2, ω3, and ω4 are the weight coefficients of aver-
age torque, torque ripple, iron loss, and copper loss, respectively; and ω1 + ω2 + ω3 +
ω4 = 1. In this stage, setting the weighting ratio of torque performance and losses to
0.6:0.4, ω1 = ω2 = 0.3, ω3 = ω4 = 0.2. The composite sensitivity value of each optimization
variable is studied from Equation (7) and as shown in Table 3. Stratification is performed
according to the comprehensive sensitivity values of the optimization variables. Using the
stratified optimization strategy can greatly improve optimization accuracy and efficiency.
First, the optimization variables are sorted in the order of the comprehensive sensitivity
from high to low. The first six optimization variables are classified as high-sensitivity
variables, and the remaining ones are classified as low-sensitivity variables. The final
high-sensitivity optimization variables are hs2, bs0, wt, hg, rib, and wpm. The low-sensitivity
ones are o2, b1, hrib, and hpm.
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Table 3. Comprehensive sensitivity values of optimization variables.

Variables STa (xi) STr (xi) Spfe (xi) SpCu (xi) Senc (xi)

hs2 −0.08 −0.17 0.89 0.66 0.39
hpm 0.18 0.05 0.05 0.01 0.08
bs0 0.31 0.58 0.06 −0.07 0.29
wt −0.28 −0.35 −0.22 −0.38 0.31
hg 0.06 −0.48 −0.32 0.19 0.26
o2 0.18 −0.13 0.09 −0.02 0.12
b1 0.11 −0.16 −0.1 −0.18 0.14
rib 0.06 −0.42 0.08 −0.05 0.17

hrib −0.17 0.03 −0.05 −0.19 0.11
wpm 0.87 0.28 0.1 0.01 0.37

3.3. Establishment of the Surrogate Model

In the high-dimensional, non-linear optimization problem, if the parametric scanning
method or evolutionary algorithm is directly employed to search within the value ranges
of the optimization variable, thousands of FEMs need to be built and calculated with huge
time and costs. Therefore, we used the high-precision surrogate model to fit the complex
relationship between the optimization variables and the optimization objectives. As a
result, there is no need for many data samples to simulate a similar simulation model,
which significantly improves the optimization efficiency.

To obtain a more accurate surrogate model, in this paper, six regression prediction
algorithms, including (1) back propagation (BP), (2) Kriging, (3) convolutional neural
network (CNN), (4) random forest (RF), (5) support vector regression (SVR), and (6) extreme
gradient boosting (XGboost) are used to construct the surrogate model of optimization
variables and optimization objectives. The settings of the BP neural network are: the
number of layers of the BP neural network is 3. The number of neurons in the input layer
is 6, the number of hidden layers is 1, and the number of neurons in each hidden layer is 5.
The number of neurons in the output layer is 1. The settings of CNN are: the input layer of
CNN is set to [6 1 1], the number of convolutional layers is 1, the size of the convolutional
kernel is set to [3 1], and the number of convolutional kernels is 16. The activation function
used in the activation layer is ReLU. The filter of the pooling layer is set to [2 1], and the
step size is 2. The number of neurons in the fully connected layer is 384, and the number of
neurons in the output layer is 1. Then, the evaluation indicators under the two groups of
normalization and non-normalization of sample points are calculated, respectively. The
total number of datasets is 300, and the dataset is divided into a training set and a test
set with a ratio of 8:2. The accuracy of the surrogate models are compared by calculating
the evaluation indicators. Commonly used regression model evaluation indicators are
coefficient of determination (R2), root mean square error (RMSE), mean absolute error
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(MAE), mean square error (MSE), mean absolute percentage error (MAPE), and symmetric
mean absolute percentage error (SMAPE), where RMSE, Mae, and MSE cannot reflect the
goodness of the model when the selection range of multiple objective functions has a big
difference. Therefore, the most suitable surrogate model is selected from the R2, MAPE, and
SMAPE of the main comparison models. R2 is the evaluation indicator that best reflects the
degree of fit. The closer R2 to 1, the better the fitting. On the other hand, the smaller MAPE
and SMAPE, the better the effect of the predictive model. The calculation of indicators of
these three regression evaluations can be expressed as follows:

R2 = 1− ∑n
i=1 (yi −

∧
yi)

2

∑n
i=1 (yi −

−
y)

2 (8)

MAPE =
100%

n ∑n
i=1

∣∣∣∣∣yi −
∧
yi

yi

∣∣∣∣∣ (9)

SMAPE =
100%

n ∑n
i=1

|∧yi − yi|

(|∧yi|+ |yi|)/2
(10)

where n is the number of samples in the test set, yi is the actual values of the samples of the

test set, ŷi is the predicted values of the samples of the test set, and
−
y is the average value

of the actual values of the samples of the test set. The test results of each surrogate model
are shown in Figures 4 and 5, and the specific evaluation indicators are shown in Table 4.
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of Tr; (c) test results of pfe; (d) test results of pCu.
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Table 4. Evaluation indicators of each surrogate model.

Surrogate
Model

Evaluating
Indicator

Optimization Objective

Normalization of Sample Data No Normalization of Sample Data

−Ta Tr pfe pCu −Ta Tr pfe pCu

BP
MAPE (%) 0.310 2.155 0.473 3.504 0.308 4.179 0.342 6.038

SMAPE (%) 0.310 2.152 0.473 3.552 0.308 4.157 0.341 5.832
R2 0.998 0.988 0.996 0.996 0.998 0.923 0.998 0.997

Kriging
MAPE (%) 1.471 4.483 0.779 10.400 1.471 4.483 0.779 10.400

SMAPE (%) 1.459 4.400 0.781 9.846 1.459 4.400 0.781 9.846
R2 0.963 0.938 0.990 0.940 0.963 0.938 0.990 0.940

CNN
MAPE (%) 0.824 2.921 1.856 10.757 1.113 13.347 5.041 31.017

SMAPE (%) 0.828 2.898 1.877 10.419 1.109 13.678 5.206 28.501
R2 0.990 0.971 0.953 0.981 0.983 0.491 0.721 0.727

RF
MAPE (%) 2.684 8.386 2.767 21.774 2.886 8.314 2.675 25.023

SMAPE (%) 2.668 8.370 2.759 19.671 2.867 8.248 2.671 22.27
R2 0.908 0.782 0.881 0.805 0.892 0.788 0.887 0.794

SVR
MAPE (%) 0.478 1.538 0.522 16.424 1.668 8.831 1.721 21.093

SMAPE (%) 0.476 1.529 0.521 19.178 1.652 8.718 1.721 22.137
R2 0.996 0.991 0.996 0.915 0.951 0.773 0.944 0.540

XGboost
MAPE (%) 1.243 5.200 1.214 7.315 1.064 5.157 1.512 8.581

SMAPE (%) 1.244 5.200 1.213 7.064 1.067 5.173 1.513 8.447
R2 0.979 0.895 0.975 0.975 0.983 0.908 0.967 0.946
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In Table 4, the prediction accuracy of all the surrogate models except the Kriging
model for the same optimization objective differs under normalized and non-normalized
conditions for the training samples. The R2 values of each surrogate model for the opti-
mization target were compared, and the largest one was selected. If the R2 is the same,
compare MAPE and SMAPAE and select the smallest. After the comparison, the BP neural
network agent model has the highest prediction accuracy for pCu, pfe, and −Ta under the
unnormalized condition of the training samples is obtained. The SVR agent model has the
highest prediction accuracy for Tr under the normalized condition of the training samples.
There are the bolded parts in Table 4. Therefore, the BP neural network model and the
SVR ones are adopted to construct the surrogate model of the optimization variables and
the objectives.

3.4. Multi-Objective Optimization of IPMSM Based on NSGA-II and Taguchi Method
3.4.1. Optimization of High-Sensitivity Variables

When combined with the high-precision surrogate model established above, the opti-
mal combination of design parameters is searched by using a multi-objective optimization
algorithm. NSGA-II is widely used in multi-objective optimization problems due to its fast
speed and strong searchability. Therefore, in this paper, the optimal combination of design
parameters of the IPMSM is searched by NSGA-II. The specific implementation steps are
shown in Figure 6.
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The objective function is defined as:

min :


f1(x) = −Ta
f2(x) = Tr
f3(x) = p f e + pCu

(11)

where x is the optimization variable, and the value ranges of the optimization variables are
shown in Table 2. The constraint conditions are −Ta, Tr, and pfe + pCu, which are smaller
than the −Ta, Tr, and pfe + pCu of an initial motor, respectively:

c1(x) = −Ta + 91.34 < 0
c2(x) = Tr − 22.13% < 0
c3(x) = p f e + pCu − 970 < 0

(12)
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The Pareto solution set is obtained according to the above settings and methods, as
shown in Figure 7. It can be seen that optimization objectives f 1(x), f 2(x), and f 3(x) cannot
all obtain optimal values simultaneously. To make a reasonable compromise on the three
optimization objectives, four candidate points in the middle are selected for comparison
according to the order of the average torque. In Table 5, candidate point 3 is the optimal
one of the four candidate points. Therefore, candidate point 3 is selected as the final value
of the high-sensitivity variable, as shown in a five-pointed star point in Figure 7.
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Table 5. Optimal candidate solutions.

hs2 (mm) bs0 (mm) wt (mm) hg (mm) rib (mm) wpm
(mm)

−Ta
(N·m) Tr (%) pfe + pCu (W)

Candidate
Point1 19.31 1.87 4.75 1 7 34.55 −104.94 15.54 849.05

Candidate
Point2 19.3 1.88 4.75 1 7 34.49 −104.52 15.45 849.16

Candidate
Point3 19.3 1.88 4.75 1 7 34.47 −104.29 15.4 848.43

Candidate
Point4 19.31 1.89 4.75 1 7 34.43 −104.07 15.36 849.62

3.4.2. Optimization of Low-Sensitivity Variables

After the high-sensitivity optimization variables are optimized, the next step is to
optimize the low-sensitivity optimization variables. Since the overall impact of the low-
sensitivity optimization variables on the optimization objectives is low, the optimization
enhancement space is small. Therefore, the Taguchi optimization method with strong local
search ability is adopted to optimize the low-sensitivity optimization variables and save
computation time. The new FEM is established according to the combination of variables
obtained after NSGA-II optimization. Then, the Taguchi method is used to optimize the
four low-sensitivity optimization variables of o2, b1, hrib, and hpm. First, the value ranges
and the values of the level of the optimization variables are determined. Taking 3 level
values for this optimization, the spacing between level values is equal. Each level value is
named level 1, level 2, and level 3, from small to big, respectively. The specific values are
shown in Table 6.



Energies 2023, 16, 1630 13 of 17

Table 6. Level values of optimization variables.

Optimization Variables Level 1 Level 2 Level 3

o2 18 20 22
b1 3.5 3.75 4

hrib 2 2.5 3
hpm 4 4.5 5

According to the results in Table 6, The L9 (34) orthogonal test table is established
and as shown in Table 7. Then, the corresponding FEM is established to calculate the four
objective values.

Table 7. L9 (34) orthogonal test table and FEA results.

Number of Tests o2 b1 hrib hpm Ta (N·m) Tr (%) pfe + pCu (W)

1 1 1 1 1 90.09 17.63 854.93
2 1 2 2 2 95.86 17.36 860.83
3 1 3 3 3 100.55 17.27 866.7
4 2 1 2 3 99.63 17.46 865.45
5 2 2 3 1 90.72 18.32 854.47
6 2 3 1 2 106.94 13.81 879.01
7 3 1 3 2 92.29 18.56 857.01
8 3 2 1 3 110.46 15.00 883.67
9 3 3 2 1 99.45 16.13 866.43

According to the established orthogonal test Table 7, the average value is analyzed,
and the objective average value of each variable under different level values is calculated, as
shown in Figure 8. It shows that the most favorable combination of variables for increasing
Ta is o2 (3) b1 (3) hrib (1) hpm (3). The most favorable combination of variables for decreasing
Tr is o2 (2) b1 (3) hrib (1) hpm (2) or o2 (2) b1 (3) hrib (1) hpm (3). That for decreasing pfe + pCu is
o2 (1) b1 (1) hrib (3) hpm (1). The combinations of Ta, Tr, and pfe + pCu are not the same under
optimal conditions. Therefore, the data in Table 7 need to be analyzed for variance. The
variance calculation equation can be expressed as:

−
n =

1
m

m

∑
k=1

nk (13)

S2
n(x) =

1
L

L

∑
i=1

(
n(x)i −

−
n
)2

(14)

where
−
n is the total average value of the optimization objective n, m is the total number of

trials, S2
n(x) is the variance of the optimization objectives n (x), L is the level number, and

n(x)i is the objective average value when the variable x is at level i.
The variance values and proportion of variables with respect to the optimization

objectives were calculated according to Equations (13) and (14) and Table 7, as shown in
Table 8.

According to the comparison of the proportion values in Table 8, the rate of the impact
of o2 on pfe + pCu is the largest. The rate of the impact of b1 on Tr is the largest. The rate of
the impact of hrib on Tr is the largest, and the rate of the impact of hpm on Ta is the largest.
Therefore, o2 (1) b1 (3) hrib (1) hpm (3) is selected as the optimal combination, and the values
of motor variables optimized by the Taguchi method are shown in Table 9.
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Figure 8. Impact of level values of optimization variables on optimization objectives: (a) impact of
variable level on Ta; (b) impact of variable level on Tr; (c) impact of variable level on pfe + pCu.

Table 8. Variance values and proportion between optimization variables and optimization objectives.

Variables S2
Ta

Proportion (%) S2
Tr

(×10−5) Proportion (%) S2
pfe+pCu

Proportion (%)

o2 4.78 10.82 1.70 7.77 11.68 12.48
b1 11.67 26.43 7.70 35.21 22.80 24.36

hrib 10.61 24.03 11.11 50.80 29.46 31.48
hpm 17.10 38.72 1.36 6.22 29.64 31.67

Table 9. Design variables for the initial and optimized motors.

Classification of
Variables Variable Initial BP + SVR +

NSGA-II
BP + SVR +

NSGA-II + Taguchi

High sensitivity
variables

hs2 21 19.3 19.3
bs0 2 1.88 1.88
wt 4.53 4.75 4.75
hg 0.75 1 1
rib 6 7 7

wpm 33 34.47 34.47

Low sensitivity
variables

o2 20 20 18
b1 4 4 4

hrib 2.4 2.4 2
hpm 4.5 4.5 5

4. Results and Discussions

In order to verify the effectiveness of the above optimization methods, the perfor-
mance of the variable-optimized motor was analyzed by finite element analysis (FEA) and
compared to that of the optimized motor. Figure 9a shows the electromagnetic (EM) torque
of the initial IPMSM and the optimized ones in the time domain. Figure 9b shows the iron
losses of the initial IPMSM and the optimized ones. Figure 9c shows the copper losses of
the initial IPMSM and the optimized ones. More detailed performance parameters of the
initially designed motor and optimally designed ones with different methods are shown in
Table 10.
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Table 10. Performance comparison of initial motor and optimized motor with different optimization methods.

Performance Initial BP + SVR+
NSGA-II

BP + SVR +
NSGA-II + Taguchi

Ta (N·m) 91.34 104.39 106.96
Tr (%) 22.13 15.03 13.23

Tc (N·m) 6.43 5.23 5.09
pfe (W) 643.1 551.07 551.8
pCu (W) 326.56 323.05 327.56

Efficiency (%) 93.88 94.78 94.84

It can be seen that after the BP + SVR + NSGA-II solution optimizes the high-sensitivity
variables of the motor, the performance of the IPMSM is greatly improved, the average
torque is increased by 14.29%, the torque ripple is decreased by 32.08%, the iron loss is
decreased by 14.31%, the copper loss is decreased by 1.08%, and the efficiency is increased
to 94.78%.

The BP + SVR + NSGA-II + Taguchi optimization scheme is proposed due to the
best performance. Compared to the motor optimized by the optimization strategy in this
paper with the initial IPMSM, the average torque is increased by 17.1%, the torque ripple
is reduced by 40.22%, the iron loss is reduced by 14.2%, the change in copper loss is very
small, and the efficiency is increased to 94.84%.

5. Conclusions

In this paper, we propose a multi-objective optimization strategy for IPMSMs based on
BP + SVR combined surrogate model with NSGA-II + Taguchi method. The average torque,
torque ripple, iron loss, and copper loss of the IPMSM are used as optimization objectives
to optimize the IPMSM. The verification of the numerical calculation results shows that
the surrogate model constructed in this paper has very high accuracy, and the prediction
results of each optimization objective have very small errors with the numerical calculation
results. Compared with the performance of the initial design motor and optimized ones
by other optimization strategies, the results show that the overall performance of IPMSM
optimized by our proposed multi-objective optimization strategy is best. In the future,
we will build the physical motor based on the results obtained in this paper to verify the
effectiveness of our proposed method.
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