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Abstract. Technical systems interacting with the real world can be ele-
gantly modelled using probabilistic hybrid automata (PHA). Parametric
probabilistic hybrid automata are dynamical systems featuring hybrid
discrete-continuous dynamics and parametric probabilistic branching,
thereby generalizing PHA by capturing a family of PHA within a sin-
gle model. Such system models have a broad range of applications, from
control systems over network protocols to biological components. We
present a novel method to synthesize parameter instances (if such exist)
of PHA satisfying a multi-objective bounded horizon specification over
expected rewards. Our approach combines three techniques: statistical
model checking of model instantiations, a symbolic version of importance
sampling to handle the parametric dependence, and SAT-modulo-theory
solving for finding feasible parameter instances in a multi-objective set-
ting. The method provides statistical guarantees on the synthesized pa-
rameter instances. To illustrate the practical feasibility of the approach,
we present experiments showing the potential benefit of the scheme com-
pared to a naive parameter exploration approach.

1 Introduction

Systems engineering frequently calls for finding parameters on event probabili-
ties, like frequencies of inspections or halts for maintenance, under constraints
on expected values of costs and rewards, like expected maintenance cost and ex-
pected loss due to unscheduled downtime. In this article, we propose a method
which can systematically address this problem for probabilistic hybrid automata
featuring parametric discrete probability distributions governing choices within
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John Fell OUP Research Fund.
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the automaton’s control flow. We are able to devise instances of the paramet-
ric distribution guaranteeing multi-objective specifications concerning expected
costs and rewards over a bounded horizon, i.e., enforcing that expectations on
a multi-dimensional vector of costs/rewards incurred within the bounded hori-
zon satisfy a first-order specification over these costs and rewards. Such speci-
fications may place bounds on individual costs/rewards as well as relate them
arithmetically, e.g., enforcing a relation between maintenance costs and system
availability. The bounded horizon may deal with a number of computation steps
or with a time bound, provided the system is non-Zeno.

For confined settings, such parameter fitting could be reduced to SAT mod-
ulo theory (SMT) solving, based on a parametric extension of the encodings
pioneered by Wimmer et al. [23]. This would, however, require that both the
system dynamics and the reward functions, as well as their dependency on prob-
abilistic choices, can be encoded in the arithmetic theory supported by the SMT
solver, and that the bounded horizon is given in terms of a step bound in order to
facilitate a symbolic unravelling of the transition tree. Such an approach would
for example require SMT over polynomials to deal with parametric probabilis-
tic linear hybrid automata (featuring piecewise constant differential equations,
linear guards, etc.). It is thus confined to systems with rather simple dynamics
and, given the complexity of polynomial constraint solving, of rather small size
under rather restrictive bounds on the temporal horizon.

To overcome these shortcomings, our method is based on ideas from sta-
tistical model checking (SMC) [24], which in its traditional setup deals with
non-parametric probabilistic (hybrid) systems. The strength of SMC is that it
can tackle arbitrary system dynamics, as long as a simulator is available, and is
rather insensitive to system size. The underlying principle is to run a number
of simulations of the system under investigation within a simulator faithfully
representing the — then necessarily non-parametric — probabilistic choices in
the system as well as its state dynamics, and to exploit the set of traces obtained
from the simulations for computing an estimate of the expected values of reward
or cost variables by means of averaging over the individual traces.

Extensions of SMC to parametric probabilistic hybrid systems could in prin-
ciple be addressed by sampling the parameter space, yet this would induce the
curse of dimensionality, confining such a method to fitting isolated parameters.
We avoid this problem by adequately adapting the concept of importance sam-
pling, which permits factoring out the parameter dependency of the distributions
by sampling a fixed substitute distribution instead. The method is based on a
combination of statistical model checking of a substitute model devoid of para-
metricity, a symbolic version of importance sampling providing an SMT repre-
sentation of the parameter dependencies, and SMT solving for finding feasible
parameter instances satisfying the constraints imposed on expected values.

Organization of the paper. Section 2 introduces parametric probabilistic hybrid
automata and multi-objective specifications on expected rewards. Section 3 ex-
plains importance sampling for parametric distributions and presents the equa-
tions that are key to our approach. Section 4 considers the specific case of para-
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metric distributions in (finite- or infinite-state) Markov chains and provides sta-
tistical guarantees in the form of confidence intervals. Section 5, finally, sketches
how SMT solving can be applied so as to find (a) feasible parameter instances
satisfying the multi-objective specification and (b) the confidence in the provided
solution. We close with discussing related work and general conclusions.

2 Parametric Probabilistic Hybrid Automata
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Fig. 1: PPHA model of a charging station.
Modes are labeled with labels charge and
discharge abbreviating ODE (not shown ex-
plicitly) representing corresponding dynamics
over a continuous capacity `. Modes can switch
according to guarded transitions leading to a
probabilistic branch. Probabilities are summa-
rized as terms t1, . . . , t4 indicating their param-
eter dependencies.

Probabilistic hybrid automata
(PHA) [19] extend hybrid au-
tomata with discrete proba-
bilistic branching. This en-
ables modeling of, e.g., ran-
dom component failures and
data packet losses. Similar to
hybrid automata, PHA fea-
ture a finite set of discrete
locations (or modes), each of
which comes decorated with
a differential equation govern-
ing the dynamics of a vector
of continuous variables while
residing in that mode. Modes
change through instantaneous
transitions guarded by condi-
tions on the current values of
the continuous variables, and
may yield discontinuous up-
dates of the continuous vari-
ables. Aiming at simulation-
based evaluation methods as
in SMC, transition selection
here is assumed to be deterministic, i.e., guard conditions at each mode are
mutually exclusive. To prevent non-determinism between possible time flows
and transitions, we also assume that transitions are urgent, i.e., they are taken
as soon as they are enabled (which furthermore renders mode invariants redun-
dant). In addition to these mechanisms from deterministic hybrid automata,
PHA allow for the probabilistic selection of a transition variant based on a dis-
crete random experiment. Following the idea of Sproston [19,20], the selected
transition entails a randomized choice between transition variants according to
a discrete probability distribution. The different transition variants can lead to
different follow-up locations and different continuous successors, as depicted in
Figure 1, where the guard condition determining transition selection is depicted
along the straight arrows leading to a potential branching annotated with prob-
ability terms denoting the random experiment.
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Parametric probabilistic hybrid automata (PPHA) extend PHA with the pres-
ence of parameters. Whereas in PHA the probability distributions are constants,
PPHA allow the branching probabilities to be terms over a set Param of param-
eter names. The viable parameter instantiations θ : Param → R are constrained
by an arithmetic first-order predicate φ over Param, defining their mutual rela-
tion. Let Θ = {θ : Param → R | θ |= φ} denote the set of all viable parameteri-
zations. Arithmetic terms over Param are subject to the constraint that for all
viable parameter valuations θ |= φ, the sum of outgoing probabilities assigned
to each transition is one, i.e., φ =⇒

∑n
i=1 ti(θ) = 1 holds for the probability

terms t1, . . . , tn associated to each transition t. Note that the probability terms
need not contain free variables θ: ordinary non-parametric distributions are thus
special cases of parametric distributions and do not require special treatment.

2.1 Interpretation as parametric infinite-state Markov chain

A PPHA engages in a sequence of continuous flows and discrete jumps. The con-
tinuous flows are solutions of the ordinary differential equations assigned to the
current location. The discrete jumps originate from taking enabled transitions,
thereby eliciting a transition as soon as it is triggered, and then probabilistically
deciding among the different transition variants, with their associated target lo-
cations and resets to continuous variables. For the sake of formal analysis, we
formalize the semantics of PPHA through a reduction to a parametric infinite-
state Markov chain. For a PPHA with location set Λ and continuous variables
x1, . . . , xD, the states of the Markov chain are given by Σ = Λ × RD and the
initial state distribution is inherited from the PPHA. Each state σ = (l,x) ∈ Σ
gives rise to a parameter-dependent distribution5 pσ : Σ×Θ → [0, 1] of successor
states:

pσ(σ′, θ) =



t(θ) if a transition (σ, σ′) labeled with probability term t is enabled,

1 if σ′ = (l, g(t)), where g is a solution to the ODE associated to

l ∈ Λ with g(0) = x, no transition is enabled in (l, g(t′)) for any

t′ ∈ [0, t[, and a transition is enabled in σ′ = (l, g(t)),

0 otherwise.

Given a parametric infinite-state Markov chain M with its initial (state) dis-
tribution given by a density ι : Σ → R≥0 and a parametric next-state dis-
tribution pσ : Σ × Θ → [0, 1], the density function associated to finite runs
〈σ0, σ1, . . . , σk〉 ∈ Σ∗ given a parameter instance θ ∈ Θ is

pM (〈σ0, σ1, . . . , σk〉; θ) = ι(σ0) ·
k−1∏
i=0

pσi(σi+1, θ).

Note that while we represented the parametric dependence by a single parameter
θ, this can be vector valued, thereby encoding potentially different dependencies
for different nodes.
5 Note that due to the finite probabilistic branching in PPHA, we deal with distribu-

tions rather than densities here.
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2.2 Parameter synthesis

Let f : Σ → R be a scalar function on states, to be evaluated on the last state
of a run and called the reward f of the run,6 and let k ∈ N. The k-bounded
expected reward for f in a parameter instance θ ∈ Θ is

EM,k[f ; θ] =

∫
Σk

f(σk−1)pM (〈σ0, σ1, . . . , σk−1〉; θ) d〈σ0, σ1, . . . , σk−1〉,

where Σk denotes the sequences over Σ of length k. We will subsequently drop
the index M in EM,k and pM whenever it is clear from the context.

Rewards represent quantitative measures of the system’s performance, and
therefore mutual constraints on their values can be used for capturing design
goals. The design problem we are thus facing is, given a vector f1, . . . , fn :
Σ → R of rewards in Markov chain M , to ensure via adequate instantiation of
the parameter that the expected rewards meet the design goal. The following
definition captures this intuition.

Definition 1 (Parameter synthesis problem). Let f1, . . . , fn : Σk → R be
a vector of rewards in a Markov chain M and let C be a design goal in the form
of a constraint on the expected rewards, i.e., an arithmetic predicate containing
f1, . . . , fn as free variables. A parameter instance θ : Param → R is feasible
(wrt. M and C) iff

θ |= φ and [f1 7→ EM,k(f1; θ), . . . , fn 7→ EM,k(fn; θ)] |= C.

The multi-objective parameter synthesis problem is to find a feasible param-
eter instance θ, if it exists, or to prove its absence otherwise.

Stated in words, a parameter instance θ is feasible wrt. φ and C iff the parame-
ters are in the range defined by φ and the expected rewards resulting from the
instantiation meet the multi-objective C. Note that the aim is to find a param-
eter instance meeting our design goal; we are not considering determining all
instantiations. In the sequel, we will focus on a single reward f rather than n
such functions and indicate whenever appropriate how to deal with a vector.

3 Estimating Expectations by Sampling

In order to introduce the general concept of importance sampling [21], we mostly
abstract from our PPHA setting in this section. We instead assume that the
parametric probability distribution of the random variable x ∈ X is given in
terms of a density function p(·; θ) which depends on a vector θ of bounded real-
valued parameters. Permissible values of θ are defined by a first-order constraint
φ.

6 Despite the generality of the PPHA model, defining rewards exclusively on the final
state σk of a run 〈σ0, σ1, . . . , σk〉 ∈ Σ∗ is as expressive as defining them via func-
tions f(〈σ0, σ1, . . . , σk〉), where f : Σk+1 → R. Such rewards can be alternatively
encoded by augmenting the state-space of the PPHA model with additional variables
accumulating the quantities of interest along the trajectory.



6

Classical sampling. Given an arbitrary (bounded) function f : X → R, we are
interested in estimating expected values of f under all parameter values θ |= φ.
The expectation E [f ; θ] for reward f given parameter vector θ is

E [f ; θ] =

∫
X

f(x)p(x; θ) dx . (1)

Given a specific parameter instance θ∗ and a process sampling xi according to
the distribution p(·; θ∗), the expectation E [f ; θ∗] can be estimated by

Ẽ [f ; θ∗] =
1

N

N∑
i=1

f(xi) , (2)

which is the empirical mean of the sampled f -values. In our PPHA setting, a
reasonable process for generating such samples xi according to the distribution
p(·; θ∗) would be a simulator for non-parametric PHA, applied to the instance of
the PPHA under investigation obtained by substituting θ∗ for the free parame-
ters.

For sufficiently large N , we expect E [f ; θ∗] ≈ Ẽ [f ; θ∗] due to the law of large
numbers. We can quantify the quality of the approximation in (2) using Hoeff-
dings inequality [13], provided that f has a bounded support [af , bf ]:

P
(
E [f ; θ∗]− Ẽ [f ; θ∗] ≥ ε

)
≤ exp

(
−2

ε2N

(bf − af )2

)
≥ P

(
Ẽ [f ; θ∗]− E [f ; θ∗] ≥ ε

)
(3)

Therefore, the empirical mean (2) yields a very reliable estimate of the actual
expectation when the number of samples is large, with the accuracy given by (3).

Importance sampling. While determining the empirical mean (2) by repeated
simulation is an adequate procedure for assessing non-parametric PHA, it is
bound to fail for PPHA when applied näıvely, as it would require to sufficiently
densely cover the parameter space Θ with parameter instances θ∗j and generating
j = 1, . . . , N samples for each instance θ∗j . This is thus subject to the curse of
dimensionality. Fortunately, importance sampling [21] provides a means of using
substitute probability distributions in sampling processes. We will exploit this
for dealing with parameters. Importance sampling was originally designed to
enhancing the quality of empirical estimates by artificially drawing according to
their (assumed) importance for the estimate and later correcting the estimate by
weighting the individual samples by that importance. In our setting, we will use
importance sampling for estimating the parameter-dependent expectation E [f ; θ]
defined in equation (1). Instead of sampling X according to the distribution p,
importance sampling uses a different distribution q to sample from. It then
calculates the empirical mean of the samples (over q), but weighs each sample xi
by its importance weight p(xi)

q(xi)
, in order to obtain an estimate of the expectation

under the original distribution p. Applying this idea to our parametric setting,
we can pursue a single round of sampling wrt. some non-parametric distribution
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q and estimate the expected value E [f ; θ] for arbitrary θ as follows:

E [f ; θ] =

∫
X

f(x)p(x; θ) dx =

∫
X

f(x)p(x; θ)

q(x)
q(x) dx

≈ 1

N

N∑
i=1

f(xi)p(xi; θ)

q(xi)
=: Ê [f ; θ], where xi ∼ q. (4)

Note that all the samples {x1, . . . , xN} are drawn according to the substitute7

distribution q (indicated by xi ∼ q); nevertheless, (4) still keeps the parameter
dependence Ê [f ; θ] for arbitrary values of θ.

4 Symbolic Representation of Importance Sampling

The purpose of this section is to derive a symbolic characterization of a solution
to our parameter synthesis problem. This is achieved by using samples drawn
from the proposal distribution to construct a symbolic constraint system by
means of the importance sampling expression for the expectation.

A symbolic constraint system. Let p(x; θ) have a closed-form representation given
as term t. (Typically t contains one or more free occurrences of x and θ.) A
symbolic representation of the parameter dependency of Ê [f ; θ], and (due to
the sampling error) an approximate symbolic representation of the parameter
dependency of E [f ; θ] can now readily be obtained as follows. We replace all
occurrences of p(x1; θ) through p(xN ; θ) in (4) by the terms t[x1/x] through
t[xN/x] respectively, and substitute the concrete values for N , (xi)i=1...N , and
(f(xi))i=1...N . The resulting term, referred to as η, is a large sum with multiple
occurrences of θ in different instances of the sub-term t. Let C be a constraint on
the expected reward E , i.e., C is a formula with free variable f formalizing the
requirements on the expectation E [f ; θ]. A parameter instance θ |= φ statistically
guaranteeing C can now in principle be found — or conversely, the infeasibility
of C over φ be established — by solving the constraint system

(E [f ; θ] = η[f ; θ]) ∧ φ ∧ C (5)

using an appropriate constraint solver. Note that (5) enforces θ |= φ through the
conjunct φ and guarantees [f 7→ Ê [f ; θ]] |= C due to the construction of η and
the presence of the constraints E = η and C.

As Ê [f ; θ] ≈ E [f ; θ], the instance θ of the parameterized system under inves-
tigation then intuitively is likely to also satisfy E [f ; θ] |= C, as desired. However,
the resulting parameter instances might suffer from being biased towards the
particular samples, which will be investigated in detail in the next section.

The generalization of (5) to multiple rewards fj : X → R and a corresponding
multi-objective constraint C containing arbitrary arithmetic and Boolean com-
binations of the expected rewards is straightforward, albeit potentially higher in
computational cost.

7 In principle, an arbitrary distribution q can serve as a substitute. In our setting, it is
natural to use an instance q = p(·; θ∗) of the parametric distribution, where θ∗ |= φ.
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Simplified constraint system. In practice, the constraint (5) may become un-
wieldy due to the large number of samples xi necessary for obtaining a suffi-
ciently tight confidence bound in equation (3), as the number of samples directly
translates into a corresponding number of summands in η. This problem can be
alleviated in our setting as we consider Markov processes.

For the sake of illustration, let us assume that there is a (non-empty) subset
∆ of the state set Σ of the Markov chain M , where the chain has a parameter-
dependent probabilistic choice between just two transition alternatives, taking
alternative one with probability t, where t is a term dependent on θ, and al-
ternative two with probability 1 − t, and that all other states in Σ \∆ feature
non-parametric distributions.8 During sampling, we substitute these parameter-
dependent probabilities t and 1−t by the static substitute probabilities q and
1−q, respectively, where q ∈ ]0, 1[ is a constant.

During a simulation providing N samples, we now keep track of how many
times a run takes transition alternatives one and two. Let Tn,m denote the set
of simulated trajectories taking n times alternative one and m times alternative
two. Note that there are finitely many Tn,m 6= ∅, and that in practice the number
of non-empty Tn,m is considerably smaller than N . Let Σn,m =

∑
xi∈Tn,m f(xi)

denote the sum of the rewards seen on all trajectories in Tn,m. This quantity
can easily be computed during sampling. With these notations in place, we can
partition the sum (4) in terms of the necessarily pairwise disjoint sets Tn,m,
obtaining the following equivalent formulation of (4):

Ê [f ; θ] =
1

N

∑
n,m∈N

(
Σn,m

(
t

q

)n(
1− t
1− q

)m)
(6)

Note that θ freely occurs in the right-hand side of (6), as it does so in t. If the
number of non-empty Tn,m is considerably smaller than N , the right-hand side of
equation (6), after dropping summands for which Tn,m = ∅ and thus Σn,m = 0,

provides us with a much shorter sum than (4), which still characterises Ê [f ; θ].

A symbolic representation η of the parameter-dependency of Ê [f ; θ] can again
be obtained by substituting the specific values for N , q, and Σn,m into (6).
Based on the resulting expression η, we can construct a logically equivalent, yet
syntactically shorter formulation of the constraint (5):E =

1

N

∑
n,m∈N

(
Σn,m

(
t

q

)n(
1− t
1− q

)m) ∧ φ ∧ C. (7)

This constraint expresses [f 7→ Ê [f ; θ]] |= C subject to θ |= φ, and thus ap-
proximates the feasibility condition on θ up to the inaccuracies incurred through
sampling and rescaling due to importance sampling. In Sect. 6, we will demon-
strate that (7) is amenable to constraint solving for a set of interesting PPHA.

8 The generalization to arbitrary discrete distributions (fan-out larger than two) con-
trolled by a finite-dimensional vector of parameters is straightforward, as is tackling
multiple different subsets ∆i ⊂ Σ.
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5 Existence or Absence of Parameter Instances

As constraint (7) is an arithmetic constraint containing addition, multiplication,
and the operations found in the term t as well as in the parameter domain
constraint φ and the design goal C, it can be solved by SMT solvers addressing
the corresponding subset of arithmetic, e.g., iSAT [8]. This provides an automatic
feasibility check for (7), i.e., a test whether there is a parameter instance within
the domain defined by φ which guarantees (modulo sampling errors) satisfaction
of constraint C over the expectations. Should this test succeed, it will also deliver
a parameter instance. Additional optimization wrt. the expectation E [f ; θ] can
be added on top by a branch-and-prune algorithm, as available in the HySAT
II tool [12]. It is, however, obvious that a solution to (7), if existing, guarantees
the approximate feasibility condition [f 7→ Ê [f ; θ]] |= C only, rather than the
desired [f 7→ E [f ; θ]] |= C. Therefore, we have to account for the statistical
approximation error associate to the empirical estimate.

For the sake of simplicity, assume in the sequel that the constraint C on
the expectation E [f ; θ] is of the form E [f ; θ] < c, for some constant c ∈ R.
The generalization to arbitrary constraints, including constraints on multiple
different expectations, is straightforward by adopting the concept of δ-weakening
discussed in the context of robust interpretations of arithmetic logics [17].

In the following, we consider the case that symbolic checking of the empir-
ical constraint system (7) could not be satisfied. In this case, we know that

minθ Ê [f ; θ] > c + ε, with an additional slackness ε to be defined shortly. We
are then interested in the probability that there nevertheless exists a θ′ with
E [f ; θ′] < c, i.e., minθ′ E [f ; θ′] < c. To quantify this, let the sub-index S =
(X1, . . . , XN ) indicate the dependency of the estimated expectation on the en-

semble of samples drawn from the proposal q, i.e., ÊS [f ; θ] = 1
N

∑
i f(xi)

p(xi;θ)
q(xi)

:

PS
(

min
θ
ÊS [f ; θ] ≥ ε+ c ∧ min

θ
E [f ; θ] < c

)
≤ PS

(
min
θ
ÊS [f ; θ] ≥ min

θ
E [f ; θ] + ε

)
Jensen ineq.

≤ PS

min
θ
ÊS [f ; θ]︸ ︷︷ ︸

=:g(S)

−E
[
min
θ
ÊS [f ; θ]

]
≥ ε

 = PS (g(S)− E [g(S)] ≥ ε)

McDiarmid ineq.

≤ exp

(
−ε

2N

4B2

)
=: δ;B := max

x,θ

p(x; θ)

q(x)

Markov

≤
(

max
θ

{
pθ
q
,

1− pθ
1− q

})k−1

(8)

The last of these inequalities is specific to our case of a binary Markov chain
with samples consisting of k probabilistic transitions.

Therefore, if we are aiming for a confidence of 1− δ, we can use equation (8)
and check the symbolic constraint system with an adapted threshold c′ = c +

ε(δ,N) =

√
log( 1

δ )

N 2B. If this constraint system is unsatisfiable, we know with
probability at least 1−δ that the original constraint system is also unsatisfiable.

Obtaining similar bounds in case we have found a parameter instance for
which the empirical constraint system is indeed satisfiable is more involved.



10

In fact, these bounds are tightly coupled to the generalization bounds within
statistical learning theory (see [1,5,22]). Therefore, in case we find a potential
satisfying parameter setting using the symbolic constraint system, we simply
check the validity of this parameter statistically using another round of näıve
sampling, similar to [25], thereby avoiding restricting ourselves to particular
function classes for the parameter dependence of the terms t.

Using the above two tests, we can iteratively solve for a parameter satis-
fying the desired constraint system until one of the tests succeeds, giving us
a (statistically) reliable answer. If a parameter instance satisfying (7) is found
that nevertheless fails to pass the statistical check, we use the fresh samples to
build another symbolic constraint system as in equation (7). We can then use
this constraint system to solve for a new parameter value, which we can then
check subsequently. To use as much information as possible from the samples,
instead of building a completely fresh symbolic constraint system, we simply add
the newly constructed constraint system to the previous one (see Algorithm 1).
To retain the confidence statement with respect to unsatisfiability when adding
more clauses to the constraint system, we have to account for sequential hypoth-
esis testing. This can be achieved by using a Bonferroni correction, i.e., requiring
the individual tests to be more confident, relative to the maximal amount of tests
to be performed (δc = δ

I in Algorithm 1).

Algorithm 1 Parameter Fitting by Symbolic Importance Sampling

function SYM-IMP(φ,C, confidence δ, number of samples N , max. iterations I)

δc ← δ
I
; θ0 ← DrawUniform(Θ); ε ←

√
log( 1

δc
)

N
2B; n← 0; φ̂0 ← φ

while n ≤ I do
q ← p(·; θn)
S = (x1, . . . , xN ) ← DrawSamples(q, N)
if CheckSamples(S, δ, φ,C) then

return θn . Found parameterization satisfying C with prob. ≥ 1− δ
else

φ̂n+1 ← φ̂n ∧ (η(S) < c+ ε) . Add samples to empirical system
θn+1 ← SolveConstraintSystem(φ̂n+1)
if φ̂n+1 is unsatisfiable then

return Unsat . Original system is unsatisfiable with prob. ≥ 1− δ
else n← n+ 1
end if

end if
end while
return Unknown . Reached maximal iterations I

end function

Altogether, we arrive at Algorithm 1 which upon termination within the
specified maximal number of iterations either delivers a parameter instance sat-
isfying the design objective with the desired confidence or proves with the desired
confidence that no such instance exists.
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6 Experiments

In this section, we explore the potential and limitations of the presented ap-
proach, exemplified on the PPHA depicted in Figure 1. The PPHA simplisti-
cally models a battery being charged and discharged, where switching between
those two modes happens randomly, thereby reflecting external influences like
weather on a solar panel. As the climatic conditions might change depending on
the region, the probabilistic transitions are parameterized. Initially, the battery
is in charge mode. As long as its capacity has not reached its maximal value
(guard: ` < 1), it can switch randomly with probability t1 to the discharge

mode. During the transition from charge to discharge mode, the capacity is
reduced. For simplicity, we assume a fixed value of 0.048 (see Figure 1), which
reduces the continuous variable ` to the new value after the transition to `′. For
the probabilistic transitions, we assume the following parametric dependence
to include non-linear dependence of the parameters h: t1 = t3 = sin (h), and
t2 = t4 = 1 − t1, where h ∈ [0.0, 0.1] is the parameter of interest. As an illus-
trative objective for this PPHA, we are interested in finding a parameter value
such that the charge of the battery reaches a sufficient level at a certain time,
e.g., exceeding a threshold level at sunset which provides sufficient power for the
following night. This property can be formalized as follows:

Goal: The battery is sufficiently charged at sunset (indicated by time
step K) in 90% of the days. The corresponding reward function takes the
current time into account: it evaluates to 1 if ` ≥ 0.98 at time K, and 0
otherwise. We require this condition to hold with probability c ≥ 0.9.

Using this formalization, we evaluate the presented approach in terms of both
accuracy and efficiency. Using Algorithm 1, we can obtain the following results
from our solver characterizing the solution: ‘unknown’, ‘candidate solution’, ‘un-
satisfiable’. If the problem is satisfiable, we expect the solver to return, either
‘unknown’ or ‘candidate solution’ due to the general undecidable nature of the
problem. However, if the solver returns ‘unsatisfiable’, we know that with a high
likelihood (1−δ) there is no parameter value within the given domain, such that
the constraint system is satisfiable.

Fortunately, the simplicity of the model allows us to calculate maximal and
minimal values for the expected values as a function of the parameter quite
accurately, thereby enabling us to determine the satisfiability of the problem
analytically in some of the settings. Using this analytical result we can determine
the fraction of simulations in which we have obtained the most informative result
with respect to these analytically obtained satisfiability statements.

For the model described above, we are able to compute the satisfiability for
both constraint variants by calculating the expected values using h = 0.0 and
h = 0.1, due to the monoticity of the properties: From these expectations, we
can conclude on the existence of a parameter instances for which θ |= C or θ 6|= C
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holds9. Using these bounds we evaluate the frequency with which the algorithm
found the most informative solution as a proxy for the accuracy of the approach.

To judge the improvement of the presented approach, we compare the sam-
pling based verification with a parameter-state exploration approach. As we
are considering a bounded model checking approach within a Markov transition
system, we can fully unroll the probabilistic transitions and use the same SMT
solver to check the existence of a parameter value that result in a satisfaction
of the desired property. As the complexity of the satisfaction property increases
with increasing unrolling depth, we vary the maximal number of transitions as
well as the level of confidence. As we expect the choice of the proposal distri-
bution to crucially influence the effectiveness of the approach, we compare two

different choices: one minimizing the possible range B of the fraction q(x)
p(x;θ) (as

a function of the parameter as well as a function of the sampled path x, cf. (8)),
and a slightly perturbed version. As a backend SMT solver, we used iSAT310.

In Figure 2, we compare the accuracy as well as the run-time of our sampling-
based method against a full exploration approach. In the left panel, the obtained
(and averaged obtained) result are plotted for either method. For the sampling
based method the results are averaged across 50 repetitions, for each of which we
used a confidence of 1− δ = 0.7, N = 15000 samples, and a maximal number of
I = 3 iterations. Although none of the algorithms, both sampling and unwinding
based, produced any wrong results, the sampling-based algorithm was able to
provide more informative results for models with large complexity. Although
we know the problem for the settings with higher unrolling depth (≥ 16) to be
satisfiable, only the sampling based approach was able to provide a corresponding
certificate, while the unwinding scheme returned a ‘potentially satisfiable’ result,
indicated by the UNKNOWN result. The drop in accuracy around unrolling
depth K ≈ 15 can be explained by the fact that the range of possible expected
values E as a function of the parameters overlaps with the confidence interval,
rendering the problem harder to answer. As the problem size for näıve scheme
of fully unwinding the transition system grows exponentially with the maximal
length of paths (K), we expect the speedup compared to the run-time of the
sampling based scheme also to be exponential as a function of K. It can be
observed that the speedup in the run-time increases with the complexity, as
shown in Figure 2b. However, for settings with small number of possible paths,
the speedup is less pronounced. In fact, it could also happen that the speedup
is below 1 (a slower performance), as the sampling based approach needs to
simulate more than actual possible paths for small unrolling depths, leading to
an overhead in computation.

9 These regions are indicated in Figure 2 in green and red respectively. For the region
inbetween, we could not analytically calculate the true result. As the sampling-based
method returned some satisfiable parameter values, it suggests the satisfiable region
to be larger than depicted in the Figure.

10 https://projects.avacs.org/projects/isat3

https://projects.avacs.org/projects/isat3
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Fig. 2: Comparison of exhaustive and sample based method wrt. accuracy and
running-time. For the accuracy (left panel), the analytically guaranteed UNSAT
and SAT regions are marked red (left) and green (right) respectively. For the
sample-based algorithm an interpolated average ± 1 standard error is plotted.

7 Related Work

The verification of parametric probabilistic models in which certain transition
probabilities are given as parameters (or functions thereof) has received consider-
able attention recently. Most approaches focus on parameter synthesis: for which
parameter instances does a given (LTL or probabilistic CTL) formula hold? This
question has been tackled in several different settings, varying in the properties,
the forms of parameter dependence, as well as the class of systems considered.
Han et al. [11,3] considered the problem for timed reachability in continuous-
time Markov chains, Hahn et al. [9] and Pugelli et al. [18] for discrete-state
Markov decision processes (MDPs). Benedikt et al. [2] considered the parameter
synthesis as a maximization problem for the probability of satisfying ω-regular
properties within an interval Markov chain without further constraints on the
parameter dependence. Hahn et al. [10] provide an algorithm for computing the
rational function of the parameters expressing the probability of reaching a given
set of states in a parametric (reward) MDP based on exploiting regular expres-
sions, as initially proposed by Daws [6]. For non-probabilistic systems and linear
arithmetic dependence on parameters, the synthesis (i.e., reachability as the dual
problem) has been analyzed in [4]. Similarly, in [15] and [14] reachability is ana-
lyzed for parametric probability distribution in a finite-state Markov chain. To
increase the efficiency of the synthesis problem, [14] restricted the parametric
dependence to rational functions. Zhang et al., [25] considered the following
problem: Find parameters u such that for a given black box function r, the fol-
lowing holds: PX(r(u, x) ∈ [a, b]) ≥ θ. For this single objective the probability
distribution of x needs to be known and independent of the design parameters
u. The presented procedure is similar, as it iterates between optimization and a
simulation-based verification step, however, it cannot provide an unsatisfiability
statement. The parametric dependence of the probability distributions presented
in this paper can also be integrated into a hierarchical optimization procedure,
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see [7] for more details. There however, only single objectives were considered
instead of multiple constraints as specified in equation (5).

To the best of our knowledge, synthesis wrt. arbitrary first-order objectives
over expected rewards has not been considered so far. Parameter synthesis in
PHA also seems to be a mostly unexplored research arena.

8 Conclusion

We have discussed a method for automatically finding parameter instances sat-
isfying arbitrary first-order, multi-objective specifications on expected rewards,
given a probabilistic hybrid system with parametric probability distributions.
Although our approach is based on simulations and hence can only provide statis-
tical guarantees of the property being satisfied, we found that such an approach
can rapidly find parameter instances at similar or even better accuracy than ex-
haustive, safely overapproximating procedures. The probable reason is that the
overall number of paths to be analyzed is drastically reduced by the sampling
process, thereby rendering the approach less sensitive to the overapproximations
typically used by the internal mechanics of the solver used.11 For this reason,
it is to be expected that this accuracy benefit gets even more pronounced for
higher-dimensional optimization problems. As our approach effectively tames
the dimensionality barrier, which inevitably is hit by both exhaustive proce-
dures and procedures sampling the parameter space, by employing a form of
symbolic importance sampling it should scale well to such higher-dimensional
problems. This, however, remains subject to future investigations.
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