
Soft Comput (2007) 11: 531–540
DOI 10.1007/s00500-006-0096-0

ORIGINAL PAPER

Antonio J. Nebro · Enrique Alba · Francisco Luna

Multi-objective optimization using grid computing

Published online: 3 May 2006
© Springer-Verlag 2006

Abstract This paper analyzes some technical and practical
issues concerning the use of parallel systems to solve multi-
objective optimization problems using enumerative search.
This technique constitutes a conceptually simple search strat-
egy, and it is based on evaluating each possible solution from
a given finite search space. The results obtained by enu-
meration are impractical for most computer platforms and
researchers, but they exhibit a great interest because they
can be used to be compared against the values obtained by
stochastic techniques. We analyze here the use of a grid com-
puting system to cope with the limits of enumerative search.
After evaluating the performance of the sequential algorithm,
we present, first, a parallel algorithm targeted to multiproces-
sor systems. Then, we design a distributed version prepared
to be executed on a federation of geographically distributed
computers known as a computational grid. Our conclusion is
that this kind of systems can provide to the community with a
large and precise set of Pareto fronts that would be otherwise
unknown.
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1 Introduction

A multi-objective optimization problem can be defined, as
stated in [20], as the problem of finding a vector of decision
variables which satisfies constraints and optimizes a vector
function whose elements represent the objective functions.
These functions form a mathematical description of perfor-
mance criteria which are usually in conflict with each other.
Hence, the term “optimize” means finding such a solution
which would contain the values of all the objective functions
acceptable to the designer.

Generally, multi-objective optimization does not restrict
to find a unique single solution, but a set of solutions called
non-dominated solutions. Each solution in this set is said to
be a Pareto optimum, and when they are plotted in the objec-
tive space they are collectively known as the Pareto front.
Obtaining the Pareto front of a given problem is the main
goal of multi-objective optimization.

There are several techniques that can be used to obtain
the Pareto front of a multi-objective optimization problem.
They can be classified into three categories: enumerative,
deterministic, and stochastic [8]. In recent years, stochastic
methods have been widely studied; in particular, evolution-
ary algorithms have been investigated by many authors (see
the surveys [7,11,24]). These methods do not guarantee to
obtain the optimal solution, but they provide good solutions
to a wide range of optimization problems which other deter-
ministic methods find difficult. Enumerative search, which is
deterministic but without employing any heuristics, is a con-
ceptually simple search strategy, and it is based on evaluating
each possible solution from a given finite search space. The
drawback of this technique is that it is inherently inefficient
and it can be computationally expensive and even prohibitive
as the search space becomes larger.

Despite of their inconveniences, the results that can be
obtained by using enumeration are of great interest to the
multi-objective optimization research community, because
they can be used to be compared against those obtained
by using stochastic algorithms. In consequence, the qual-
ity of the solutions produced by these stochastic algorithms
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can be measured in a non-subjective way by researchers.
Thus, scientific advances can clearly outcome from the com-
parison or evaluation of a new algorithm, which hardly
contrasts with the present scenario of non standardized anal-
yses.

In this paper, we address, first, the solution of a bench-
mark of multi-objective optimization problems in monopro-
cessor systems using an enumerative strategy. The problems
are solved with a software application, written in C++, which
have been specifically designed to easily accept new prob-
lems in the future. Second, we study parallel approaches
that could be used to enhance the efficiency of enumera-
tive search. We will focus mainly in multiprocessing and
on the use of computational grids [5,6,13]. These are dis-
tributed systems composed of potentially thousands of com-
puters that take advantage of the Internet infrastructure to
provide a huge unique virtual supercomputer. Thus, these
systems allow to attack problems that were considered as
intractable a few years ago. Finally, we develop a distributed
enumerative algorithm using Condor [22], a software sys-
tem which allows to build distributed applications according
to the approach of computational grids. Our Condor-based
application is used to solve a number of multi-objective opti-
mization problems that can be considered as intractable on
monoprocessor systems.

The contributions of the paper can be summarized as fol-
lows:

– Solving a benchmark of multi-objective optimization prob-
lems in a monoprocessor system equipped with modern
CPUs, allowing us to determine the base times. From there,
we can gain an insight of the complexity of each problem
to be solved in sequential and in parallel systems.

– We study parallel approaches that can be applied to solve
hard problems by using enumeration. By providing paral-
lel implementations we enhance the response time of the
enumerative search. The use of a distributed enumerative
algorithm based on grid computing concepts gives us a new
perspective about the actual limits that we can find nowa-
days in order to decide which problems are solvable or not.

– The research community can take advantage of both the
software we have developed and the results we have ob-
tained (they can be found in the linkhttp://www.neo.
lcc.uma.es/software/ESaM). Thus, a worldwide
common database of multi-objective optimization prob-
lems and their solutions provided by enumeration can be
used as the basis for future comparison with other tech-
niques.

The rest of this paper is organized as follows. In the next
section, we discuss related work concerning the application
of parallel computing to multi-objective problem optimiza-
tion. Section 3 includes a description of the sequential algo-
rithm, as well as its performance when solving a benchmark
of problems. Section 4 describes the parallel implementations
of the algorithm. Finally, we summarize and present some
future work in Sect. 5.

2 Parallel computing and multi-objective optimization

Parallel computers have been widely used in the field of
mono-objective optimization [15,18,23]. In the case of deter-
ministic techniques, a typical example is the solution of opti-
mization problems by means of parallel branch and bound
algorithms [14]. The idea is, in general, to try to solve the
problems more rapidly, or to solve more complex problems.
In the context of stochastic methods, parallelism is not only a
mean for solving problems more rapidly, but for developing
more efficient models of search: a parallel stochastic algo-
rithm can be more effective than a sequential one, even when
the latter is executed on a single processor. For example, see
[1,2] for surveys concerning evolutionary algorithms.

The advantages that offers parallel computing to mono-
objective optimization can also hold in multi-objective opti-
mization. Some works concerning evolutionary techniques
are [8,10,25]. However, as stated in [8], few efforts have
been devoted to parallel implementations in this field.

In general, most works on parallel computing and optimi-
zation are centered in two kinds of parallel systems: shared-
memory multiprocessor systems and distributed systems,
these lasts based on clusters or local area networks. In the
first case, operating system support is enough to develop par-
allel programs: we can use sequential languages with thread
libraries or system calls to write multi-threaded or multi-pro-
cess applications that take advantage from the many
processors of the system. Another option is to use parallel lan-
guages, such as Java. In the case of distributed systems, there
is an overwhelming amount of issues concerning intercon-
nection networks (Ethernet, Myrinet, ATM), topologies (bus,
ring, mesh, tree, hypercube), programming models (message
passing, RPC, distributed shared memory), communication
libraries for sequential languages (MPI, PVM, sockets), par-
allel languages (Java, C#), middleware (CORBA, DCOM,
RMI), and even Internet technologies (XML, SOAP, Web
services).

The last generation of distributed systems is based pre-
cisely on the popularity of the Internet and the availability
of a large amount of geographically disperse computational
resources, that can be linked together to provide a single,
unified computing resource. This has lead to what it is called
Grid computing [13], also known by several names such as
metacomputing, Internet computing, or Web computing.

The idea of using hundreds or thousands of computers
is very attractive because researchers can solve optimiza-
tion problems that were previously considered as intractable.
For example, in [4], an instance of the quadratic assignment
problem (QAP) that would have required about 7 years of
computation on a single workstation was solved in a week
using a computational grid of over 2,500 processors. This
problem was solved by using a distributed branch and bound
algorithm. Apart from this work, few references can be found
related to optimization and grid computing [19,21,26]; con-
cerning multi-objective optimization and grid computing, we
only know a related work [3], where grid technologies are
used to parallelize a micro-genetic algorithm.
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3 Sequential enumerative search

In this section we outline the sequential enumerative algo-
rithm designed for this work, which is also the basis of the
parallel implementations.

The algorithm is similar to the approach for finding non-
dominated sets described in [9] (pp. 36–38). The decision
variables, assumed continuous, are discretized with a certain
granularity, and for each combination of values of the vari-
ables the objective functions are evaluated; the resulting vec-
tors are compared among them by using a Pareto dominance
test, and the set of non-dominated solutions are obtained.
Obviously, the finer the granularity the better the precision
of the results, and the larger the computational effort. Thus,
granularity and effort are tradeoff factors. If constraints are to
be considered, then a feasibility test is performed just before
the evaluation and the dominance check. An outline of the
algorithm is shown in Fig. 1.

The number of iterations carried out by the algorithm de-
pends on the number of decision variables N and the desired
granularity G, because the search space to be explored is G N .
However, the complexity of the algorithm can be strongly
influenced by the constraint test and the evaluation of the
objective functions. Clearly, the time required to compute
each iteration is related to the number of objective functions
(M) and their complexity. In addition, the evaluation step is
only performed if the constraint test is passed, so the more
restrictive the constraints the less the number of evaluations
to compute. Besides, the constraint test can also take a sig-
nificant amount of time. We analyze these issues in greater
detail in Subsect. 3.3.

This algorithm has been implemented in C++, and de-
signed with two goals in mind: first, it should be easy to
incorporate new problems and, second, it must serve as the
basis of parallel algorithms. The first goal is achieved by us-
ing the inheritance mechanism; there is a base class which
must be inherited by each class representing a problem, so
these classes share the same structure. To achieve the second
goal (i.e., parallel extensibility), the program’s main class in-
cludes, besides the problem to solve, additional parameters
to explore the full search space or only a part of it. The first
case is used in the sequential program, and the second one is

F[M] = {F1, F2, ..., FM} // Objective functions

R[C] = {R1, R2, ..., RC} // Constraints

x[N] = {x1, x2, ..., xN} // Vector of decision vars.

f[M] = {f1, f2, ..., fM} // Vector of function values

P = ∅ // Set of non-dominated solutions

Fix the granularity G of the decision variables

For each vector x[i]

If x[i] satisfies the constraints R[C]

f[j] = evaluation of x[i] by F[M]

Compare f[j] with members of P for domination

If f[j] is a non-dominated solution add f[j] to P

Remove the solutions dominated by f[j] from P

Fig. 1 Pseudo-code of the sequential enumerative algorithm

applied in the parallel versions. In both cases, the program
obtains the Pareto front (or a subfront if the search space is
not fully explored) of the multi-objective problem. At the end
of the computation, the values of the decision variables and
the objective functions are stored into two files.

3.1 Benchmark of multi-objective problems

We have selected several multi-objective problems from the
specialized literature to measure the performance of the
sequential implementation; in concrete, we have chosen prob-
lems from the book of Coello et al. [8]. The problems are
named according to the terminology used in that book.

The selected problems are: Schaffer, Fonseca, Poloni,
Kursawe, Viennet3, Deb, Viennet2, Bihn2, Viennet4, Tanaka,
and Osyczka2. Additionally, we have include in our study
Golinski’s speed reducer problem [17]. The definition of
these problems is included in Table 3, in the Appendix. This
test suite covers a spectrum of both unconstrained and con-
strained problems, which are widely known and they have
been used for comparison between algorithms.

3.2 Results

We have used a PC equipped with a Pentium 4 2.4 GHz
processor and 512 MB of main memory; it runs Suse Li-
nux 8.1 (Kernel 2.4.20). All the programs have been com-
piled with GCC V.3.2, with the compilation option -O3.
In Table 1 we include the names of the problems, as well as
their main features: number of decision variables, number of
objective functions, and number of side-constraints. The last
four columns contain the times required to solve the problems
and the number of points of the Pareto front using 100 and
1,000 partitions per variable, respectively. To illustrate the
influence of precision in the search, we include the two Pareto
fronts obtained when solving Kursawe’s problem in Fig. 2.

If we do not take into account the results of the problems
Osyzcka2 and Golinski, for which the times can only be esti-
mated because of their difficulty, we can observe in Table 1
that the times required to solve the first group of problems
with 100 partitions per variable are around a few seconds in
the slower cases. When we attack their solution with 1,000
partitions some of them require several hours, being Kurs-
awe’s problem the slower to solve (about 33 h). We show the
Pareto fronts obtained in Figs. 6 and 7. Given these results,
we conclude that all of them are solvable in a reasonable
amount of time with a single processor.

Let us now examine the results of the last two problems.
These are the most complex ones of the test suite, because
they have the larger number of decision variables and con-
straints. As a consequence, the solution of these problems
requires a considerable amount of time, even in the case of
100 partitions per variable. We include in Table 1 the esti-
mated processor time to solve the problems with 100 parti-
tions (more details about these estimations will be given in
Subsect 4.2). Although these times are approximations, they
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Table 1 Test suite: results of the sequential program (in seconds)

Problem Variables Functions Constraints Time (100) Points (100) Time (1,000) Points (1,000)

Schaffer 1 2 0 < 1 9 < 1 73
Fonseca 3 2 0 7 43 61,466 434
Poloni 2 2 0 < 1 75 126 1,102

Kursawe 3 2 0 8 42 118,074 874
Viennet3 2 3 0 < 1 179 6,667 10,317

Deb 2 2 0 < 1 28 27 262
Viennet2 2 3 0 < 1 145 452 8,122

Bihn2 2 2 2 < 1 22 1 222
Viennet4 2 3 3 < 1 447 609 39,664
Tanaka 2 2 2 < 1 15 1 152

Osyczka2 6 2 6 90.2 days 570 N/A N/A
Golinski 7 2 11 775.4 days 363 N/A N/A
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Fig. 2 Pareto fronts of Kursawe’s problem (the values between paren-
thesis indicates the granularity)

give us an insight on the complexity of solving them by using
a single monoprocessor computer.

These results clearly justify the interest in working on,
first, the use of parallel systems to solve difficult problems

Table 2 Results of the execution of Golinski’s problem

Subtask 1 2 3 4 5

Total time 42.68 43.36 44.22 44.87 112.66
Constraints 26.74 27.21 27.55 27.71 37.53
Eval. & Dom. 15.94 16.15 16.67 17.16 75.13
Points 0 0 0 0 70

and, second, the study of efficient heuristics when the enu-
merative search is infeasible.

3.3 Analysis of the sequential program

In this subsection we present a quantitative analysis of the
sequential program by studying the solution of Golinski’s
problem with 20 partitions per decision variable. We have
chosen this problem for two reasons: first, it has a large num-
ber of constraints and, second, our experiments reveal that the
points that conform its Pareto optima are located in a specific
region of the search space.

To perform the analysis, we have divided the search space
into five parts, and each of them has been solved separately
by the sequential program. We have use GNU’s gprof tool
to obtain profile information of the execution of the five sub-
tasks. We show the results obtained in Table 2. For each sub-
task, we include the total running time (in seconds), the time
consumed in evaluating the constraints, the time wasted in
evaluating the functions and carrying out the dominance tests,
and, finally, the number of points of the resulting sub-Pareto
front found.

We observe that the first four subtasks do not locate any
point of the Pareto front, what means that the constraints are
not fulfilled by any vector of variables (the time consumed in
the evaluation and domination tests is spent in updating local
variables). Thus, in these situations (subtasks 1–4), the 62%
of the time is spent in checking the constraints. However, the
last subtask produces a front composed of 70 points, which
correspond to the Pareto front of the problem (Fig. 3). Con-
sequently, there is an increment in the total execution time,
and the 66% of it is consumed in the function evaluations and
the dominance tests. In fact, the results reported by gprof
show that most of this time is spent in the dominance tests.
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Fig. 3 Pareto front of Golinski’s problem with 20 partitions per variable

We conclude then that the efficiency of the enumerative
algorithm is heavily problem-dependent. In this example, Go-
linski’s problem has 11 constraints and two objective func-
tions, being one of the functions part of a constraint (see the
formulation of the problem in Table 3). In problems with-
out any constraints, a significant amount of time is spent in
the dominance tests, while the time required to perform the
function evaluation will depend on the number and/or com-
plexity of the functions.

4 Parallel approaches

Nowadays there are two main kinds of parallel computers:
shared-memory multiprocessors and distributed systems. In
this section we detail two parallel implementations of the enu-
merative search algorithm sketched in the previous section,
one for each kind of parallel system.

4.1 Implementation for parallel shared-memory
multiprocessors

The parallel algorithm we consider is based on the execu-
tion of several processes in parallel, each of them executing
the sequential algorithm but exploring a different part of the
search space. When each process finishes, it writes in two
files the results it obtains (as explained in Sect. 3). Once
these processes have finished, a new process reads these files
and merges their contents applying the dominance test, thus
obtaining the Pareto front. This parallel algorithm is simple,
because inter-process communication is not necessary, and
there is only a synchronization point.

To implement this algorithm in C++ we have two main
options: threads and processes. With the use of threads in
mind, the parallel algorithm would be even simpler, because
it is not necessary to use files to store the results; instead, the
sub-fronts can be stored in shared memory, and they could
be directly accessed to obtain the Pareto front. However, we
decided to use processes instead of threads for two reasons:

first, a thread-based implementation provides no substantial
advantages because of the low requirements concerning com-
munication and synchronization in the algorithm; second,
the multi-process implementation can be used without any
changes in a distributed environment, as we will present in
the next subsection.

In order to evaluate the efficiency of our multi-process
program in a multiprocessor, we have ran the program in
a Sun Ultra Enterprise 450, with four UltraSPARC II at
450 MHz processors and 4 GB of main memory. It runs So-
laris 2.8, and we have used the G++ compilerV.2.95. As an
example, we have solved Kursawe’s problem with three deci-
sion variables and 200 partitions per variable. The sequential
program takes 783 s, while the parallel one requires 196 s,
leading to an almost perfect speed-up of 3.99.

We can conclude that parallel shared-memory implemen-
tations are simple and provide good performance. However,
to solve difficult problems we still need systems with a higher
number of processors, and this number is limited even when
using a supercomputer. Therefore, if we need hundreds of
processors, the best choice then is not using a multiproces-
sor, but using a distributed system.

4.2 Distributed application using condor

As discussed in Sect. 2, there are many issues concerning the
development of parallel applications targeted to distributed
systems. However, many of them fail when we intend to use
a large amount of machines belonging to different owners
or organizations (that is, a grid computer), because they do
not cope well with some of the requirements of this kind of
systems. Among these requirements we can consider heter-
ogeneity, poor communication properties, unreliability, and
dynamic availability. As an example, popular communica-
tion libraries such as PVM or MPI do not fulfill well the
last two requirements, and many programs designed to use
them fail to fulfill the second requirement. Grid computing is
devoted to cope with these and other related issues, and it is
an active research area in last years [5]. Thus, systems such
as Globus [12], Legion [16], or Condor [22] are being used
to run programs on grid computers composed of thousands
of machines.

To implement our distributed enumerative search pro-
gram, we have used Condor. Compared to other grid com-
puting software, it is easy to install and to administrate, and
existing programs do not need to be modified or re-compiled
to be executed under Condor (they must only be re-linked
with the Condor library). Condor is designed to manage dis-
tributed collections (pools) of processors spread among a
campus or other organizations [22], having each machine an
owner. A feature of Condor is that the owner of each machine
can specify the conditions under which jobs are allowed to
run; by default, a Condor job stops when a workstation’s
owner begins using the computer. Thus, Condor jobs use
processor cycles that otherwise would be wasted. This way,
users are not reluctant to donate their machines, and thus
large Condor pools can be built.
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Using Condor to develop a distributed version of our
enumerative program has been an easy task, because we can
re-use the same programs of the multi-process version pro-
posed for shared-memory machines. We only need to obtain
an executable version of the programs for each different kind
of platform in the Condor pool, and we have to write a config-
uration file. This file contains, among other information, the
name of the executable program, the number of instances of
the program to be created, and the parameters to be passed to
each instance. Then, we simply submit the jobs specified in
the configuration file to Condor. As in the case of the multi-
process program, when all the tasks have finished, we only
have to collect the information in the result files to obtain the
Pareto front.

Our Condor pool is composed of desktop PCs, worksta-
tions, and servers of several laboratories of the Department
of Computer Science of the University of Málaga. We have
used the following machines:

– A cluster of four Digital AlphaServer 4100, each one with
four Alpha processors at 300 MHz and 256 MB of RAM.
The operating system of these machines is Digital Unix
4.0D.

– A cluster of 22 Sun Ultra 1 workstations. The machines
have a UltraSPARC II processor at 400 MHz, 256 MB of
RAM, and they execute Solaris 2.8.

– Two Sun Ultra Enterprise 450 servers, with four UltraSP-
ARC II at 450 MHz processors and 4 GB of main memory.
They run Solaris 2.8.

– A cluster of 16 PCs, each one with an Intel Pentium 4 pro-
cessor at 2.4 GHz and 512 MB of RAM. They run Suse
Linux 8.1 (Kernel 2.4.20).

– A cluster of 22 PCs, each one with a AMD Athlon XP
1.2 GHz processor and 256 MB of RAM. They run Debian
Linux 3.0 (Kernel 2.2).

– A cluster of 20 PCs, each one with an Intel Pentium III at
600 MHz and 128 MB of RAM. The operating system is
Suse Linux 8.1 (Kernel 2.4.20).

– Six desktop Intel-based PCs running several versions of
Linux.

In total, we have been able to use up to 110 processors: 16
Alpha, 30 UltraSparc, 16 Pentium 4, 26 Pentium III, and 22
Athlon. To give the reader some information about the com-
parative performance of these processors, we have measured
the time required by the first four kinds of machines in the
above list to find the Pareto front of the problem Kursawe
with 100 partitions per variable. The times obtained are 48,
50, 58 and 9 s, respectively.

We have used our Condor pool to solve the problems
Osyczka2 and Golinski with 100 partitions per variable. Let
us comment first the results of the problem Osyczka2 (see its
Pareto front in Fig. 4). The problem was solved in less than
2 days (wall-clock time), while the total CPU time needed for
such task has been reported by Condor of being 90.25 days.
Given that the pool is composed of machines of different
computing power, the time that would require the sequential
program with the fastest processor will be below that amount
of time, but in any case it would be around several tens of
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Fig. 4 Pareto front of the problem Osyczka2, with 100 partitions per
variable
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Fig. 5 Pareto front of the problem Golinski, with 100 partitions per
variable

days. The problem Golinski was solved in 27 days, and the
total CPU time reported by Condor was 775.4 days. Its Pareto
front is included in Fig. 5.

These results show the benefits of using grid computing
technologies to solve problems that are infeasible to be com-
puted in a monoprocessor system. We have used a pool of
machines of a small size, but Condor allows to combine sev-
eral pools of different organizations. Thus, building a grid
computer with thousands of processors is nowadays possi-
ble. However, even when using such a system, the solution
of problems such as Oszycka2 and Golinki with 1000 parti-
tions per variable is intractable, so heuristic techniques are
mandatory in these cases.

5 Conclusions and future work

In this paper, we have developed two parallel versions of
an enumerative search algorithm for solving multi-objective
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Fig. 7 Pareto fronts of problems Deb, Viennet2, Binh2, Viennet 4, and Tanaka (the values between parenthesis indicate the precission)
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optimization problems: one suited to be used on
shared-memory multiprocessors systems, and another one
designed to run under Condor, a system that allows to build
computational grids. Our main goal has been to analyze how
these parallel systems can be used to obtain the Pareto front
by enumeration of problems whose solution by using a single
computer is infeasible.

We have found that the parallelization of the sequential
enumerative algorithm is surprisingly easy. In fact, we use
the same programs in the two parallel systems. The reason is
twofold: first, there is no need of interprocess communication
in the parallel enumerative algorithm and, second, the result-
ing program fits specially well to the requirements imposed
by the Condor system.

Our experiments with the multiprocess version show that
linear speed-ups can be obtained when using multiproces-
sors, what was an expected result because the processes are
independent and they do not interact among them. The bene-
fits of multiprocessors to solve hard problems depend directly
on the number of processors, which is generally limited, even

if we use a supercomputer; therefore, using a computational
grid seems to be a more affordable and cost-effective solution
to profit from a large number of processors. Our experiences
using Condor to execute the distributed enumerative algo-
rithm on a network of more than 100 processors indicate that
it is possible to solve in a few days problems which would
have otherwise required hundreds of days to be solved in a
single computer.

We conclude that the multi-objective research community
can take advantage of computational grids to solve difficult
problems and to obtain the true Pareto fronts, thus allowing
fair and meaningful exhaustive metrics, such as the distance
to the Pareto front calculated with a grid computer.

As a future work, we intend to apply the experiences
obtained in this work to the parallelization in the context of
grid computing of heuristic techniques for multi-objective
optimization.

Appendix: Test functions

Table 3 Test suite

Problem Definition Constraints

Schaffer

Min F = ( f1(x), f2(x))

f1(x) = x2

f2(x) = (x − 2)2
−105 ≤ x ≤ 105

Fonseca

Min F = ( f1(x), f2(x))

f1(x) = 1 − e
−

∑n
i=1

(xi −
1√
n

)2

f2(x) = 1 − e
−

∑n
i=1

(xi +
1√
n

)2
−4 ≤ xi ≤ 4; i = 1, 2, 3

Poloni

Max F = ( f1(x, y), f2(x, y))

f1(x, y) = −[1 + (A1 − B1)2 + (A2 − B2)2]
f2(x, y) = −[(x + 3)2 + (x + 1)2]

−π ≤ x, y ≤ π

A1 = 0.5 sin 1 − 2 cos 1 + sin 2 − 1.5 cos 2

A2 = 1.5 sin 1 − cos 1 + 2 sin 2 − 0.5 cos 2

A3 = 0.5 sin x − 2 cos x + sin y − 1.5 cos y

A4 = 1.5 sin x − cos x + 2 sin y − 0.5 cos y

Kursawe

Min F = ( f1(x), f2(x))

f1(x) =
∑n−1

i=1

(

−10e

(

−0.2∗
√

x2
i
+x2

i+1

))

f2(x) =
∑n

i=1(|xi |a + 5 sin (xi )
b)

−5 ≤ xi ≤ 5

i = 1, 2, 3

a = 0.8,

b = 3

Viennet3

Min F = ( f1(x, y), f2(x, y), f3(x, y))

f1(x, y) = 0.5 ∗ (x2 + y2) + sin (x2 + y2)

f2(x, y) = (3x−2y+4)2

8
+ (x−y+1)2

27
+ 15

f3(x, y) = 1

(x2+y2+1)
− 1.1e(−x2−y2)

−3.0 ≤ x, y ≤ 3.0

Deb

Min F = ( f1(x, y), f2(x, y))

f1(x, y) = x

f2(x, y) = (1 + 10y) ∗ [1 − ( x
1+10y

)α − x
1+10y

sin (2πqx)]

q = 4

α = 2

0 ≤ x, y ≤ 1

Viennet2

Min F = ( f1(x, y), f2(x, y), f3(x, y))

f1(x, y) = (x−2)2

2
+ (y+1)2

13
+ 3

f2(x, y) = (x+y−3)2

36
+ (−x+y+2)2

8
− 17

f3(x, y) = (x+2y−1)2

175
+ (2y−x)2

17
− 13

−4.0 ≤ x, y ≤ 4.0

Bihn2

Min F = ( f1(x, y), f2(x, y))

f1(x, y) = 4x2 + 4y2

f2(x, y) = (x − 5)2 + (y − 5)2

0 ≥ (x − 5)2 + y2 − 25

0 ≥ −(x − 8)2 − (y + 3)2 + 7.7

0 ≤ x ≤ 5

0 ≤ y ≤ 3

Viennet4

Min F = ( f1(x, y), f2(x, y), f3(x, y))

f1(x, y) = (x−2)2

2
+ (y+1)2

13
+ 3

f2(x, y) = (x+y−3)2

175
+ (2y−x)2

17
− 13

f3(x, y) = (3x−2y+4)2

8
+ (x−y+1)2

27
+ 15

y < −4x + 4

x > −1

y > x − 2

−4 ≤ x, y ≤ 4

Tanaka

Min F = ( f1(x, y), f2(x, y))

f1(x, y) = x

f2(x, y) = y

0 ≥ −x2 − y2 + 1 + a ∗ cos (b ∗ arctan (x/y)

0.5 ≥ (x − 0.5)2 + (y − 0.5)2

a = 0.1

b = 16

−π ≤ x, y ≤ π
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Table 3 (Contd.)

Problem Definition Constraints

Osyczka2

Min F = ( f1(x), f2(x))

f1(x, y) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2(x4 − 4)2 + (x5 − 1)2)

f2(x, y) = x2
1

+ x2
2

+ x2
3

+ x2
4

+ x2
5

+ x2
6

0 ≤ x1 + x2 − 2

0 ≤ 6 − x1 − x2
0 ≤ 2 − x2 + x1
0 ≤ 2 − x1 + 3x2

0 ≤ 4 − (x3 − 3)2 − x4

0 ≤ (x5 − 3)3 + x6 − 4

0 ≤ x1, x2, x6 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

Golinski

Min F = ( f1(x), f2(x))

f1(x) = 0.7854x1x2
2
(10x2

3
/3 + 14.933x3 − 43.0934)

−1.508x1(x2
6

+ x2
7
) + 7.477(x3

6
+ x3

7
)

+0.7854(x4x2
6

+ x5x2
7
)

f2(x) =

√

(745.0x4/x2x3)2+1.69∗107)

0.1x3
6

1.0

x1x2
2

x3
− 1.0

27.0
≤ 0 ; 1.0

x1x2
2

x3
− 1.0

27.0
≤ 0

x3
4

x2x2
3

x4
6

− 1.0
1.93

≤ 0 ;
x3
5

x2x3x4
7

− 1.0
1.93

≤ 0

x2x3 − 40 ≤ 0; x1/x2 − 12 ≤ 0

5 − x1/x2 ≤ 0

1.9 − x4 + 1.5x6 ≤ 0

1.9 − x5 + 1.1x7 ≤ 0

f2(x) ≤ 1300
√

(745.0x5/x2x3)2+1.575∗108)

0.1x3
7

≤ 1100

2.6 ≤ x1 ≤ 3.6 ; 0.7 ≤ x2 ≤ 0.8

17.0 ≤ x3 ≤ 28.0 ; 7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3 ; 2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5
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