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Abstract. Powder mixed electro-discharge machining (EDM) is being widely used
in modern metal working industry for producing complex cavities in dies and moulds
which are otherwise difficult to create by conventional machining route. It has been
experimentally demonstrated that the presence of suspended particle in dielectric fluid
significantly increases the surface finish and machining efficiency of EDM process.
Concentration of powder (silicon) in the dielectric fluid, pulse on time, duty cycle,
and peak current are taken as independent variables on which the machining perfor-
mance was analysed in terms of material removal rate (MRR) and surface roughness
(SR). Experiments have been conducted on an EZNC fuzzy logic Die Sinking EDM
machine manufactured by Electronica Machine Tools Ltd. India. A copper electrode
having diameter of 25 mm is used to cut EN 31 steel for one hour in each trial.
Response surface methodology (RSM) is adopted to study the effect of independent
variables on responses and develop predictive models. It is desired to obtain optimal
parameter setting that aims at decreasing surface roughness along with larger mate-
rial removal rate. Since the responses are conflicting in nature, it is difficult to obtain
a single combination of cutting parameters satisfying both the objectives in any one
solution. Therefore, it is essential to explore the optimization landscape to generate the
set of dominant solutions. Non-sorted genetic algorithm (NSGA) has been adopted to
optimize the responses such that a set of mutually dominant solutions are found over
a wide range of machining parameters.

Keywords. Powder mixed EDM; surface roughness; material removal rate;
non-sorted genetic algorithm; response surface methodology.
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1. Introduction

Electrical discharge machining (EDM) is an extensively used non-conventional material removal
process to machine electrically conductive and hard materials for manufacturing of mould, die,
automotive, aerospace and surgical components (Benedict 1987). In this process, material is
removed by controlled erosion through a series of electric sparks between the tool (electrode)
and the work piece. The thermal energy of the sparks leads to intense heat conditions on the work
piece causing melting and vaporizing of work piece material. Sometimes its low machining effi-
ciency and poor surface finish restricts application. To diffuse this problem, EDM in the presence
of powder suspended in the dielectric fluid is used and known as powder mixed EDM (PMEDM)
(Mohri et al 1991; Jeswani 1981; Tzeng & Chen 2003; Furutani et al 2001). The electrically
conductive powder reduces the insulating strength of the dielectric fluid and increases the spark
gap between the tool and work piece (Wong et al 1998; Ming & He 1995; Chow et al 2000;
Schumacher 1990). As a result, the process becomes more stable and thereby improves material
removal rate (MRR) and surface finish (SF). The presence of powder increases the gap distance
as compared to traditional EDM by at least a factor of two (Wong et al 1998). The enlarged and
widened discharge channel lowers the break down strength of the dielectric fluid and reduces the
electrical density on the machining spot. By reducing the spark energy and dispersing the dis-
charges more uniformly throughout the surface, shallow craters are generated (Singh et al 2005;
Ming & He 1995; Chow et al 2000; Pecas & Henriques 2003). However, it is difficult to estab-
lish the relationship between PMEDM process parameters and responses because the process
is too complex in nature. Therefore, response surface methodology (RSM) can be adopted for
modelling and analysis using experimental data and studying the influence of various process
parameters on responses (Montgomery 1997). Based on the models of the responses, non-sorted
genetic algorithm (NSGA) can be used to search for the non-dominant optimal solutions. In the
absence of any further information, one of these pareto-optimal solutions cannot be said to be
better than the other. Suitability of one solution depends on a number of factors including user’s
choice and problem environment. Therefore, a set of dominant solution is determined and Pareto
front is predicted.

2. Literature review

Material removal rate and surface roughness (SR), being two important responses in die-sinking
PMEDM, several researchers carried out various investigations for improving the process per-
formance. Proper selection of machining parameters for the best process performance is still a
challenging job. To solve this type of multi-optimization problem in EDM, Lin et al (2001a, b),
Lin & Lin (2005) used grey relation analysis based on an orthogonal array and fuzzy based
Taguchi method. Wang et al (2003) used genetic algorithm (GA) with artificial neural network
(ANN) to find out optimal process parameters for improving performances. A similar approach
has been considered by Su et al (2004) from the rough cutting to the finish cutting stage. In most
of the studies, multiple objectives are transformed into a single objective and attempts to find
optimal parameters. However, Kuriakose & Shunmugam (2005) have used non-dominated sort-
ing genetic algorithm (NSGA) to optimize machining parameters in WEDM considering surface
roughness and cutting speed as the output parameters. Multiple linear regression models have
been developed to represent the relation between inputs and outputs. In PMEDM process, it is
possible to achieve near mirror-finish using conductive powders such as graphite and aluminum
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and semi-conductive silicon powders (Wong et al 1995, 1998). It has been shown that besides the
appropriate settings of electrode polarity and pulse parameters, there is a great influence of work
material and powder properties on the responses like MRR, tool wear rate (TWR) and SR. The
effect of impurities (copper, aluminum, iron and carbon) in dielectric fluid of EDM was reported
in the literature. It was shown that the machining rate increased with increasing the concentration
of the powder due to decrease in the time lag. Jeswani (1981) has reported through experimen-
tal investigation that addition of 4 g/l graphite powder into kerosene oil improves MRR by 60%
and reduces wear ratio by 15%. Mohri et al (1991) studied the effects of addition of silicon pow-
der on machining rate and SR. They have demonstrated that fine and corrosion resistant surfaces
having roughness of the order of 2 μm can be produced. However, this performance could only
be achieved at controlled machining conditions (even distribution of additives into dielectric,
short discharge time, etc.). It was further reported that under specific working conditions, alu-
minum and graphite powders exhibit more improvement in surface finish than caused by silicon
powder. The glossy and smooth surface finish can be achieved by mixing the different additives
(silicon, graphite, molybdenum, aluminum, and silicon carbide) into the dielectric fluid of EDM
(Wong et al 1998).

Metal removal process in EDM is characterized by nonlinear, stochastic and time vary-
ing characteristics. In EDM, a quantitative relationship between the operating parameters and
controllable input variables is often required. Many regression techniques have been used for
modelling the EDM process (Abbas et al 2007). Neural networks and fuzzy systems form an
alternative approach to generalize the experimental results and develop the system model accu-
rately. Unlike milling and drilling operations, operating speeds in EDM are very low. Large
electric current discharge can enhance speeds but reduces the dimensional quality of machined
surface. Similarly, the material removal rate is also affected by other process parameters. These
parameters are selected from standard tables or by experience to improve the output perfor-
mance of the process. Even in the computer controlled environments involving online process
control, this selection is not an easy task. Presently many optimization techniques are being used
in EDM practice to obtain the best process parameters. Kansal et al (2005) adopted the response
surface optimization scheme to select the parameters in powder mixed EDM process. Keskin
et al (2006) used design of experiments (DOE) for the determination of the best machining
parameters in EDM. Tzeng & Chen (2007) employed a Taguchi fuzzy-based approach for solv-
ing the multi-objective optimization problems in high-speed EDM process. Mandal et al (2007)
have shown the modelling procedure of EDM using neural networks and solution methodology
using GA. More recently Yuan et al (2008) illustrated the optimization process of high-speed
wire EDM process using regression methods. Nixon & Ravindra (2011) have investigated influ-
ence of parameters and optimization of wire EDM of hot die steel using Taguchi method.
In all the above cases multi-objective formulations are solved for online selection of design
variables.

Researchers are now focusing on employment of artificial intelligence (AI) techniques viz.
ANN, GA, fuzzy logic, etc. for the process modelling and optimization of manufacturing
processes which are expected to overcome some of the limitations of conventional process mod-
elling techniques. Fenggou & Dayong (2004) have proposed another GA-based ANN modelling
approach for the prediction of the processing depth. The number of nodes in the hidden layer
was optimized by using GA. Panda & Bhoi (2005) have used back propagation neural network
(BPNN) with Levenberg–Marquardt (LM) algorithm for the prediction of MRR. Later, Sen &
Shan (2007), Gao et al (2008), Rao et al (2008) followed the similar methodology for the mod-
elling and optimization of EDM process for different work–tool material pairs. Recently, Yang
et al (2009) used simulated annealing (SA) technique with ANN for optimization of MRR and
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surface roughness. Somashekhar et al (2010) have studied optimization of material removal
rate in micro-EDM using artificial neural network and genetic algorithms. Kanagarajan et al
(2008) have reported an optimization framework for electrical discharge machining character-
istics of WC/Co composites using non-dominated sorting genetic algorithm (NSGA-II). Zhang
et al (2010) have used a hybrid model using supporting vector machine and multi-objective
genetic algorithm for processing parameters optimization in micro-EDM. Joshi & Pande (2011)
have proposed an intelligent process modelling of die-sinking electric discharge machining
using finite element modelling (FEM) for data generation and optimization of parameters by
integrating ANN with NSGA II.

3. Multi-objective optimization

Genetic algorithm (GA) is a subclass of population based stochastic search procedure which is
closely modelled on the natural process of evolution with emphasis on breeding and the sur-
vival of the fittest. Instead of starting with a single point, the algorithm starts with a set of initial
solutions. Also, instead of a deterministic result at each iteration, GA operators produce prob-
abilistic results leading to stochasticity. Proper search direction can be provided to the GA by
simulating the natural process of evolution. In the process of evolution, the organisms which are
able to adapt better to the environment have a higher chance of survival. This leads to a higher
chance of breeding for such organisms and an increased probability of their traits being carried
over to the next generation through their offspring. Thus, a trait which leads to a better organ-
ism has higher chances of making it to the next generation. Moreover, due to mating of two
different organisms with better fitness leads to intermixing of favourable traits which hopefully
would lead to better offspring. In case the new members with poor adaptability, they would be
lost in the next generation. At the same time, it is important to maintain diversity in the popula-
tion so that potentially important regions of the search space are not eliminated during the initial
stages.

To keep a track of which traits are favourable and which are not, traits are coded in the form
of genetic material which is stored in a chromosome. Due to selection of better traits and inter-
mixing, eventually the entire population has the same chromosome set which is also the best
possible trait combination.

• To incorporate the idea of natural evolution, GA must have the following essential features.
• Encoding of solution: To keep track of favourable solutions.
• Assigning fitness to a solution: To determine the chances of survival of the solution.
• Selection operator: To select the fit solutions for mating.
• Crossover or recombination operator: For mixing of traits through mating of two different

solutions.
• Mutation operator: Random variations in encoded solutions to obtain new solutions.
• Survivor operator: To determine the members which die off and those which go to the next

generation.

These operators are responsible for providing the search direction to a GA. Selection opera-
tor selects good solutions and crossover operator recombines good genetic material from two
good solutions to (hopefully) form a better solution. Mutation operator alters a string locally
to (hopefully) create a better string. If bad strings are created they are eliminated by the repro-
duction operator in the next generation and if good strings are created, they are emphasized.
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In a single objective optimization, there exists only one solution. But in the case of multiple
objectives, there is a set of mutually dominant solution, which is exclusive and unique with
respect to all objectives. Classical methods for solving multi-objective problem suffer from draw-
back of trading off among objectives when a weighted function is used. These methods transform
the multi-objective problem into single objective by assigning some weights based on their rel-
ative importance (Yu et al 2004). However, most of the multi-objective problems, in principle,
give rise to a set of optimal solutions instead of a single optimal solution. The set of solution is
known as pareto-optimal solution.

Real-world problems require simultaneous optimization of several incommensurable and
often conflicting objectives. Often, there is no single optimal solution; rather there is a set of
alternative solutions. These solutions are optimal in the wider sense that no other solutions in
the search space are superior to another when all objectives are considered. They are known
as pareto-optimal solutions. The image of the efficient set in the objective space is called non-
dominated set. For example, consider a minimization problem and two decision vectors a, b ε X,
the concept of pareto optimality can be defined as follows: a is said to dominate b if:

i = {1, 2, . . . , n} : fi (a) ≤ fi (b) and

j = {1, 2, . . . , n} : fj (a) < fj (b) .

Conditions which a solution should satisfy to become dominant are; (i) any two solutions
of X must be non-dominated with respect to each other, (ii) any solution not belonging to X
is dominated by at least one member of X. All the objective function vectors, which are not
dominated by any other objective function vector of a set of Pareto-optimal solutions are called
non-dominated set with respect to that set of Pareto-optimal solutions. There are two goals in a
multi-objective optimization: (i) convergence to the Pareto-optimal set; and (ii) maintenance of
diversity and distribution in solutions.

Non-dominated Sorting Genetic Algorithm II (NSGA II) is a multi-objective evolution-
ary algorithm based on non-dominated sorting (Deb et al 2002). The algorithm uses elitist
non-dominated sorting along with crowding distance sorting to obtain the non-dominated set.
The algorithm is capable of handling constrained multi-objective optimization problems with
binary coding and real parameters. The appropriate objective function in terms of the vari-
ables is coded in the algorithm. The algorithm produces the non-dominated set out of the entire
population after a specific number of generations. Members of Pareto-front belong to the non-
dominated set which is obtained on convergence of the algorithm. Selection is done with the
help of crowded-comparison operator based on ranking (according to non-domination level) and
crowding distance.

Randomly an initially parent population (solution) Pof size N is generated. In order to iden-
tify the non-domination level, each solution is compared with every other solution and checked
whether the solution under consideration satisfies the rules given below

Obj.1 [i] > Obj.1
[

j
]

and Obj.2 [i] ≥ Obj.2
[

j
]
,

or Obj.1 [i] ≥ Obj.1
[

j
]

and Obj.2 [i] > Obj.2
[

j
]
,

where i and j are chromosome numbers.
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Now if the rules are satisfied, then the selected solution is marked as dominated. Otherwise,
the selected solution is marked as non-dominated. In the first sorting, all the non-dominated
solution (N1) is assigned to rank 1. From the remaining N–N1 dominated solution from the
first sorting, again solution are sorted to and the non-dominated solutions in second sorting are
assigned to rank 2. This process continues until all the solutions are ranked. Each solution is
assigned fitness equal to its non-domination level (rank 1 is the best level, rank 2 is the next-best
level, and so on). Solutions belong to a particular rank or non-domination level, none of the
solution is better with respect to other solutions present in that non-domination level. After iden-
tifying the rank of each solution, crowding distance of each solution belongs to a particular
non-domination set or level is calculated. The crowding distance is the average distance of two
points on either side of this selected solution point along each of the objectives function. For
calculation of crowded distance, all the populations of particular non-dominated set are sorted
in ascending order of magnitude according to each objective function value. Then, the bound-
ary solution of each objective function, i.e., solution with largest and smallest values is assigned
an infinity value. Rest of the intermediate solutions are assigned to a distance value equal to
the absolute normalized difference in the function value at two adjacent solutions. For solving
optimization problem using GA, it needs fitness value. The fitness values are nothing but the
objective function values. Therefore, there is a need of function or equation, which relates the
decision variable with the objective.

4. Methods and materials

4.1 Powder mixed electro-discharge machining (PMEDM)

Machining mechanism in PMEDM is slightly different from conventional EDM process. In this
process, a suitable material in the powder form is mixed into the dielectric fluid in the machining
tank. Machining is performed in this tank and workpiece is placed in it, holding it with the help
of a workpiece fixture assembly. The machining tank is filled up with dielectric fluid (kerosene
oil) and to avoid particle settling, a stirring system is incorporated. A small dielectric circulation
pump is installed for proper circulation of the powder mixed dielectric fluid into the discharge
gap. The distance between powder mixed dielectric suction point and nozzle outlet is kept as
short as possible (250 mm) in order to ensure the complete suspension of powder in the discharge
gap. Two permanent magnets are placed at the bottom of machining tank to separate the debris
from the dielectric fluid. Electric sparks are generated between two electrodes when the elec-
trodes are held at a small distance from each other in a dielectric medium and a high potential
difference is applied across them in conventional EDM. But the presence of suspended powder
decreases the break down strength of the dielectric fluid and reduces the electrical density on the
machining spot. Localized regions of high temperatures are formed due to the sparks occurring
between the two electrode surfaces. Workpiece material in this localized zone melts and vapor-
izes. Most of the molten and vaporized material is carried away from the inter-electrode gap by
the dielectric flow in the form of debris particles. To prevent excessive heating, electric power
is supplied in the form of short pulses. Spark occurs wherever the gap between the tool and the
workpiece surface reaches a point to which the powder had lowered the electric density. The
spark gap used to produce spark in PMEDM is twice as much as the gap needed to produce spark
in conventional EDM. This way several sparks occur at various locations over the entire surface
of the workpiece corresponding to the workpiece–tool gap. A schematic diagram of PMEDM is
shown in figure 1.
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Figure 1. Schematic diagram of experimental set-up.

4.2 Selection of input and output parameters

The literature study suggests that there are many electrical (peak current, polarity, pulse duration,
power supply voltage), non-electrical (flushing pressure, type of dielectric, temperature), powder
(type of powder, powder concentration, shape and size) and electrode (material, size) parameters
greatly affect the machining performances in PMEDM, especially to MRR and SF (Pecas &
Henriques 2008). The input parameters considered in this study are defined as follows:

4.2a Pulse on time (A): The duration of time (μs), the current is allowed to flow per cycle.
Material removal is directly proportional to the amount of energy applied during on-time.
Amount of energy is really controlled by the peak current and the length of the on-time.

4.2b Duty factor (B): It is a percentage of the on-time relative to the total cycle time. This
parameter is calculated by dividing the on-time by the total cycle time (on-time plus
off-time).

4.2c Peak current (C): The Peak current (Ip) is a measure of the power supplied to the discharge
gap. A higher current leads to a higher pulse energy and formation of deeper discharge
craters. This increases the material removal rate (MRR) and the surface roughness (Ra)
value. It is expressed in amperes.

4.2d Concentration of conductive powder (D): The concentration of conductive particles present
in the dielectric fluid increases the susceptibility of formation of conductive bridges and
decreases the insulation of dielectric fluid so that spark is generated even from a larger
spark gap. It is expressed in terms of gm per liters. Constant stirring is required to facilitate
uniform distribution of particles in the dielectric.

The output parameters considered are defined as follows.

4.2e Metal removal rate (MRR): It is denoted by volume of material removed per minute. MRR
is an important indicator of efficiency and cost effectiveness of the EDM process. However,
increasing MRR is not always desirable in all applications because it may adversely affect
the surface integrity of the work piece. A rough surface finish is the usual, where there is fast
removal rates. MRR is calculated by the weight loss method and expressed as mm3/min.



230 Soumyakant Padhee et al

Weight loss is estimated using Mettler Toledo precision balance having capacity of 5 kg
and precision of 0.01 g.

4.2f Surface roughness (Ra) of work piece: The surface produced by EDM process consists of
a large number of craters that are formed from the discharge energy. The quality of surface
mainly depends on the energy per spark. The undulations of the surface are usually mea-
sured in a sampling length using a sensor. The arithmetic mean roughness of the evaluated
roughness profile (Ra in μm) is noted using a Surfcoder SE 1200 surface testing analyzer
supplied by Metrology International Ltd., UK.

4.3 Experimental data collection

Experiments are conducted on EZNC fuzzy logic Die Sinking EDM machine manufactured
by Electronica Machine Tools Ltd. India. Silicon powder is suspended into the commer-
cially available kerosene oil. The average particle size of the powder is in the range of order
20–30 μm. Each trial run as per the array given in table 2 by setting the controlled parameters
at desired levels is performed for a duration of 60 min. The experiment has been performed
with positive polarity as recommended in Zhao et al (2002). In this study, EN 31 (compara-
ble to AISI 52100) tool steel is selected as the work material. The chemical composition of the
workpiece material is given as C = 0.9–1.2%, Si = 0.1–0.3%, Mn = 0.3–0.7%, Cr = 1–1.6%,
S and P each 0.025% (max.) and balance is ferrous. The hardness (HRC), Young’s modulus and
density of the work piece are 58–63 HRC, 208 GPa and 7.85 g/cm3, respectively. Copper elec-
trode with diameter 25 mm has been used to machine workpiece. A photograph of the machine
is shown in figure 2. The generated depression of diameter 25 mm in the work piece is evalu-
ated for material removal rate and surface finish. Surface roughness is measured with the help
of Surfcoder SE 1200 surface testing analyzer. The surface analyzer has drive 0–25 mm traverse

Figure 2. EZNC fuzzy logic die sinking EDM machine manufactured by Electronica Machine Tools Ltd.
India.
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with inbuilt straight datum, range to resolution is 520 μm to 0.008 μm, and two driver speeds
0.2 mm/sec and 0.5 mm/sec. For calculating material removal rate, first weight loss is estimated
using the precision balance by noting down weight of work piece before and after machining.
The weight loss is multiplied by density and divided by time of machining to obtain the material
removal rate.

In order to assess the impact of four process parameters on two responses, a large number
of experiments need to be conducted using conventional experimental data collection method.
However, by using response surface methodology the number of experimental runs can be
reduced to a large extent and both effect of factors and their possible interactions can be stud-
ied. By doing so, predictive equations can be developed and statistically validated. In RSM, the
quantitative form of the relationship between desired response and independent input variables
can be represented by the following:

y = f (x1, x2, . . . , xk) + ε, (1)

where the response variable (output) y depends on the controllable (input) variables x1, x2, . . . ,
xk and f are the response function (or response surface). The true form of the response variable
y is seldom known for a process. In RSM, the true relationship between y and the independent
variables is generally approximated by the lower-order polynomial models such as:

y = β0 + β1x1 + . . . .. + βk xk + ε, (2)

y = β0 +
k∑

i=1

βi xi +
k∑

i=1

βi i x2
i +

k∑

i< j

βi j xi x j + ε, (3)

where ε represents the statistical error term. Here, the β’s are the unknown parameters estimated
by first collecting data on the system and then performing statistical model building by using
regression analysis. Here, a face centred central composite design (FCCCD) is used to conduct
the experiments. FCCD designs comprise a set of two-level factorial points, axial points and
centre runs. In fact, FCCD can be created from central composite design (CCD) by setting axial
distance (α = 1). This is desirable when each factor is considered at three levels and axial runs
not to be any more extreme values than the factorial portion is ensured. The factorial points
contribute to the estimation of linear terms and two-factor interactions. Factorial points are the
only points which contribute to estimation of the interaction terms. The axial points contribute to
the estimation of quadratic terms. The centre runs provide an internal estimate of pure error and
contribute towards the estimation of quadratic terms. Each factor (A, B, C and D) is considered
at three levels. The range of each factor is shown in table 1.

Table 1. Factors and their levels.

Levels

Factor symbol Parameter Low (−1) Medium (0) High (+1)

A Pulse on time (μs) 50 100 150
B Duty factor 0.7 0.8 0.9
C Peak current (amp.) 3 7.5 12
D Concentration (g/l) 0 1 2
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The factors are coded in the range of −1 to +1 using following relation.

ξi j =
⎛

⎝
Xi j −

(
Ximax+Ximin

2

)

Ximax + Ximin

⎞

⎠ ∗ 2 (4)

1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

where ξi j and Xi j are coded and actual value of j th level of i th factor, respectively. Ximax and
Ximin maximum and minimum range of factor Xi .

The PMEDM process is studied with a standard FCCCD. In this investigation, total thirty
experiments were conducted maintaining factors at designated levels as shown in table 2. The
experimental runs sixteen factorial points (a full factorial design with all combinations of the

Table 2. Design of experimental matrix and results for the PMEDM performance characteristics.

Concentration
Pulse on time, Duty factor, Peak current, of abrasive, MRR SR, Ra

Expt. No. A (μs) B C (Amp.) D (g/l) (mm3/min) (μm)

1 50 0.7 3 0 2.000 2.345
2 150 0.7 3 0 2.300 2.030
3 50 0.9 3 0 2.200 2.270
4 150 0.9 3 0 2.300 2.230
5 50 0.7 12 0 22.800 6.80
6 150 0.7 12 0 23.900 7.710
7 50 0.9 12 0 22.600 7.710
8 150 0.9 12 0 24.600 6.730
9 50 0.7 3 2 3.100 2.210
10 150 0.7 3 2 3.500 1.360
11 50 0.9 3 2 3.200 4.050
12 150 0.9 3 2 3.300 1.220
13 50 0.7 12 2 26.100 5.220
14 150 0.7 12 2 28.800 5.080
15 50 0.9 12 2 26.200 5.220
16 150 0.9 12 2 28.700 5.200
17 50 0.8 7.5 1 4.700 5.610
18 150 0.8 7.5 1 7.200 6.880
19 100 0.7 7.5 1 6.300 5.970
20 100 0.9 7.5 1 7.400 6.370
21 100 0.8 3 1 2.300 1.870
22 100 0.8 12 1 25.100 5.970
23 100 0.8 7.5 0 6.200 6.780
24 100 0.8 7.5 2 7.300 4.820
25 100 0.8 7.5 1 6.555 6.395
26 100 0.8 7.5 1 6.730 6.800
27 100 0.8 7.5 1 7.395 6.800
28 100 0.8 7.5 1 6.405 6.195
29 100 0.8 7.5 1 7.540 6.150
30 100 0.8 7.5 1 6.715 5.980
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factors at the two levels), eight axial points at the face corresponding to α value of one, and six
central points. The responses such as MRR and SR are noted down for all experimental runs as
shown in table 2.

5. Results and discussions

Design Expert R 8.0 software is used for analysis of experimental data. A quadratic model is
used to obtain the regression models for two responses separately. After eliminating insignificant
terms, the final response equation for MRR is given as follows.

MRR (Material Removal Rate) = 8.44840 − 2.41667×A−3.28683×C−0.025000×D
+ 2.05556×A×C+ 0.16111×C×D + 0.36307×C2.

(in actual factors) (5)

MRR (Material Removal Rate) = 6.70 + 0.65 × A + 11.37 × C + 1.18 × D
+ 0.46 × A × C + 0.73 × C × D + 7.35 × C2

(in coded terms) . (6)

The analysis of variance (ANOVA) for MRR is presented in table 3. For significance check,
F value given in table 3 is used. Probability of F value greater than calculated F value due to
noise is indicated by p value. If p value is less than 0.05, significance of corresponding term
is established. For lack of fit, p value must be greater than 0.05. An insignificant lack of fit is
desirable because it indicates any term left out of model is not significant and developed model
fits well. It is observed from last column that all the model parameters are significant. The lack
of fit (p-value = 0.4356) indicates that model is adequate. The coefficient of determination (R2)

and Adj. R2 are found to be 0.9978 and 0.9973, respectively. As a further check, the normality
test of residuals is carried out. It is evident from figure 3 that residuals are distributed as per
normal distribution.

The analysis of variance (ANOVA) for SF is presented in table 4. The quadratic model for SR
is given as follows. The coefficient of determination (R2) and Adj. R2 are found to be 0.92897

Table 3. ANOVA for MRR.

Sum Degrees Mean p-value
Source of squares of freedom df square F-Value prob > F

Model 2759.4600 6 459.9100 1777.9190 <0.0001
A 7.6050 1 7.6050 29.3994 <0.0001
C 2325.6200 1 2325.6200 8990.3790 <0.0001
D 25.2050 1 25.2050 97.4375 <0.0001
A×C 3.4225 1 3.4225 13.2307 0.0014
C×D 8.4100 1 8.4100 32.5114 <0.0001
C2 389.1972 1 389.1972 1504.5580 <0.0001
Residual 5.9496 23 0.2587
Lack of fit 4.8684 18 0.2705 1.2508 0.4356
Pure error 1.0812 5 0.2162
Cor total 2765.4090 29
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Figure 3. Normal plot of residuals for MRR.

and 0.9176, respectively. It is evident from figure 4 that residuals are distributed as per normal
distribution.

Ra (Surface roughness) = − 3.08929 + 2.07746 × C + 0.28559 × D − 0.11382
× C × D − 0.10123 × C2

(in actual factors) (7)

Ra (Surface roughness) = 6.23 + 2.00 × C − 0.57 × D − 0.51 × C × D − 2.05 × C2

(in coded terms) (8)

The response plots for interactions of A × C and C × D are shown in figure 5. It can be noted
from figure 5a that increase in pulse on time (A) causes marginal increase in MRR whereas
increase in peak current (C) causes large increase in MRR. Similarly, increase in concentration of

Table 4. ANOVA for SR.

Sum Degrees Mean p-value
Source of squares of freedom df square F-Value prob > F

Model 112.4839 4 28.1209 81.7418 <0.0001
C 72.2202 1 72.2202 209.9291 <0.0001
D 5.8084 1 5.8084 16.8837 0.0004
C×D 4.1974 1 4.1974 12.2009 0.0018
C2 30.2580 1 30.2580 87.9538 <0.0001
Residual 8.6005 25 0.3440
Lack of fit 8.0006 20 0.4000 3.3343 0.0929
Pure error 0.5999 5 0.1199
Cor total 121.0845 29
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Figure 4. Normal plot of residuals for SR.

abrasives in dielectric fluid (D) causes increase in MRR (figure 5b). It is observed that change in
duty factor does not have much significant effect on the MRR. Figure 6 indicates that increase in
peak current (C) initially increases SR but further increase of peak current reduces SR. It can be
clearly observed that increase in concentration of abrasives in dielectric fluid (D) monotonously
decreases SR. The change in pulse on time and duty factor does show appreciable change in
surface roughness value. Surface roughness increases marginally with increase in pulse on time.
Again, change in duty factor does not have much significant effect on the SR.

In the present study, the objectives are maximization of MRR and minimization of SR, which
are functions of decision variables viz., pulse on time (A), duty factor (B), peak current (C),
and concentration of the added silicon powder (D). But there is no such mathematical equation,
which relates to these objectives with the decision variable. Thus empirical relation between

Figure 5. (a) Response plot of A × C for MRR. (b) Response plot of C × D for MRR.
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Figure 6. Response plot of C×D for SR.

input parameters and output parameters obtained from the RSM analysis is used as functional
equations. Note that objectives are conflicting in nature. In order to convert the first objective
(MRR) as minimization one, it is suitably modified. The objective functions are given below.

Objective 1 = − (MRR)

Objective 2 = Surface roughness.

Figure 7. Flow chart of NSGA-II algorithm.
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There are four decision variables. The range and the step length of decision variables are
different, and hence different lengths of bits have been used for each decision variable. Here,
the range of pulse on time (A) is between 50 and 150 μs, so bit length is taken as 17. For the
other three variables, the ranges are much lower than A, therefore bit lengths of 5, 13, and 13
have been taken to represent each of other three decision (B, C, and D) variables, respectively.
Therefore, the total bit length of each chromosome is 48. Initially, the chromosomes are created
randomly. An initial size of 100 populations is chosen. Simple crossover and bit-wise mutation
have been used with a crossover probability, Pc = 0.6 and mutation probability, Pm = 0.017.
Objective values are calculated from the RSM model as described earlier. Ranking and sorting
of solutions have been done as it is mentioned in the NSGA-II algorithm. For achieving better
convergence, a generation of 1000 is used in the study. 100 non-dominated solutions are obtained

Table 5. Selected solutions from pareto optimal solution set and corresponding variable settings.

A B C D MRR SR

150.0 0.829032 4.936028 0.250 12.66496 4.698705
150.0 0.777419 5.779881 0.250 15.77635 5.536388
150.0 0.816129 6.996215 0.249 21.17119 6.49016
150.0 0.770968 6.865462 0.250 20.53979 6.40200
150.0 0.841935 3.479062 0.250 8.510131 2.913048
150.0 0.841935 4.82725 0.249 12.30164 4.580232
150.0 0.841935 4.053718 0.250 9.964824 3.668671
150.0 0.783871 8.270785 0.745 27.97672 7.168208
150.0 0.841935 6.036992 0.250 16.82708 5.762964
150.0 0.854839 5.217312 0.250 13.6448 4.993951
150.0 0.841935 3.314247 0.250 8.13716 2.683992
149.94 0.880645 6.79624 0.250 20.20978 6.353927
150.0 0.816129 6.616042 0.250 19.36933 6.224232
149.95 0.887097 7.920279 0.250 25.98077 7.014532
150.0 0.816129 6.443536 0.249 18.58667 6.093914
150.0 0.829032 5.952387 0.248 16.47609 5.689885
150.0 0.841935 5.319497 0.250 14.01483 5.097242
150.0 0.841935 5.882066 0.249 16.1883 5.62804
150.0 0.867742 8.062019 0.250 26.78093 7.079672
150.0 0.874194 4.255891 0.2497 10.53363 3.918614
150.0 0.874194 4.228421 0.249 10.45456 3.885139
150.0 0.880645 4.125137 0.250 10.1624 3.757911
149.1 0.874194 3.280185 0.250 8.062501 2.635968
150.0 0.790323 7.498352 0.2499 23.71129 6.796551
150.0 0.841935 3.070321 0.2460 7.621312 2.334897
150.0 0.887097 7.654377 0.250 24.53807 6.881358
150.0 0.764516 5.068978 0.2497 13.12095 4.840251
150.0 0.867742 7.147845 0.250 21.91877 6.588061
150.0 0.816129 7.389574 0.250 23.14547 6.734509
150.0 0.803226 7.741179 0.250 25.00563 6.926406
150.0 0.816129 4.475644 0.250 11.18556 4.180904
150.0 0.751613 3.626297 0.124 8.859986 3.11302
149.60 0.816129 5.404102 0.250 14.29307 5.181162
150.0 0.841935 6.303992 0.250 17.96913 5.984089
150.0 0.829032 5.952387 0.248 16.47609 5.689885
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Figure 8. Graphical representation of Pareto-optimal front for objectives MRR and SR.

at the end of 1000 generation. The flow chart of NSGA II algorithm is shown in figure 7. The
corresponding objective function values and the decision variables of selected non-dominated
solution set are shown in table 5. Figure 8 shows the pareto-optimal solution front. This shows
the formation of the pareto-optimal front leading to the final set of solutions. Since none of the
solutions in the pareto-optimal front is absolutely better than any other, any one of them is an
acceptable solution. The choice of one solution over the other depends on the requirement of the
process engineer.

6. Conclusions

The experimental research work carried out in this study contributes to the generation of
knowledge related to EDM technology using a powder-mixed dielectric. A large number of
experiments have been conducted at different levels of factors viz., pulse on time, duty factor,
peak current, and concentration of abrasive. The MRR and SR roughness have been measured
for each setting. The use of powder mixed dielectric promotes the reduction of surface rough-
ness and enhances material removal rate. Mathematical models for prediction of MRR and SR
through the knowledge of four process variables have been developed using response surface
methodology and statistically validated. The coefficient of determination (R2) for MRR and SR
models are found to be 0.9978 0.92897, respectively. It has been observed that linear terms A, C,
and D, interaction terms A × C and C × D, and quadratic term C2 are statistically significant to
be included in the model of MRR. Similarly, linear terms C and D, interaction term C × D, and
quadratic term C2 are significant terms in the model of SR. In order to simultaneously optimize
both MRR and SR, NSGA II is adopted to obtain the Pareto front. Since none of the solutions
in the pareto-optimal front is said to be absolutely better than any other. Any one of them is
an acceptable solution. This provides flexibility to the process engineer to choose one solution



Multi-objective optimization for PMEDM 239

over the other depending on the requirement. It has been observed that powder-mixed dielec-
tric significantly reduces surface heterogeneity contributing to increase process robustness. So,
it contributes for the performance of the EDM process particularly when a high-quality surface
is a requirement. However, the process is a complex one and deserves a thorough investigation
on thermo-physical properties of the suspended particles. Few practical limitations like diffi-
culty in operation of dielectric interchange, high amount of powder consumption, environmental
requirements of fluid disposal and its higher initial cost (two to three times higher than the one
required for a conventional EDM system) have restricted its frequent use. The optimization of
powder characteristics (type, shape, size, concentration, etc.) also needs a thorough study.
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