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Chapter 7

Multi-objective Optimization Using Surrogates

Ivan Voutchkov and Andy Keane

Abstract. Until recently, optimization was regarded as a discipline of rather theo-

retical interest, with limited real-life applicability due to the computational or ex-

perimental expense involved. Practical multiobjective optimization was considered

almost as an utopia even in academic studies due to the multiplication of this ex-

pense. This paper discusses the idea of using surrogate models for multiobjective

optimization. With recent advances in grid and parallel computing more companies

are buying inexpensive computing clusters that can work in parallel. This allows,

for example, efficient fusion of surrogates and finite element models into a multiob-

jective optimization cycle. The research presented here demonstrates this idea using

several response surface methods on a pre-selected set of test functions. We aim to

show that there are number of techniques which can be used to tackle difficult prob-

lems and we also demonstrate that a careful choice of response surface methods is

important when carrying out surrogate assisted multiobjective search.

7.1 Introduction

In the world of real engineering design, there are often multiple targets which man-

ufacturers are trying to achieve. For instance in the aerospace industry, a general

problem is to minimize weight, cost and fuel consumption while keeping perfor-

mance and safety at a maximum. Each of these targets might be easy to achieve

individually. An airplane made of balsa wood would be very light and will have low

fuel consumption, however it will not be structurally strong enough to perform at

high speeds or carry useful payload. Also such an airplane might not be very safe,
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i.e., robust to various weather and operational conditions. On the other hand, a solid

body and a very powerful engine will make the aircraft structurally sound and able

to fly at high speeds, but its cost and fuel consumption will increase enormously. So

engineers are continuously making trade-offs and producing designs that will sat-

isfy as many requirements as possible, while industrial, commercial and ecological

standards are at the same time getting ever tighter.

Multiobjective optimization (MO) is a tool that aids engineers in choosing the

best design in a world where many targets need to be satisfied. Unlike conventional

optimization, MO will not produce a single solution, but rather a set of solutions,

most commonly referred to as Pareto front (PF) [12]. By definition it will contain

only non-dominated solutions1. It is up to the engineer to select a final design by

examining this front.

Over the past few decades with the rapid growth of computational power, the fo-

cus in optimization algorithms in general has shifted from local approaches that find

the optimal value with the minimal number of function evaluations to more global

strategies which are not necessarily as efficient as local searches but (some more

than the others) promise to converge to global solutions, the main players being

various strands of genetic and evolutionary algorithms. At the same time, comput-

ing power has essentially stopped growing in terms of flops per CPU core. Instead

parallel processing is an integral part of any modern computer system. Computing

clusters are ever more accessible through various techniques and interfaces such as

multi-threading, multi-core, Windows HPC, Condor, Globus, etc.

Parallel processing means that several function evaluations can be obtained at

the same time, which perfectly suits the ideology behind genetic and evolutionary

algorithms. For example Genetic algorithms are based on the idea borrowed from

biological reproduction, where the offspring of two parents copy the best genes of

their parents but also introduce some mutation to allow diversity. The entire gener-

ation of offspring produced by parents in a generation represent designs that can be

evaluated in parallel. The fittest individuals survive and are copied into the next gen-

eration, whilst weak designs are given some random chance with low probability to

survive. Such parallel search methods are conveniently applicable to multiobjective

optimization problems, where the fitness of an individual is measured by how close

to the Pareto front this designs is. All individuals are ranked, those that are part of

the Pareto front get the lowest (best) rank, the next best have higher rank and so on.

Thus the multiobjective optimization is reduced to single objective minimization of

the rank of the individuals. This is idea has been developed by Deb and implemented

in NSGA2 [5].

In the context of this paper, the aim of MO is to produce a well spread out set

of optimal designs, with as few function evaluations as possible. There are number

of methods published and widely used to do this – MOGA, SPEA, PAES, VEGA,

NSGA2, etc. Some are better than others - generally the most popular in the litera-

ture are NSGA2 (Deb) and SPEA2 (Zitzler), because they are found to achieve good

results for most problems [2, 3, 4, 5, 6]. The first is based on genetic algorithms and

1 Non-dominated designs are those where to improve performance in any particular goal

performance in at least one other goal must be made worse.
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the second on an evolutionary algorithm, both of which are known to need many

function evaluations. In real engineering problems the cost of evaluating a design

is probably the biggest obstacle that prevents extensive use of optimization proce-

dures. In the multiobjective world, this cost is multiplied, because there are multi-

ple expensive results to obtain. Evaluating directly a finite element model can take

several days, which makes it very expensive to try hundreds or thousands of designs.

7.2 Surrogate Models for Optimization

It seems that increased computing power leads to increased hunger for even more

computing power, as engineers realise that they can run more detailed and realis-

tic models. In essence, from an engineering point of view, the available computing

power is never enough and this tendency does not seem to be changing at least in

the foreseeable future. To put these words into prospective, to be useful to an engi-

neering company, a modern optimization approach should be able to tackle a global

multiobjective optimization problem in about a week. The problem would typically

have 20-30 variables, 2-5 objectives, 2-5 constraints with evaluation times of about

12-48h per design and often per objective. Unless you have access to 5000-7000

parallel CPUs, the only way to currently tackle such problems is to use surrogate

models.

In the single objective world, approaches using surrogate models are fairly well

established and have proven to successfully deal with the problem of computational

Fig. 7.1 Direct search versus surrogate models for optimization
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expense (see Fig. 7.1) [22]. Since their introduction, more and more companies

have adopted surrogate assisted optimization techniques and some are making steps

to incorporate this approach in their design cycle as standard. The reason for this is

that instead of using the expensive computational models during the optimization

step, they are substituted with a much cheaper but still accurate replica. This makes

optimization not only useful, but usable and affordable. The key idea that makes

surrogate models efficient is that they should become more accurate in the region of

interest as the search progresses, rather than being equally accurate over the entire

design space, as an FE representation will tend to be. This is achieved by adding to

the surrogate knowledge base only at points of interest. The procedure is referred to

as surrogate update.

Various publications address the idea of surrogates models and multiobjective op-

timisation [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. As one would expect, no approxi-

mation method is universal. Factors such as function modality, number of variables,

number of objectives, constraints, computation time, etc., all have to be taken into

account when choosing an approximation method. The work presented here aims to

demonstrate this diversity and hints at some possible strategies to make best use of

surrogates for multi-objective problems.

7.3 Multi-objective Optimization Using Surrogates

To illustrate the basic idea, the zdt1 – zdt6 test function suite [3] will be used to be-

gin with. It is a good suite to demonstrate the effectiveness of surrogate models, as it

is fairly simple for response surface (surrogate) modelling. Fig. 13.3 represents the

zdt2 function and the optimisation procedure. It is a striking comparison, demon-

strating the surrogate approach. The problem has two objective functions and two

design variables. The Pareto front obtained using surrogates with 40 function evalu-

ations is far superior to the one without surrogates and the same number of function

evaluations.

Table 7.1 Full function evaluations for ZDT2 - Fig. 13.3

Number of variables 2 5 10

Number of function evaluations without surrogates 2500 5000 10000

Number of function evaluations with surrogates 40 40 60

On the other hand 2500 evaluations without surrogates were required to obtain a

similar quality of Pareto front to the case with surrogates and 40 evaluations. The

difference is even more significant if more variables are added – see Table 14.1.

Here we have chosen objective functions with simple shapes to demonstrate the

effectiveness of using surrogates. Both functions would be readily approximated

using most available methods. It is not uncommon to have relationships of simi-

lar simplicity in real problems, although external noise factors could make them
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Fig. 7.2 A (left) – Function ZDT2; B (right) – ZDT2 – Pareto front achieved in 40 evalua-

tions: Diamonds – Pareto front with surrogates; Circles – solution without surrogates

look rougher. Relationships of higher order of multimodality would be more of a

challenge for most methods, as will be demonstrated later.

7.4 Pareto Fronts - Challenges

Depending on the search algorithm, the quality of the Pareto front could vary greatly.

There are various characteristics that describe a good quality Pareto front:

1. Spacing – better search techniques will space the points on the Pareto front

uniformly rather than producing clusters. See Fig. 7.3a

2. Richness – better search techniques will put more points on the Pareto front than

others. See Fig. 7.3b

3. Diversity – better search techniques will produce fronts that are spread out better

with respect to all objectives. See Fig. 7.3c

4. Optimality – better search techniques will produce fronts that dominate the fronts

produced by less good techniques. In test problems this is usually measured

as ‘generational distance’ to an ideal Pareto front. We discuss this later. See

Fig. 7.3d

5. Globality – the obtained Pareto front is a global as opposed to local. Similar to

single objective optimization, in the multiobjective world, it is also possible to

have local and global optimal solutions. This concept is demonstrated using the

F5 test function (a full description is given in sections 15.4 and 15.5). Fig. 7.4

illustrates the function and the optimization procedure. Due to the sharp nature

of the global solution it cannot be guaranteed that with a small number of GA

evaluations, the correct solution will be found. Furthermore, since the surrogate is

based only on sampled data, if this data does not contain any points in the global

optimum area, then the surrogate will never know about its existence. Therefore
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any optimization based only on such surrogates will lead us to the local solution.

Therefore conventional optimization approaches based on surrogate models rely

on constant updating of the surrogate. A widely accepted technique in single

objective optimization is to update the surrogate with its current optimal solution.

In multiobjective terms this will translate to updating the surrogate with one or

more points belonging to its Pareto front. If the surrogate Pareto front is local

and not global, then the next update will also be around the local Pareto front.

Continuing with this procedure the surrogate model will become more and more

accurate in the area of the local optimal solution, but will never know about the

existence of the global solution.

6. Robust convergence from any start design with any random number sequence. It

turns out that the success of a conventional multiobjective optimization based on

surrogates, using updates at previously found optimal locations strongly depends

on the initial data used to train the first surrogate before any updates are added.

If this data happens to contain points around the global Pareto front, then the

algorithm will be able to quickly converge and find a nice global Pareto front.

However the odds are that the local Pareto fronts are smoother and easier to find

shapes and in most cases this is where the procedure will converge unless suitable

global exploration steps are taken.

7. Efficiency and convergence – better search techniques will converge using less

function evaluations.

Fig. 7.3 Pareto front potential problems - (a) clustering; (b) too few points; (c) lack of diver-

sity; (d) non-optimality
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Fig. 7.4 F5: Local and global solutions

7.5 Response Surface Methods, Optimization Procedure and

Test Functions

In a previous publication [20] we have shown that for complex and high-dimensional

functions Kriging is the response surface method of choice [22]. We have also

stressed the importance of applying a high level of understanding when using Krig-

ing. There have been various publications that critique kriging, due to lack of under-

standing. Our opinion is that if the user understands the strengths and weaknesses

of this approach it can become an invaluable tool, often the only one capable of

producing meaningful results in reasonable times.

Kriging is a Response Surface (RSM) method, designed in the 60’s for geological

surveys [7]. It can be a very efficient RSM model for cases where it is expensive to

obtain large amounts of data. A significant number of publications discuss the krig-

ing procedure in detail. An important role for the success of the method is the tuning

of its hyper parameters. It should be mentioned that researchers who have chosen

rigorous training procedures, report positive results when using kriging, while pub-

lications that use basic training procedures often reject this method. Nevertheless,

the method is becoming increasingly popular in the world of optimization as it often

provides a surrogate with usable accuracy.

This method was used to build surrogates for the above test cases, therefore it is

useful to briefly outline its major pros and cons:

Pros:

• can always predict with no error at sample points,

• the error in close proximity to sample points is minimal,

• requires small number of sample points in comparison to other response surface

methods,

• reasonably good behaviour with high dimensional problems.
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Cons:

• for large number of data points and variables, training of the hyper-parameters

and prediction may become computationally expensive.

Researchers should make a conscious decision when choosing Kriging for their

RSMs. Such a decision should take into account the cost of a direct function eval-

uation including constraints (if any), available computational power, and dimen-

sionality of the problem. Sometimes it might be possible to use kriging for one

of the objectives while another is evaluated directly, or a different RSM is used to

minimize the cost.

As this paper aims to demonstrate various approaches in making a better use of

surrogate models, we will use kriging throughout, but most conclusions could be

generalised for other RS methods as well. The chosen multiobjective algorithm is

NSGA2. Other multiobjective optimizers might show slightly different behaviour.

The basic procedure is as follows:

1. Carry out 20 LPtau [8] spaced initial direct function evalua-

tions.

2. Train hyper-parameters, using combination of GA and DHC

(dynamic hill climbing) [23]

3. Choose a selection of update strategies with specified num-

ber of updates.

4. Search the RSMs using each of the selected methods

5. Select designs that are best in terms of ranking and space

filling properties.

6. Evaluate selected designs and add to data set.

7. Produce Pareto front and compare with previous. Stop if 2-3

consecutive Pareto fronts are identical. Otherwise continue.

8. If Pareto front contains too many points, choose specified

number of points that are furthest away from each other

9. Repeat from step 2.

There are several possible stopping criteria:

• fixed number of update iterations,

• stop when all update points are dominated,

• stop if the percentage of new update points that belong to the Pareto front falls

below a pre-defined value,

• stop if the percentage of old points on the current Pareto front rises above a

pre-defined value,

• stop when there is no further improvement of the Pareto front quality. The quality

of the Pareto front is a complex multiobjective problem on its own. The best

Pareto front could be defined as the one being as close as possible to the origin

of the objective function space, while having the best diversity, i.e., spread on all
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objectives and the points are evenly distributed. Metrics for assessing the quality

of the Pareto front are discussed by Deb [3].

We have used the last of these criteria for our studies.

7.6 Update Strategies and Related Parameters

One of the main aims of this publication is to show the effect of different update

strategies and number of updates. Here we consider the following six approaches in

various combinations:

• UPDMOD = 1; (Nr) - Random updates. These can help escape from local Pareto

fronts and enrich the genetic material,

• UPDMOD = 2; (Nrsm) - RSM Pareto front. A specified number of points are

extracted from the Pareto front obtained after the search of the response surface

models of the objectives and constraints (if any). When the RSM Pareto front is

rich it is possible to extract data that is uniformly distributed.

• UPDMOD = 3; (Nsl) - Secondary NSGA2 layer. A completely independent

NSGA2 algorithm is applied directly to the non-RSM objective functions and

constraints. This exploits the well known property of the NSGA2 which makes

it (slowly) converge to global solutions. During each update iteration, the direct

NSGA2 is run for one generation with population size of Nsl. There are two

strands to this approach. The first one is referred to as ‘decoupled’. The genetic

material is completely independent from the other update strategies. No entries

other than those from the direct NSGA2 are used. The second strand is referred

to as ‘coupled’, where the genetic information is composed of suitable designs

obtained by other participating update strategies. Suitable designs are selected in

terms of Pareto optimality, or rank in terms of NSGA2. Please note that although

it might sound similar, this is a completely different approach from the MµGA

algorithm, proposed by Coello and Toscano (2000)

• UPDMOD = 4; (Nrmse) – Root of the Mean Squared Error (RMSE). When us-

ing kriging as a response surface model, it is possible to compute an estimate of

the RMSE, at no significant computational cost. The value of this metric is large

where there are large gaps between data points. RMSE is minimal close to or

at existing data points. Therefore adding updates at the location of the maximum

RMSE should significantly improve the quality and coverage of the response sur-

face model. When dealing with multiple objectives/constraints it is appropriate

to construct a Pareto front of maximum RMSEs for all objectives and extract

Nrmse points from it.

• UPDMOD = 5; (Nie) – Expected improvement (EI). This is another kriging spe-

cific function which represents the probability of finding the optimal point in a

new location. The update points are extracted from the Pareto front of the max-

imum values of the EI for all objectives. For constrained problems, the values

of EI for all objectives are multiplied by the value of the feasibility of the con-

straints, which is 1 for satisfied constraints 0 for unfeasible and rather smooth

ridge around the constraint boundary, see Forrester et al [22].



164 I. Voutchkov and A. Keane

• UPDMOD = 6; (Nkmean) – The RSMs are searched using GA or DHC and points

are extracted using a k-mean cluster detection algorithm.

All these update strategies have their own strengths and weaknesses, and therefore

a suitable combination should be carefully considered. The results section of this

chapter provides some insights on the effects of each of these strategies when used

in various combinations.

Additional Parameters that Can Affect the Search

The following parameters can also affect the performance of a multi-objective

RSM search:

• RSMSIZE – number of points used for RSM construction. It is expected that the

more points that are used, the more accurate the RSM predictions, however this

comes at increasing training cost. Therefore the number of training points should

be limited.

• EVALSIZE – number of points used during RSM evaluation. This stage is con-

siderably less expensive than training and therefore more points can be used dur-

ing the evaluation stage. Ultimately this should increase the density of quality

material and therefore fewer gaps for the RSM to approximate.

• EPREWARD – endpoint reward factor. Higher value rewards are given at the

end points of the Pareto front, and this improves its spread. Lower value would

increase the pressure of the GA to explore the centre of the Pareto front.

• GA NPOP and GA NGEN – the population size and number of generation used

to search the RSM, RMSE and EI Pareto fronts.

7.7 Test Functions

Several test functions with various degrees of complexity have been chosen to

demonstrate the overview of the RS methods for the purpose of multiobjective opti-

mization. These functions are well known from the literature:

F5: (Fig. 7.4). High complexity shape – has a smooth and a sharp feature. The

combination of both makes it easier for the optimization procedure to converge to

the smooth feature, which represents a local Pareto front. The global Pareto front

lies around the sharp feature which is harder to reach. Two objectives, x (i) = 0 .. 1,

i = 1, 2; no constraints [3], page 350.

ZDT1 - ZDT6: Clustered and discontinuous Pareto fronts. Shape complexity

is moderate. Two objectives, n variables (in present study n = 2), no constraints.

x (i) = 0 .. 1, i = 1, 2 [3], page 357.

ZDT1cons: Same formulation as for ZDT1 but with 25 variables and 2

constraints. Constraints are described in [3], page 368.

Bump: The bump function, 25 variables, 2 objectives, 1 constraint. We have used

the function as provided in [21] which is a single objective with two constraints.

We have made one of the constraints into second objective, so that the optimiza-

tion problem is defined as : Maximise the original objective, minimize the sum of
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variables whilst keeping the product of the variables greater than 0.75. There are 25

variables, each varying between 0 and 3.

7.8 Pareto Front Metrics

To measure the performance of the various strategies discussed in this paper, we

have adopted several metrics. Some of them use comparison to an ‘ideal’ solution

which is denoted by Q and represents the Pareto front obtained using direct search

with a large number of iterations (20,000). All metrics are designed so that smaller

is better.

7.8.1 Generational Distance ([3], pp.326)

The average of the minimum Euclidian distance between each point of the two

Pareto fronts,

gd =

√

∑
|Q|
i=1 di

|Q|
,

di = mink=1,|p|

√

∑M
j=1

(

f
(i)
j − p

(k)
j

)2

, and is the Euclidian distance between the so-

lution (i) and the nearest member of Q.

7.8.2 Spacing

Standard deviation of the absolute differences between the solution (i) and the near-

est member of Q,

sp =

√

√

√

√

1

|Q|

|Q|

∑
i=1

(

di − d̄
)2

,

di = min
k=1,|p|

∑
M
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(

f
(i)
j − p

(k)
j

)

.

7.8.3 Spread

Δ = 1−
∑M

m=1 de
m −∑

|Q|
i=1

∣

∣di − d̄
∣

∣

∑M
m=1 de

m + |Q| d̄
,

where di is the absolute difference between neighbouring solutions. For compatibil-

ity with the above metrics, the values of the spread is subtracted from 1, so that a

wider spread will produce a smaller value.
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7.8.4 Maximum Spread

Normalized distance between the most distant points on the pareto front. The dis-

tance is normalized against the maximum spread of the ‘ideal’ pareto front. For

compatibility with the above metrics, the value of the maximum spread is subtracted

from 1, so that a wider spread will produce a smaller value,

MS = 1−

√

√

√

√

√

√

1

M

M

∑
m=1

⎛

⎜

⎝

max
i=1,|Q|

f
(i)
m − min

i=1,|Q|
f
(i)
m

Pmax
m −Pmin

m

⎞

⎟

⎠

2

.

7.9 Results

The study carried out aims to show the effect of applying various update strategies,

number of training and evaluation points, etc. The performance of each particular

approach is measured using the metrics described in the previous section.

An overall summary is given at the end of this section, but the best recipe ap-

pears to be highly problem dependant. It is also not possible to show all results for

all functions due to limited space, and we have therefore chosen several that best

represent the ideas discussed.

To correctly appreciate the results, please bear in mind that they are meant to

show diversity rather than a magic recipe that works in all situations.

7.9.1 Understanding the Results

The legend on the figures represents the selected strategy in the form

[Nr]-[Nrsm]-[Nsl]-[Nrmse]-[Nie]-[Nkmean]MUPD[RSMSIZE]MEVL[EVALSIZE]

so that a 8-14-15-10-3-3MUPD50MEVL300 would represent 8 random update

points, 14 RSM updates, 15 NSGA2 Second layer updates, 10 RMSE updates, 3

EI updates, 3 KMEAN updates with 50 krig training points and 300 krig evaluation

points.

All approaches were given a maximum of 60 update iterations and stopping cri-

teria of reaching two consecutive unchanged Pareto fronts. Total number of runs is

recorded for each update iteration and all metrics are plotted against number of real

function evaluations, (i.e. likely cost on real expensive problems).

Strategies with ‘dec’ appended to their name – indicate that the decoupled Second

layer is used, as opposed to coupled for those where Nsl = 30 and without any

appendix. Those labled ‘43’ use a one pass constraint penalty expected improvement

strategy whilst those that have Nie = 30 and no appendix use a constraint feasibility

algorithm.
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7.9.2 Preliminary Calculations

7.9.2.1 Finding the Ideal Pareto Front

As mentioned in section 7.8, most of the Pareto front metrics are based on com-

parison to an ‘ideal’ Pareto front. To find it, each of the test functions has been

run through a direct NSGA2 search (direct = without the usage of surrogates) with

Population size of 100 for 200 generations, which takes 20000 function evaluations.

7.9.2.2 How Many Generations for the RSM Search?

We have conducted a study for each of the test functions to find what the minimum

number of generations they should be run for is, in order to achieve best conver-

gence. We found that a population size of 70 with 80 generations is sufficient for all

of test problems and this is what we have used for our tests. Some test functions,

such as ZDT1 - ZDT6 with two variables could be converged using a smaller num-

ber of individuals and generations, however for comparison purposes we decided to

use the same settings for all functions.

7.9.2.3 What Is the Best Value for EPREWARD during the RSM Search?

The EPREWARD value is strictly individual for each function. Taking into account

the specifics of the test function it can improve the diversity of the Pareto front. The

default value is 0.65, which works well for most of the functions, but we have also

conducted studies where this parameter is varied between -1 and 1 in steps of 0.1,

and individual value for each function is selected based on best Pareto front metrics.

7.9.3 The Effect of the Update Strategy Selection

Fig. 7.5 shows that the selection of update strategy is important even for functions

with only two variables. F5 has a deceptive Pareto front and several update strategies

were not able to escape from the local Pareto front.

Fig. 7.6 clearly shows that some strategies have converged earlier than the others,

but some of them to the local front. Generally methods such as Random updates and

Secondary NSGA2 layer updates are not based on the RSM and are the strongest

candidates when deceptive features in the multiobjective space are expected. It is

a common observation amongst most of the low dimensional objective functions

(two or three variables) that using all the update techniques together is not necessar-

ily the winning strategy. However combining at least one RSM and one non-RSM

technique proves to work well. It is somewhat important to note that the Second

NSGA2 layer shows its effect after sixth or seventh update iteration, as it needs time

to converge and gather genetic information.

Update strategies that employ a greater variety of techniques prove to be more

successful for functions with higher number of variables (25).



168 I. Voutchkov and A. Keane

Fig. 7.5 Pareto front for F5

Fig. 7.6 Generational distance for F5

Fig. 7.9 and Fig. 7.10 show that the ‘bump’ function is particularly difficult for

all strategies, which makes it a good test problem. This function has extremely

tight constraint and multimodal features. It is not yet clear which of combination of

strategies should be recommended, as the ‘ideal’ Pareto front has not been reached,

however it seems that a decoupled secondary NSGA2 layer is showing a good
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Fig. 7.7 Pareto front for ZDT1cons

Fig. 7.8 Generational distance for ZDT1cons

advancement. We are continuing studies on this function and will give results in

future publications.

To summarize the performance of each strategy an average statistics is com-

puted. It is derived as follows. The actual performance in most cases is a trade-

off between a given metric and the number of function evaluations needed for
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Fig. 7.9 Pareto front for the ‘bump’ function

Fig. 7.10 Generational distance for the ‘bump’ function

convergence. Therefore the four metrics can be ranked against the number of runs,

in the same way as ranks are obtained during NSGA2 operation. The obtained ranks

are then averaged across all test functions. Low average rank means that the strategy

has been optimal for more metrics and functions. These results are summarized in

Table 14.2.
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Table 7.2 Summary of performance

Random RSM PF SL RMSE EI KMEAN Av. Rank Min. Rank Max. Rank Note

0 30 0 0 30 0 1.53 1 2 EI const.feas

0 30 30 0 0 0 1.83 1 3.33 SL coupled

0 30 0 30 0 0 2 1.33 3.33 RMSE

0 30 0 0 30 0 2.2 1.33 3 EI normal

0 30 30 0 0 0 2.8 1.33 4 SL decoupled

30 30 0 0 0 0 2.84 2 4 Random

0 60 0 0 0 0 2.85 2 3.33 RSM PF

The summary shows that all strategies are generally better than using only the

conventional RSM based updates, which is expected, as the conventional method is

almost always bound to converge at local solutions. However it must be underlined

that a correct selection is problem dependant and must be selected with care and

understanding.

7.9.4 The Effect of the Initial Design of Experiments

All methods presented here start from a given initial design of experiments. This is

the starting point and this is what the initial surrogate model is based on. It is of

course important to show the effect of these initial conditions. In what follows we

have shown that effect by using a range of different initial DOEs. We have again

Fig. 7.11 Generational distance for zdt1 starting from different initial DOEs
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Fig. 7.12 Generational distance for F5 starting from different initial DOEs

Fig. 7.13 Pareto fronts for ‘bump’ starting from different initial DOEs

used 10 updates for each of the techniques (60 updates per iteration in total) for all

functions. The only difference being the starting set of designs.

Fig. 7.11 and Fig. 7.12 illustrate the generational distance for zdt1 and f5 func-

tions - both with two variables. They both demonstrate a good averagibility,
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Fig. 7.14 Generational distance for ‘bump’ starting from different initial DOEs

Fig. 7.15 Pareto fronts for ‘zdt1cons’ starting from different initial DOEs

confirming once again that the surrogate updates are fairly robust for functions with

low number of variables.

Figures 7.13, 7.14 and 7.15 illustrate much greater variance and show that high

dimensionality is a difficult challenge for surrogate strategies, however one should

also consider the low number of function evaluations used here.
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7.10 Summary

In this publication we have aimed to share our experience in tackling expensive

multiobjective problems. We have shown that as soon as we decide to use surrogate

models, to substitute for expensive objective functions, we need to consider a num-

ber of other specifics in order to produce a useful Pareto front. We have discussed

the challenges that one might face when using surrogates and have proposed six up-

date strategies that one might wish to use. Given understanding of these strategies,

the researcher should decide on the budget of updates they could afford and then

spread this budget over several update strategies. We have shown that it is best to

use at least two different strategies – ideally a mixture of RSM and non-RSM based

techniques. When solving problems with few variables we have shown that a com-

bination of two or three techniques is sufficient, however with higher dimensional

problems, one should consider using more techniques.

It is also beneficial to constrain the number of designs that are used for RSM

training and also for RSM evaluation to limit the cost. The selection method of the

designs then being used is open to further research. In this material we have used

selection based on Pareto front ranking.

Our research also included parameters that reward the search for exploring the

end points on the Pareto front. Although not explicitly mentioned in this material,

our studies are using features such as improved crossover, mutation and selection

strategies, declustering algorithm applied both in the variable and objective space

to avoid data clustering. Data is also being automatically conditioned and filtered,

and advanced kriging tuning techniques are used. These features are part of the

OPTIONS [1], OptionsMATLAB and OptionsNSGA2 RSM suites [24].
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