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Abstract 

The EDA design flows must be retooled to cope with the 
rapid increase in the number of operational modes and 
process corners for a VLSI circuit, which in turn results in 
different and sometimes conflicting design goals and 
requirements. Single-objective solutions to various design 
optimization problems, ranging from sizing and fanout 
optimization to technology mapping and cell placement, 
must hence be augmented to deal with this changing 
landscape. This paper starts off by presenting a variety of 
methods for providing analytical models for power and 
delay to be used in the optimization algorithms. The 
modeling includes non-convex and convex functional forms. 
Next, a class of robust and scalable methods for solving 
multi-objective optimization problems (MOP) in a digital 
circuit is presented. We present the results of a multi-
objective (i.e., power dissipation and delay) gate (transistor) 
sizing optimization algorithm to demonstrate the 
effectiveness of our method. We set up the problem as a 
simultaneous, multi-objective optimization problem and 
solve it by using the Weighted Sum and Compromise 
Programming methods. After comparing these two methods, 
we present the Satisficing Trade-off Method (STOM) to find 
the most desirable operating point of a circuit. 

Keywords 
Multi-objective optimization, Power, Delay, Pareto 

surface, Convexity, STOM 

1. Introduction 
A multi-objective optimization problem (MOP) is the 

optimization of different objective functions simultaneously 
and reaching a solution that is the best in regard to all of the 
objective functions. Multi-objective optimization problems 
are present at different levels of VLSI circuit optimization. 
During the initial design, RTL/logic synthesis, and 
placement/routing steps, circuit designers typically wish to 
optimize a circuit with respect to its clock speed, power 
dissipation, and layout area at the same time. The 
optimization of a circuit for speed and power is nearly 
always conflicting i.e., higher speed leads to higher power 
dissipation and vice versa. If this optimization is done on the 
transistor or gate sizing of the circuit, finding the best sizing 
vector for both speed and power is a challenging task.  This 
problem can also emerge in a circuit working under different 
supply voltage levels or clock frequencies, or even different 
die temperatures. AS discussed in the the power and speed 

tradeoff case, multi-objective optimization techniques 
become important when optimization of different objective 
functions conflicts with each other.   

Multi-objective optimization is an important topic of 
research in science and engineering. There are many 
tutorials, review papers, and even text books written on this 
subject. Different aspects of nonlinear multi-objective 
optimization are defined in [1]. In [2] some advanced 
method for solving a MOP e.g., Fuzzy methods, interactive 
methods, and evolutionary algorithms are explained in 
details. Multi-objective optimization techniques have been 
applied for designing analog and digital circuits. Coello in 
[3] emphasizes Evolutionary Multi-objective Optimization 
and explains different methods using this technique. The 
author claims that aggregating objective functions by simply 
doing a weighted summation to produce a single function 
can be used for VLSI circuit optimization. In particular, the 
author shows that Vector Evaluated Genetic Search (GS), 
which is a modified version of the conventional GS in the 
selection step, is effective in designing some combinational 
circuits and multiplier-less IIR filters. The authors in [4] use 
multi-objective Genetic Algorithm optimization to design a 
low-power operational amplifier. The objective functions 
include gain, band-width, and power dissipation. In the field 
of digital circuit design, signal delay, chip area, and dynamic 
power dissipation are optimized with a design tool, called 
Multi-objective Gate Level Optimization (MOGLO) in [5]. 
Multi-objective optimization for VLSI interconnects is 
discussed in [6], where the objective functions to be 
simultaneously optimized are the metal widths, metal 
spaces, and metal thicknesses with the constraints on speed, 
area and power of the chip.  

This paper focuses on multi-objective optimization of 
power and delay, as an example of the two conflicting 
objective functions for VLSI circuits. The proposed methods 
can be applied for any other set of disagreeing functions to 
find the best (Pareto-optimal) operating point in today’s 
multi-mode multi-corner problems. First we propose 
different non-convex and convex models of power and delay 
and explain which ones are the most appropriate to be used 
in multi-objective optimization. In particular, we present 
three methods for solving a multi-objective problem. The 
first one is the Weighted Sum method which is the most 
popular technique for solving multi-objective optimization. 
Compromise Programming is the second method which is 
quite effective for convex functions. Finally a Satisficing 
Trade-off Method (STOM) based algorithm is presented for 
the optimization (Satisficing is a portmanteau of satisfy and 
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suffice; it is a strategy that attempts to meet criteria for 
adequacy, rather than to try and find an optimal solution.) 
STOM can be used to find the best point when the designer 
is provided some goals for the objective functions. We will 
describe step by step how to find the best point of operation 
of a circuit in regard to multiple conflicting objective 
functions. 

The organization of the paper is as follows. In section 2 
we present non-convex and convex modeling for power and 
delay. In section 3 we define MOP, Pareto optimal surface, 
methods of solving a multi-objective optimization problem, 
and our proposed approach. Section 4 presents the 
experimental results. Section 5 is the conclusion.  

2. Power and Delay Modeling 
In this section, three different methods are proposed to 

model delay and power of a circuit. We will use these 
analytical models for multi-objective optimization. 

2.1.  Non-convex Modeling of Power and Delay 
The first modeling that we used is obtained by a second 

order polynomial interpolation of several sampling points of 
power and delay. We specified upper and lower bounds for 
the sizing vector elements and applied every permutation of 
the possible value of the sizing vector elements to a circuit 
analyzer (HSPICE) and then obtained the corresponding 
delay and power dissipation values for the circuit. Next by 
interpolation of the sampling points, we derived an 
analytical model for the circuit power dissipation and delay, 
which happens to be non-convex.  The non-convex model of 
delay is formulated as follows: 

 ∑ ∑ ∑ ∑ ⁄  (1) 

where n signifies the non-convexity of model, xi is the size 
of gate i. and i, i, and i are real-valued fitting 
coefficients. In the experimental results, the maximum error 
of the delay macromodel equation is 6% for every possible 
sizing vector value, while the mean and the variance are 
1.5% and 1.2% respectively. The histogram of the modeling 
error is shown in Figure 1. 

 
Figure 1 Histogram of error in non-convex delay modeling. 

The non-convex model of power dissipation is as 
follows: 

 
(2) 

where xi is the size of gate i. and i, i, i, and i are fitting 
coefficients and they are real numbers. The maximum error 
of this macromodel equation for power is 0.3% for every 
possible sizing vector value. 

2.2.  Convex Modeling of Power and Delay 
A multi-objective optimization is convex if all objective 

functions and the feasible region are convex. There are 
many algorithms that can solve a convex MOP but they face 
difficulty in solving non-convex MOP [1].  
Definition (1): A function :  is convex if for all , : 1 1  0 1 

(3) 

A set   is convex if ,  implies that 1  for all 0 1. 
Delay and power dissipation can be modeled as convex 

functions of sizing vector elements too. We used 
posynomial functions for modeling circuit the power and 
delay values. These functions are convex when the variables 
have positive value [7]. Again the model is obtained by 
interpolation of the sampling points, and finding the best 
fitting coefficients. The convex delay modeling equation is 
as follows: 

 (4) 

where xi is the size of gate i, and , , ,  are positive 
real numbers. The maximum error of this macromodel 
equation for every possible sizing vector elements in the 
specified range is 18%, while the mean and the variance are 
3% and 5% respectively. 
The convex power modeling equation is as follows: 

 (5) 

where xi is the size of gate i, and  is positive real number. 
The maximum error of macromodel equation is 5%. 

By using convex modeling although we have less precise 
models, we can easily find the global optimum of the 
function during optimization. After finding the global 
optimum point using convex models, we narrow our search 
near the convex global optimum point and use more precise 
delay and power macromodel equations to find the actual 
optimum point of the functions. 

3. Multi-Objective Optimization Problem 
Multi-objective optimization problem (MOP) can be 
formulated as follows: , , … ,    2    

(6) 

where fi is an objective function and : . , , … ,  is called the decision vector that the 
optimization is done on it.    is the feasible region 
that is determined by the constraints on the MOP. 
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The goal is to minimize all objective functions 
simultaneously. We assume that there is no single solution 
that is optimal with respect to every objective function. The 
optimum single-objective solutions are at least partly 
conflicting with one another, and they can also be 
incommensurable, i.e., they may be expressed in very 
different units (μw of power dissipation vs. ns of delay).  

3.1. Pareto Optimal Solution 
If the objective functions are conflicting, there is not a 

single solution that minimizes all the objective functions 
simultaneously. We are thus looking for a non-dominated 
solution in the sense that if we try to optimize one of the 
objective functions any further, the other objective function 
value(s) will degrade. This kind of optimality is called 
Pareto optimality [1].  
Definition (2): A decision vector  is Pareto optimal if 
there is no other decision vector  such that 

 for all 1, … ,  and  for at least one 
index j. (Figure 2) 

 
Figure 2. Pareto Optimal Set (a.k.a. the Pareto Surface). 
Mathematically a MOP is solved when the Pareto 

optimal set is reached. 

3.2. Multi-objective Optimization Solution Methods 
MOP is usually solved by scalarization. It means that 

objective functions are combined in a way that at the end a 
single objective function will be optimized. As a single 
objective function can be optimized only to its local 
optimum, solving a MOP can also be ended in local Pareto 
optimal sets. If a MOP is convex then every locally Pareto 
optimal solution is also global Pareto optimal solution. 

Moving from decision vector in Pareto optimal solution 
to another needs trading off. Always there is a decision 
maker (the designer) with a better insight to the problem 
who decides which optimal decision vector to be chosen. A 
function  :  that represents the preference of the 
decision maker among all the objective function is called 
“Value Function”. In MOP the value function is assumed to 
be implicitly known [1]. A decision maker is needed to 
reach to a single solution for the problem. 

Based on the participation of the decision maker in 
different phases of the problem solving, methods of MOP is 
categorized in four categories. In the no-preference methods, 
the decision maker is not participated. In posteriori methods, 
decision maker will choose the desired answer among the 
Pareto optimal solutions at the end. In Priori methods, the 
preference and opinion of the decision maker is considered 

before the solving of the problem. In interactive methods, 
the decision maker is involved in every iteration of the 
optimization, and based on the new information will decide 
[1]. There are several methods for solving a MOP; here we 
explain three methods in detail. 

3.2.1. Weighted Sum Method 
In the Weighted Sum (WS) method the weighted sum of 

the objective functions is minimized. The problem can be 
formulated as follows: 

    0 1 

(7) 

wi is the weight corresponds to objective function fi. wi’s are 
positive real numbers and are normalized. By perturbing the 
weights in the WS method we can find the Pareto Surface 
although some solution may be missed in non-convex 
functions [1]. WS is categorized as an a  posteriori method. 

3.2.2. Compromise Programming Method 
In this paper we also use an a priori method called 

Compromise Programming (CP) method for our MOP 
circuit optimization. In this method the distance between 
some reference point and the feasible objective region is 
minimized. Consider k objective functions of   , , … ,  to be optimized simultaneously. We 
assign the design references of , , … ,  for the set of 
objective functions. These values can be equal to the 
minimum of each objective functions. The problem is 
formulated as follows: 

| |    

(8) 

The vector of w specifies how much an objective 
function needs to get close to its reference. Sometimes some 
objective functions are relatively more important and the 
designer needs them to be much more optimized than the 
others. Therefore, by specifying larger wi to them, they will 
be encouraged to get closer to their references compared to 
others. The weighting vector also determines the direction of 
the search toward the optimum point in the feasible region.  

This method is robust and can be used in multi-objective 
optimization of a digital circuit. It is one of the simple and 
straightforward methods, and is very efficient in practice. In 
circuit optimization the designer can determine the optimum 
point (reference point) of each operating function (delay, 
power, etc). 

The preference of the decision maker is determined by 
the weights and the value of the references. If these values 
are chosen appropriately the Pareto optimal solution can be 
obtained by equation (8).  However it is sometimes difficult 
to determine the best value of them. Moreover, the solution 
cannot be better than the references, even though they are 
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pessimistically underestimated. Note that the desirable 
solution can be obtained by adjusting the weight, and there 
is no positive correlation between the weight wi and the 
corresponding objective function [8]. 

3.2.3. Satisficing Trade-off Method (STOM) 
Satisficing Trade-off Method (STOM) is an interactive 

method for getting a solution that a decision maker desires. 
After the Pareto optimal solution has been obtained it is 
presented to the decision maker. The objective functions are 
then classified in three classes, ones to be improved more, 
those which are accepted, and the objective functions that 
can be relaxed more. Based on this information aspiration 
levels (i.e., the objective function values that are satisfactory 
to the decision maker) will be specified. These aspiration 
levels will be developed interactively until the desired 
solution is obtained. In this method, in the first step, the 
range of each objective function is specified. For an 
objective function fi the maximum and minimum of it are 
shown by  and . An aspiration level of   is also 
specified for the objective function.  

The problem formulation in STOM method is as follows:                  , 1,2, … , ,, 1⁄  

(9) 

This problem is usually solved for the small value of . 
If solution is satisfying the problem is solved, otherwise the 
decision maker will ask for another aspiration level [7][8]. 

3.3. Proposed Approach 
Now we summarize the steps toward finding the best 

point of operation in regard to power and delay in VLSI 
circuits, which are also given in Figure 3.  

We can use either non-convex models of power and 
delay or convex models. Non-convex models have less error 
but they have a high chance of getting stuck in the local 
optimum points during the optimization. Convex models 
have more error but guarantee to lead to the global optimum 
points during the optimization.  

Furthermore, having generated analytical models for 
circuit power and delay parameters, we can also generate 
analytical equations for the gradients of the parameters of 
interest as well. Providing analytical gradient equations to 
the optimizer helps it achieve the global optimum point 
without suffering from the inaccuracies associated with the 
numerical computation of the gradient values during the 
optimization process. The impact of the gradient equation 
will be explained in section 4.1.1. By providing analytical 
gradient to the optimizer, the points on the Pareto surface 
can be reached more easily. Recall that these are the most 
optimum points based on Definition (2). 

After providing proper models and analytical gradient to 
the optimizer, we can optimize the circuit using the WS or 
CP method. As it will be explained in section 4.1.1 by using 
non-convex models, the WS method cannot result in all of 
the possible points on the Pareto surface; therefore, in this 
case the CP has an advantage over the WS method [8].  

If circuit power and delay parameters are of the same 
“value” to the designer, we should provide equal weights to 
them and do multi-objective optimization to find the best 
operating point of the circuit in regard to power and delay. 

 

 
Figure 3. Power and delay multi-objective optimization. 

 
If on the other hand, the designer has a preference for 

lower delay over higher power dissipation (or vice versa), 
then the weights must be set so as to reflect this preference. 
Unfortunately it is hard to translate a designer’s preference 
for one or the other objective function into weights that yield 
the desired tradeoff behavior during multi-objective 
optimization process. In addition, sometimes there are 
objective function goals set by the designer. In this case we 
suggest that the designer uses STOM method, which is an 
interactive multi-objective programming technique based on 
aspiration levels. The aspiration levels are developed during 
the optimization until the desired solution is obtained.  

4.Simulation Results  
We used combinational and sequential circuits to test the 

effectiveness of the multi-objective optimization algorithms 
which were defined in the previous sections. The 
combinational circuit is a Ladner-Fischer 10-bit carry-
lookahead adder shown in Figure 4 [9]. In the adder circuit, 
propagation delay of the critical path and power of the 
circuit are modeled as the function of gate sizing. Therefore 
the objective functions are delay and power and the 
elements of the decision vector are the sizing of the gates in 
the circuit.  

Power and delay 
analytical modeling

Convert non-convex to 
convex models

Provide Analytical 
Gradient to the optimizer
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Use STOM to obtain 
the results
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The sequential circuit is a True Single-Phase Clock 
(TSPC) flip flop [10]. In the TSPC FF, the Clk-to-Q delay 
and power dissipation are modeled as functions of transistor 
sizing. Therefore the two objective functions are Clk-to-Q 
delay and power dissipation and the elements of the decision 
vector are the sizing of the transistors in the circuit. The 
schematic of the circuit is shown in Figure 5. 

 

 
Figure 5. TSPC Flip Flop 

 

4.1. Multi-objective Power-Delay Optimization in the 
Circuit 

Now we explain how to find the best operating point of 
the circuit in regard to power and delay for the adder circuit. 
The method can be applied to other conflicting objective 
functions (area, delay, routing cost, etc.) and to other 
circuits.  

4.1.1. Finding the Pareto Surface 
First we used non-convex (but more precise) models of 

power and delay and applied the WS and CP methods to 
combine the objective functions for optimization. For each 
weight combination (total of 100 weights) used to scaliarize 
the power and delay objective functions, we optimized the 
circuit for 100 initial sizing values. The simulation results 
for finding the Pareto surfaces reached for the WS and CP 

methods for the non-convex modeling of power and delay 
are shown in Figure 6.  

 
Figure 6. Simulation results for finding Pareto surface for 
non-convex modeling power and delay. (a) WS method (b) 

CP method. 
 

We see that for one step optimization, it is not 
guaranteed that we reach the global optimum points which 
are on the frontier of the obtained graph (lower left most 
points of the scatter plots i.e., the Pareto surface).  

There are two main reasons that, for each weight, we 
didn’t reach one point for all of the associated initial sizing 
vectors. The first is that both delay and power are non-
convex functions and they have local optimum besides their 
global optimum point. The second is that the optimizer 
calculates the gradients numerically. Therefore starting from 
one initial sizing solution, during the optimization iterations 

 
Figure 7. Pareto surface for non-convex modeling of power 
and delay with analytical gradient provided. (a)WS method 

(b) CP method.  
 
it may not converge to the optimum points; rather it finds 
the point which is near the optimum points. 

By providing the analytical gradient for the optimizer, 
we directly reach the Pareto surfaces for the WS and CP 
methods as shown in Figure 7. 

Here again optimizations are done for 100 initial values 
for each weight (we used 100 weights). For each weight the 
optimizer found almost the same point for different initial 
vectors provided. We see that, in both scatter plots, the 
points in the right end of the Pareto surface have some 
spread and the optimizer did not give us one point (as the 
optimal point) for this weight. (There is the same behavior 
in the left end of the graph as well, but it is less severe.) This 
is where power has a weight of 1 and delay has a weight of 

Figure 4. 10-bit carry-lookahead adder. 
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0. It means that the optimizer had to do single objective 
optimization. If we optimize the non-convex power for 
different initial points, we obtain the graph depicted in 
Figure 9(a), in which the x-axis corresponds to the number 
of the initial points (meaning, for example, that x=1 
corresponds to the first set of sizing initial vector values 
supplied to the optimizer) and the y-axis corresponds to the 
optimized circuit power reached for that initial point of the 
optimization. The figure shows the optimization of the non-
convex power model, in which an analytical equation for the 
gradient of the circuit power dissipation function is also 
provided for the optimizer. We can see that the optimizer 
gets stuck in the local minimum in almost half of the 
optimizations done under different initial points. The single 
objective optimization on non-convex delay function is also 
got stuck in local optimums for some of the initial values of 
the sizing vector. 

Figure 7 also shows that the WS method has the 
drawback of not being able to find some points on the Pareto 
surface for the non-convex models (even for all the possible 
weights) while the CP method can find them. 

 
Figure 8. Pareto surface for convex modeling of power 

and delay with analytical gradient provided. (a) WS method. 
(b) CP Method. 

 

 
Figure 9. (a) Non-convex power single optimization (b) 

Convex power single optimization.  
 

4.1.2. Using Convex Modeling 
If we try to optimize the convex circuit power and delay 

equations with analytical gradient functions, we get the 
Pareto surfaces for the WS and CP methods depicted in 
Figure 8. We observe that we have much improved Pareto 
surface for convex models because now each weight has 
only one point as the optimal point. Single power 
optimization for convex modeling is shown in Figure 9(b). 

As we can see there is only one value (global optimum 
point) for every random initial vector value for sizing. For 
convex modeling, both WS and CP can find all points on the 
Pareto surface. 

4.1.3. STOM 
In this step we used equation (9) for the scalarization of 

our objective functions. The aspiration levels are the values 
of the objective function which have an equal percentage of 
degradation from their optimum values (obtained by single 
objective optimization.) After one step optimization if the 
desirable result is not obtained, the aspiration levels are 
revised by relaxing the objective function which has been 
over improved. With the proposed modeling of the delay 
and power (either convex or non-convex) and the convex 
shape of Pareto surface which can be obtained from the 
multi-objective optimization, up to 10% change in the 
aspiration levels can lead to the desirable results. 

 
Table 1 Simulation results for the adder circuit 

 
4.1.4. Results 

In Table 1, for the adder optimization, the effect of 
convex and non-convex modeling and using of analytical 
gradient for single step multi-objective optimization are 
shown for WS and CP methods. In the table by single 
objective power optimization, we mean optimization of 
power and use of the obtained sizing vector for calculating 
delay.  A similar definition applies to the single objective 
delay optimization. For non-convex modeling and when we 
do not use analytical gradient, single step optimization does 
not guarantee of reaching the best point of operation. We 
need to run the optimization algorithm for several initial 
sizing vectors to reach the best operating point in regard to 
power and delay. By using analytical gradient and convex 
modeling we can guarantee reaching of the best in a single 
step optimization.  

 non-
convex 

/convex
Method 

Using of 
gradient

power   
(         )  
delay    

(          )

Single-obj 
Power 

Optimization

Single-obj 
Delay 

Optimization

Multiobjective 
Optimization

Power 48.011 48.932 48.719

Delay 11.992 10.463 10.537

Power 47.924 48.908 48.657

Delay 12.533 10.279 10.389

Power 47.924 48.633 48.439

Delay 12.533 10.806 11.018

Power 48.019 48.908 48.148

Delay 12.808 10.279 11.317

Power 48.085 48.495 48.432

Delay 13.001 10.647 10.658

Power 47.809 48.451 48.335

Delay 13.642 10.306 10.381

Power 47.809 48.464 48.123

Delay 13.642 10.603 11.408

Power 47.809 48.451 48.102

Delay 13.642 10.306 10.791

w/o grad

w grad

CP

w/o grad

w grad

non-
convex

convex

WS

w/o grad

w grad

CP

w/o grad

w grad

WS
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Figure 10 shows the percent of the degradation from the 
best operating point of power and delay (which is obtained 
by single objective optimization and utilization of the 
analytical gradient). Multi-objective optimizations (number 
3, 6, 9, 12) have better results in comparison with single 
objective optimizations. As we can see in both graphs multi-
objective optimization with CP method and use of analytical 
gradient is the best solution in regard to both power and 
delay. In Figure 10 results of the STOM method are 
compared with the results obtained with single step 
optimization and shown in Table 1. Using the STOM, the 
designer is able to find the best desired point in which both 
power and delay has almost equal percent of degradation 
from their optimum points (this point is the best in regard to 
power and delay with equal weights corresponds to them.) 
Note that STOM is much more time consuming than 
aforesaid methods since we need to update aspiration levels 
in each step of optimization to find the best operating point. 

For the True Single-Phase Clock Flip Flop (TSPC FF), if 
we optimize the non-convex and convex models of power 
and delay simultaneously with the WS and CP methods, we 
will reach the same optimization results as the adder’s, 
although we changed the CMOS technology, the circuit 
topology and used transistor sizing instead of gate sizing. 
We conclude that for the proposed modeling of power and 
delay, we can reach an almost convex Pareto surface and we 
can generalize our analysis to other circuits. The simulation 
results are gathered in Table 2 and Figure 11. Again we can 
see that multi-objective optimization with CP method and 
using of analytical gradient is the best solution in regard to 
both power and delay.  

     STOM, while more time consuming, can lead to the best 
results in which the obtained power and delay have only up 
to 30% degradation from the best power and best delay of 
the circuit (in both adder and flip flop). 

Table 2 Simulation results for the Flip Flop circuit 

 
 

5. Conclusion 
In this paper we considered multi-objective optimization 

in VLSI circuits. We presented different ways to provide 

 non-
convex 

/convex
Method 

Using of 
gradient

power   
(         )  
delay    

(          )

Single-obj 
Power 

Optimization

Single-obj 
Delay 

Optimization

Multiobjective 
Optimization

Power 72.709 79.596 78.37

Delay 53.858 15.192 15.21

Power 70.73 78.52 73.24

Delay 55.82 14.86 17.56

Power 72.709 79.17 75.118

Delay 53.858 15.11 16.4

Power 70.73 78.67 73.23

Delay 55.821 15 17.58

Power 70.709 77.677 74.571

Delay 56.858 14.6 16.549

Power 70.709 77.677 75.21

Delay 56.858 14.6 15.521

Power 71.898 78.634 74.411

Delay 53.548 14.998 17.01

Power 70.709 78.357 74.173

Delay 56.858 15 17.185

convex

WS

w/o grad

w grad

CP

w/o grad

w grad

non-
convex

WS

w/o grad

w grad

CP

w/o grad

w grad

 
(a) non-convex modeling  

 
(b) convex modeling 

Figure 10. Degradation from the optimum point of 
operation for power and delay for the adder circuit. 

(a) non-convex modeling 

(b) convex modeling 
Figure 11. Degradation from the optimum point of 
operation for power and delay for Flip Flop circuit. 
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analytical models of power and delay to be used by the 
optimizer. The models included convex and non-convex for 
the VLSI circuits. While convex model has more modeling 
error, it guarantees reaching the global optimum in a single 
step optimization. Non-convex model has much more 
chance to find the global optimum if the analytical gradient 
of the model is also provided to the optimizer instead of 
numerical gradient which is calculated point by point.  

Three methods for multi-objective optimization: 
Weighted Sum, Compromise Programming, and STOM 
were discussed. By providing a wide range of experimental 
results and analytical analysis we concluded that using 
convex models and analytical gradient with the CP method 
can reach to the best operating in a single step optimization. 
WS is less effective for solving MOP containing non-convex 
functions. If the designer has a specific desire point 
interactive STOM method is suggested. The proposed 
method can be applied on every conflicting operational 
function in VLSI circuits. 
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