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Abstract Micro-end milling is one of the promising meth-
ods for rapid fabrication of features with 3D complex
shapes. However, controlling the micro-end milling process
to obtain the desired results is much harder compared to that
of macro-end milling due to the size effect and uncontrolla-
ble factors. The problem is much pronounced when work-
piece material is a difficult-to-process material such as
titanium-based alloys which are widely used as material of
choice for aircraft structures, turbine blades, and medical
implants. In order to find the optimal process parameters
which minimize the surface roughness and burr formation,
experiments were conducted and models obtained with sta-
tistically based methods utilized in multi-objective particle
swarm optimization to identify optimum process parame-
ters. The results show that the average surface roughness
can be minimized while burr formation is reduced
concurrently.

Keywords Micro-end milling . Titanium alloy . Process
optimization . Response surface methodology . Particle
swarm optimization

1 Introduction

Mechanical micromachining process or tool-based micro-
machining process is one of manufacturing processes which
is now gaining a lot of attention from many industries. Since
the process is capable of fabricating miniature parts as small

as tens micrometers to a few millimeters with very complex
features and close tolerances using energy-efficient small
machine tools [14, 22]. The major advantage of mechanical
micromachining processes compared to the other processes
used in fabrication of miniature parts is the process flexibil-
ity. Since there is no limitation in machining shape, many
complex features such as 3D cavities and arbitrary curva-
tures, or a high aspect ratio feature such as long shafts and
micro-channels can be achieved. Also, the setup cost of
mechanical micromachining process is very low and the
material removal rate is higher compared to its counterparts
such as micro-electro-mechanical system (MEMS)-based
methods. Thus, it is very suitable for a small batch produc-
tion or even a custom-made product. In addition, mechani-
cal micromachining has no limitation in terms of type of
workpiece materials, unlike most of the MEMS-based pro-
cesses which are limited to a few silicon-based materials.

Micro-end milling is the most flexible process among all
mechanical micromachining processes. Its capabilities pro-
vide many advantages for manufacturing of complex fea-
tures, especially those in medical devices and implants.
However, scaling the conventional milling process down
to a microscale results in encountering several problems.
Many factors that can be ignored in macroscale become
significant in microscale; for instance, vibration, deflection,
temperature, microstructure of workpiece, etc. As a result,
obtaining the desired performances in micro-end milling is
more difficult than that of macro-end milling [8, 11, 30, 31,
36]. This problem is even more elevated when workpiece
materials are difficult-to-process materials such as titanium
alloys which are generally used in medical devices and
implants.

Titanium-based alloys are very suitable for medical appli-
cations due to their high strength-to-weight ratio, corrosion
resistance, and biocompatibility. Since the potential for
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micro-parts as medical tools operating at cellular level is
increasing [25], research into the micromachining of titanium
alloys is gaining more interest. The challenge in machining
titanium alloys is chiefly the high tool wear associated with
the reactivity of titanium with tool materials and its low
thermal conductivity [15]. Moreover, studies in gaining
understanding of micromachining titanium alloys are still
limited. Therefore, it is difficult for the industry to suc-
cessfully implement this process.

Controlling of machined surface in micro-end milling is
regarded as a technological challenge in micro-end milling
since surface topography of micro-features is in a sub-
micrometer order and it is very difficult to treat these
micro-features with finishing processes. The topography of
machined surface fundamentally affects functional perfor-
mance of the micro-product in terms of friction, lubrication,
etc. For example, it has been reported that micro-milling of
titanium alloy for medical applications especially for
implants can create free-form surfaces, which can improve
biocompatibility [32, 33]. Therefore, in order to produce
functional micro-products, not only part features and toler-
ances have to be concerned but surface quality must be
considered as well. Several approaches have been used in
order to gain a control over the surface finish of micro-
features; for example, process parameters optimization
[39], surface generation modeling and simulation [10, 21,
23, 38], effects of using lubrication [17, 24], etc.

In micromachining, burr formation is another critical
problem on surface finish. Burr formation depends princi-
pally on the workpiece material in terms of ductility, cutter
geometry, cutting parameters, tool wear, and shape of work-
piece [3, 4, 27]. Burrs also frequently occur when micro-
machining hard materials due to increased tool wear [40].
Moreover, deburring and surface finishing or micro-features
are limited due to expensive techniques or the resulting
damages on the microstructures [13]. Many studies on
micro-milling have shown that burr formation is very diffi-
cult to avoid; however, selecting appropriate process param-
eters and tool geometry can minimize the effect to an
acceptable level [2, 6, 20, 34]. In recent studies, slip-line
field analysis is utilized to model plastic deformation in
micro-end milling to understand size effects and force gen-
eration [16].

In order to improve the surface quality of micro-
features, both surface roughness and burr formation
should be considered and controlled together. Since both
are process parameter dependent, optimality of one may

result in an unaccepted outcome of another. Therefore,
the objectives of this work were to explore a perfor-
mance of micro-end milling of Ti-6Al-4V titanium alloy
and optimize the process parameters in order to improve
the surface quality in terms of surface roughness and
burr formation [31].

2 Methodology

This work consists of three phases: experiment, modeling,
and optimization. The first phase, experimental phase, was
where the physical micro-milling experiments were con-
ducted in order to collect all necessary data in measured
surface roughness and burr formation. The main method in
this phase was a design of experiment using Taguchi orthog-
onal arrays. In the second phase, modeling phase, all data
obtained in the experimental phase were used to formulate
the predictive process models. In this phase, the response
surface methodology (RSM) was used to construct the

Experiment Modeling Optimization

DOE RSM MOPSO

Fig. 1 Work flow and methods utilized

Workpiece

High speed 

spindle

Micro end-mills

Fixture

Fig. 2 The experimental setup

Fig. 3 The bottom view of the micro-end mill
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predictive models. Finally, the last phase, optimization
phase, was carried out in order to obtain the optimal
parameters that satisfy the multi-criteria quality require-
ment. The multi-objective particle swarm optimization
(MOPSO) was selected as an optimization method for
this phase. The work flow and tools used in each phase
are shown in Fig. 1.

2.1 Experimental

A rectangular block Ti-6Al-4V titanium alloy workpiece was
clamped on the fixture mounted on the table of the in-house
developed four-axis micro-end milling machine. The work-
piece surfaces were precisely ground to assure flatness and
alignment. The fine grain carbide (grain size of 0.2–0.5 μm)
two-flute flat bottom end mills with the diameter of 0.025″
(0.635 mm), helix angle of 30°, length of cut of 0.0375″, and
the mean edge radii of 3±0.5 μm were selected. The tool was
mounted directly to the ceramic bearing electrically driven
precision spindle (NSK ASTRO-E 800) with the tool over-
hang of 18 mm. Figure 2 shows the experimental setup.

The full-immersion slot micro-end milling of 12-mm
straight grooves (channels) was conducted with various
levels of cutting parameters. All grooves/channels were
machined without any coolant or lubricant. Figure 3 shows
the micro-end mill.

In order to determine cutting parameters affecting the
performance of micro-end milling of Ti-6Al-4V titanium
alloy as well as to find an optimal cutting condition which
results in the best surface roughness and minimal burr
formation, an experimental design based on Taguchi method
was applied with three-factor three-level design. The tested
parameters included spindle speed (Ω in thousand revolu-
tions per minute), feed per tooth (fz in micrometer per tooth)
and axial depth of cut (ADOC, in micrometers). The L9
orthogonal array was selected for an experiment of three
process parameters with three levels. Each experimental run
was replicated twice with a different experimental order.
Fresh micro-end mills were used for each replication. De-
spite a very short machined length, tool condition was
inspected with digital microscopy after completion of each
replication and tool wear was found negligible. Table 1
shows the parameters and their levels employed in the
experimental run. Table 2 shows Taguchi L9 orthogonal
array design with three factors and three levels and experi-
mental run order for each replication.Table 2 Taguchi L9 orthogonal array with three factors and three

levels and run order for each replication

Standard Run order Factors and their levels

Run Rep. I Rep. II Ω (krpm) fz (μm/tooth) ADOC (μm)

1 1 9 20 0.1 20

2 2 8 20 0.3 60

3 7 3 20 0.5 100

4 3 7 40 0.1 60

5 4 6 40 0.3 100

6 8 2 40 0.5 20

7 5 5 60 0.1 100

8 6 4 60 0.3 20

9 9 1 60 0.5 60

Fig. 4 Types of milling burrs [12]
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Fig. 5 Definition of top burr width

Table 1 Parameters and levels assigned for the experiments

Factor Micro-milling parameters Levels

−1 0 1

Ω Spindle speed (krpm) 20 40 60

fz Feed per tooth (μm/tooth) 0.1 0.3 0.5

ADOC Axial depth of cut (μm) 20 60 100
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In every experimental run, the responses were measured
in terms of average surface roughness (Ra) and total top burr
width. The surface roughness measurements were taken
from three different locations along the bottom of the chan-
nel using Mitutoyo SJ-400 digital surface analyzer, and the
average value was recorded.

In a milling process, there are several types of burr
formed at different locations based on direction of cutting
and contact of workpiece and the micro-end mill. In this
study, a special focus was given to the top burr formation
which is a dominant burr mechanism in groove/channel
milling. Top burr is one of the burr types that occur
during the end milling process. It is defined as a burr
attached to the top surface of the workpiece. The top
burr is generated by a minor cutting edge with a side
flow formation [3, 4]. Types of milling burrs are shown
in Fig. 4 as adopted from [12].

To quantitatively measure a degree of top burr formation,
a term top burr width was defined as a horizontal length of
burr from the channel wall. Figure 5 illustrates the measure-
ment of top burr width. The top burr width was measured by
using digital microscopy. Three measurements were taken
from three different locations where burr length is uniform.
Since the full immersion was used in this groove/channel
milling, the channel side walls were machined with different
approaches; one side wall was machined with down milling,
while the other was machined with up milling.

The difference of up/down milling yielded a differ-
ence degree of top burr formation. Thus, the term total
top burr width was defined as a summation of top burr
widths measured from up milling side and top burr
widths measured from down milling side. Measurement
locations of surface roughness and top burr width are
shown in Fig. 6.

2.2 Process modeling

In order to optimize the parameters of micro-milling pro-
cess, it is necessary to construct relationships between the
response and each interested process parameter. One of the
well-known methods serving this purpose is RSM.

RSM is a collection of mathematical and statistically
based technique useful for the modeling and analysis of
problems with several process variables. It also has impor-
tant applications in the design, development, and formula-
tion of new products, as well as in the improvement of
existing product designs [28].

The most extensive applications of RSM are in the situ-
ation where several input variables (independent variable)
are potentially influencing some performance measure or
quality characteristic of the product or process (response).
Since the form of the relationship between the response and
the independent variable is unknown, the first step in RSM
is to find the suitable approximation for the true functional
relationship between response (y) and the set of independent
variables (x).

Usually a low-order polynomial in some relatively small
region of the independent variable space provides a suitable
approximation of the true form of the response function. In
many cases, either a first-order or a second-order model is
sufficient. The general form of the first-order, first-order
with interaction, and second-order RSM model are shown
in Eqs. 1, 2, and 3, respectively, where β is a RSM

Table 3 Summary of the exper-
imental results Run Factors and levels Ra (μm) Top burr width (mm)

Up milling Down milling Total

Ω fz ADOC Rep. I Rep. II Rep. I Rep. II Rep. I Rep. II Rep. I Rep. II

1 20 0.1 20 0.257 0.263 0.147 0.175 0.075 0.115 0.222 0.290

2 20 0.3 60 0.140 0.113 0.210 0.271 0.110 0.106 0.320 0.377

3 20 0.5 100 0.107 0.150 0.157 0.148 0.068 0.047 0.225 0.195

4 40 0.1 60 0.180 0.163 0.125 0.182 0.061 0.079 0.186 0.261

5 40 0.3 100 0.153 0.157 0.132 0.168 0.057 0.064 0.189 0.232

6 40 0.5 20 0.100 0.117 0.220 0.194 0.103 0.086 0.323 0.280

7 60 0.1 100 0.163 0.150 0.078 0.050 0.054 0.044 0.132 0.094

8 60 0.3 20 0.153 0.163 0.236 0.199 0.075 0.053 0.311 0.252

9 60 0.5 60 0.127 0.110 0.117 0.082 0.069 0.050 0.186 0.132

Top-burr width

(down-milling)Top-burr width

(up-milling)

Surface roughness

Fig. 6 Measurement locations for the micro-channels
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coefficient of each term, k is a number of independent
variables, and ∈ is a residual error.

y ¼ b0 þ
Xk

i¼1
bixiþ 2 ð1Þ

y ¼ b0 þ
Xk

i¼1
bixi þ

X

i<j

X

bijxixjþ 2 ð2Þ

y ¼ b0 þ
Xk

i¼1
bixi þ

X

i<j

X

bijxixj þ
Xk

i¼1
biix

2
i þ 2

ð3Þ

The first-order model is sometimes called a main effect
model because it includes only the main effect of the vari-
ables. If there is an interaction between these variables, the
interaction terms can be easily added as shown in Eq. 2.
Adding the interaction terms introduces curvature into the
response function. If the curvature in the true response
surface is strong enough that the first-order model (even
with the interaction terms included) is inadequate, a
second-order model will be required.

The second-order model is widely used in RSM for
several reasons. First, the second-order model is very flex-
ible; it can take on a wide variety of functional forms.
Second, an estimation of the coefficient (β) can be done
easily by the method of least squares. Furthermore, there is
considerable practical experience indicating that the second-
order works well in solving real response surface problem
[29]. In this study, surface roughness (Ra) and total top burr
width were selected as responses while spindle speed
(ohms), feed per tooth (fz), and axial depth of cut (ADOC)
were independent variables. The experimental results
obtained from the first phase were used to formulate the
RSM models for each response.

2.3 Process optimization

Typically, it appears that the relationship between machining
parameters and machining responses is nonlinear, which is
sometimes very difficult to optimize analytically. The problem
becomes even more difficult when there is a need to optimize
more than one objective at a time (i.e., multi-objective opti-
mization).Multi-objective optimization problems represent an

important class of real-world problems. Typically, such prob-
lems involve trade-offs meaning that their objectives are gen-
erally conflicting to each other. For example, mold
manufacturers may want to obtain minimum surface rough-
ness, but meanwhile they also want to minimize the machin-
ing time. Generally, there is no single optimal solution.
Therefore “trade-off” has to be considered before choosing
the suitable solution. The curve or surface (for more than two
objectives) describing the optimal trade-off solutions between
objectives is known as the Pareto front. A multi-objective
optimization algorithm is required to find solutions as close
as possible to the Pareto front while maintaining good solution
diversity along the Pareto front.

In this study, the MOPSO was selected since it has many
advantages over other optimization methods. It works very
efficiently to locate the Pareto front of the multi-objective
optimization problems. Also, it is relatively easy to imple-
ment and has a few parameters to adjust.

In general, Particle Swarm Optimization (PSO) is a
population-based stochastic optimization technique mod-
eled on the social behaviors observed in animals or insects,
e.g., bird flocking, fish schooling, and animal herding.
PSO was developed by Kennedy and Eberhart in 1995
[19]. Since its inception, PSO has gained increasing
popularity among researchers and practitioners as a robust
and efficient technique for solving difficult optimization
problems.

In PSO, individual particles of a swarm represent poten-
tial solutions, which move through the variable space seek-
ing an optimal, or good enough, solution. The particles relay
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Fig. 7 Main effects plot for the mean surface roughness

Table 5 Response table for the mean total top burr width (in
millimeters)

Factor Level 1 Level 2 Level 3 Max–min Rank

Ω 0.27 0.25 0.18 0.087 2

fz 0.20 0.28 0.22 0.083 3

ADOC 0.28 0.24 0.18 0.102 1

Table 4 Response table for the mean surface roughness (in
micrometers)

Factor Level 1 Level 2 Level 3 Max–min Rank

Ω 0.172 0.145 0.144 0.027 3

fz 0.196 0.147 0.119 0.078 1

ADOC 0.176 0.139 0.147 0.037 2
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their current positions to neighboring particles. The position
of a particle is modified by using its previous position
information and its current velocity (i.e., rate of change).
As the model is iterated, the swarm focuses more and more
on an area of the search space containing high-quality sol-
utions [5].

In PSO, the velocity of each particle is modified itera-
tively by its personal best position (i.e., the best position
found by the particle so far) and the best position found by
particles in its neighborhood. As a result, each particle
searches around a region defined by its personal best posi-
tion and the best position from its neighborhood.

vkþ1
i ¼ wvki þ c1R1 pi � xki

� �

þ c2R2 pg � xki
� �

ð4Þ

xkþ1
i ¼ xki þ vkþ1

i ð5Þ

Where vki denotes the velocity of the ith particle at kth

iteration in the swarm, xki denotes its current position which
can be considered as a set of coordinates describing a point
in space, pi denotes the personal best position, pg denotes
the best position found by particles in its neighborhood,
w denotes an inertia weight, c1 and c2 are acceleration

coefficients, and R1 and R2 are two separate functions each
returning a vector comprising random values uniformly
generated in the range (0, 1).

Equation 4 shows that the velocity term vki of a particle is
determined by three parts, the “momentum,” the “cogni-

tive,” and the “social” part. The “momentum” term wvki
represents the weighted ratio of previous velocity term
which is used to carry the particle in the direction it has

traveled so far; the “cognitive” part, c1R1 pi � xki
� �

, repre-

sents the tendency of the particle to return to the best position

it has visited so far; the “social” part, c2R2 pg � xki
� �

, repre-

sents the tendency of the particle to be attracted towards the
position of the best position found by the entire swarm. The
random numbers used in the velocity update step give the PSO
a stochastic behavior. It should be noted that the “momentum”

term has a tendency to explode to a large value, resulting in
particles exceeding the boundaries of the search space. This is
more likely to happen especially when a particle is far from pg
or pi. To overcome this problem, a velocity clamping method
can be adopted where the maximum allowed velocity value is
set to Vmax in each dimension of vi [9, 35].

Position pg in the “social” part is the best position found
by particles in the neighborhood of the ith particle. Different
neighborhood topologies can be used to control information
propagation between particles. Constricted information
propagation as a result of using small neighborhood topol-
ogies has been shown to perform better on complex prob-
lems, whereas larger neighborhoods generally perform
better on simpler problems [26].

Generally speaking, a PSO implementation that chooses
pg from within a restricted local neighborhood is referred to
as lbest PSO, whereas choosing pg without any restriction
(hence from the entire swarm) results in a gbest PSO.

Algorithm below summarizes a basic PSO algorithm.

& Initial step: Randomly generate an initial swarm position
and velocities. The current position of each particle is set
as pi. The pi with the best value is set as pg.
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& Step 1: For each particle, the objective function value is
evaluated. If an agent achieves a better objective value,
pi is replaced by the current position xi.

& Step 2: Set pg equal to the best collected pi values.
& Step 3: Update the velocity by Eq. 4 and update the

position by Eq. 5.
& Step 4: Return to step 1 and repeat until the termination

criterion is met.

PSO algorithms have been applied to optimization prob-
lems ranging from classical problems such as scheduling,
the traveling salesman problem, neural network training,
and task assignment, to highly specialized applications. In
recent years, PSO has also become a popular choice for
many researchers in handling multi-objective optimization
problems in manufacturing processes [7, 18, 37].

In this study, MOPSO methodology proposed by Alvarez-
Benitez et al. [1] is adopted. The selection of global guides
(pg) is based on Pareto dominance. An external archive is used
to store the non-dominated solutions found by the algorithm.
When new non-dominated solutions are found, they are en-
tered into the archive, and existing members of the archive are
deleted if they are dominated by the new solutions. The idea is
to select a global guide for a particle from the archive

members that dominate the particle. One particle can be
dominated by more than one non-dominated solution. The
selection can be made randomly or a promotion value can be
assigned to each non-dominated solution which increases with
the number of iterations. An archive member with high pro-
motion value is more likely to be picked as a global guide.
After an archive member is selected, its promotion value is
reset to zero. In addition, the archive members in densely
populated regions are more likely to dominate more particles
than the archive members in sparsely populated regions.

The MOPSO algorithm was implemented in MATLAB,
the RSM models formulated from the previous phase served
as objective functions, f(x) and g(x). After completion of the
MOPSO algorithm, the Pareto frontier was located indicat-
ing a set of solutions in the multi-objective domain. More-
over, all solutions were plotted in a variables domain
showing the optimal level of each parameter.

3 Results and discussions

Results and discussion are divided into three parts which are
related to the experimental phase described earlier. These
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three parts consist of experimental results, modeling results,
and multi-objective optimization results.

3.1 Experimental results

Table 3 shows all results from the experiment, while Tables 4
and 5 show the analysis of means for surface roughness and
total top burr width, respectively. Figures 7 and 8 illustrate
the main effects for surface roughness and total top burr
width, respectively. In terms of surface roughness (Ra), it
can be seen that the main effect of feed per tooth (fz) is
ranked number one among all the three factors and the effect
is approximately twice of the other. This indicates the
dominated influence over the surface roughness of the
feed per tooth. It shows that increase feed per tooth
results in decrease of surface roughness. The influence
of each tested parameters over the total top burr width
is not significantly different. The axial depth of cut
(ADOC) seems to have a slightly higher effect than
the other two factors. In addition, it is quite obvious that the
top burr width from up milling is larger than those from down
milling (see Table 4).

In summary, both surface roughness and top burr forma-
tion are parameter-dependent. Based on the experimental
results, setting spindle speed and feed per tooth at high
levels and axial depth of cut at medium level yields the
lowest surface roughness, and setting spindle speed and
axial depth of cut at high level and feed per tooth at low
level yields minimum total top burr width. However, these
settings are not the same, meaning that obtaining the best
result for both performance measurements is not possible.
One performance has to be sacrificed in order to attain
another. Therefore, using the multi-objectives optimization
technique would be very helpful for this difficult decision
making.

3.2 Modeling results

Based on the experimental result in Table 2, the second-
order RSM models for both responses, top burrs width
and surface roughness, were formulated. The estimated
regression coefficients were obtained using the method
of least square. Equation 6 represents the RSM model
for surface roughness, and Eq. 7 represents the RSM
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model for top burr width. Please note that the analysis was
done using coded unit and the models only include the sig-
nificant terms.

Ra ¼ 0:13883þ 0:00729A� 0:02762B� 0:01442C

þ 0:02225C2 þ 0:02226AC þ 0:04190BC ð6Þ

Total top� burr width ¼ 0:28017� 0:0593A

þ 0:013B� 0:05092C

� 0:06967B2 � 0:0316BC ð7Þ

Since the analysis was done using coded units, the vari-
ables A, B, and C were given as coded variable and can be
calculated by using Eqs. 8, 9, and 10, respectively, where Ω
is a spindle speed (thousand revolutions per minute), fz is a

feed per tooth (micrometers per tooth), and ADOC is an
axial depth of cut (micrometers)

A ¼
Ω � 40

20
ð8Þ

B ¼
fz � 0:3

0:2
ð9Þ

C ¼
ADOC� 60

40
ð10Þ

Tomeasure model adequacy, R2, predicted R2, and adjusted
R2 were calculated. For the surface roughness model, R2,
predicted R2, and adjusted R2 were found to be 93.55%,
82.78%, and 90.03%, respectively, and for the top burr width
model, these values were found to be 82.91%, 62.95%, and
75.79%, respectively. Since both models obtained satisfactory

Fig. 15 MOPSO results (a) Pareto front of optimal objective value (b) optimal solution in variable domain
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high value of all R2, the models are well fitted to the real data
points.

Using the developed RSM models, the surface plots and
contour plots of each model were created. An extra param-
eter in the surface plots was held at the middle level. The
surface and contour plots of the average surface roughness
against process parameters are shown in Figs. 9, 10, and 11,
while the surface and contour plots of total top burr width
against process parameters are shown in Figs. 12, 13, and
14.

It should be noted that there are some conflicts in terms
of recommended parameter levels obtained from the main
effects plots (Figs. 7 and 8) and those obtained from the
surface plots. This can be explained by the fact that the main
effect analysis is a quick and simple experimental analysis
which only considers the influence of each factor indi-
vidually and does not concern any interaction or squared
effects. Its purpose was to quickly capture an effect of
the factors to the responses. On the other hand, the
RSM models included all interaction and squared effects,
and in this study, it has been shown that these effects are
significant.

3.3 Results of multi-objective optimization

In this study, since there is a trade-off between surface
roughness and burr formation, a multi-objective optimiza-
tion becomes necessary. Finding the optimal process param-
eters to achieve the desired level of response (minimum
average surface roughness and minimum burr formation)
can be performed.

Multi-objective optimization problem with two objective
functions can be formulated as following:

Minimizeff ðxÞ; gðxÞg

s:t: f ðxÞ � b1

g xð Þ � b2

x 2 X

ð11Þ

where x represent micro-milling process parameters; x ¼ x1;

x2; :::; xn x1 ¼ Ω;x2 ¼ fz; x3 ¼ ADOCð Þ . X represents the
solution space with all feasible values for the micro-
milling process parameters. The function f(x) represents
the objective function for surface roughness, and the
function g(x) represents the objective function for total
top burr width. b1 and b2 are upper bound of f(x) and g(x),
respectively

The simulations are run by using a particle swarm pop-
ulation of 250 and a maximum number of 500 iterations
with varying learning rates. After obtaining the best particle
value in each iteration of the simulation, the particles are
plotted in a two-dimensional objective space for viewing.
This procedure is repeated until a clear Pareto frontier

forms. The simulations usually take less than 30 min in a
PC with Intel Dual-Core 2.40 GHz processor. Therefore, the
Pareto frontiers of the non-dominated solution sets are
obtained by using this multi-objective PSO method.

The Pareto frontier of the non-dominated solutions for
two objective functions minimizing surface roughness, min
(Ra), and minimizing total top burr width, min (top burr
width), is presented in Fig. 15a. Micro-milling process
parameters that minimize both top burr width and surface
roughness are identified along the ADOC axis at the highest

Ra = 0.164 µm

Top-Burrs width = 0.098 mm

Ω = 60 krpm, fz = 0.5 µm/tooth, ADOC = 100 µm

Ra = 0.110 µm

Top-Burrs width = 0.132 mm

Ω = 60 krpm, fz = 0.5 µm/tooth, ADOC = 60 µm

Ω = 60 krpm, fz = 0.5 µm/tooth, ADOC = 20 µm

Ra = 0.098 µm

Top-Burrs width = 0.246 mm

(a)

(b)

(c)

Fig. 16 Examples of channel quality based on the result from MOPSO
(a) channel with minimum top burrs width (b) channel with balanced
top burrs and surface roughness (c) channel with minimum surface
roughness
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spindle speed tested (60 krpm) and at the highest feed per
tooth (50 μm) in the solution (decision variable) space (see
Fig. 15b).

Three distinct regions have been identified along the
Pareto frontier of the non-dominated solution set in
Fig. 15a. These are marked as “minimize burrs,” “bal-
ance burrs and surface roughness,” and “Minimize Ra.”
Corresponding regions in the solution (decision variable)
space are also indicated in Fig. 15b. A set of micro-end
milling process parameters falling in these regions
should provide decision maker (operator) a feasible solution
set to achieve desired surface roughness and total top burr
width.

In addition, optimum process parameters that satisfy
both objective functions in minimizing surface rough-
ness and top burr width are utilized in a set of experi-
ments. At first, a set of process parameters is employed
(Ω060 krpm, fz00.5 μm/tooth, and ADOC0100 μm)
which is found optimum for obtaining minimum top burr
width as shown in Fig. 16a. Another set is employed in
micro-end milling a channel with set (Ω060 krpm, fz0
0.5 μm/tooth, and ADOC060 μm) which is determined
to be an optimum set for minimizing both surface roughness
and top burr width equally as shown in Fig. 16b. Finally,
another set of optimum process parameters for minimizing
surface roughness only (Ω060 krpm, fz00.5 μm/tooth, and
ADOC020 μm) is utilized in Fig. 16c. As it is evident from
the validation experiments, the smaller the ADOC, larger the
top burr width.

4 Conclusions

In this work, a process modeling and optimization for
micro-end milling of Ti-6Al-4V titanium alloy has been
performed by using experimental, statistically based model-
ing and particle swarm optimization methods. The applica-
tion of statistically based methods was proven to be useful
for obtaining the optimal process parameters for a desired
surface quality. Particle swarm optimization method for
multi-criteria process parameter selection in micro-end mill-
ing has also proven to be a successful approach. The fol-
lowing is a summary of other important findings:

& Axial depth of cut is found to be the major process
parameter causing top burr formation.

& Feed per tooth or feed rate is found to be the major process
parameter affecting surface roughness. However, in con-
trast with conventional milling, a higher feed rate provides
a better surface roughness and channel quality.

& Achieving a high surface roughness and minimum burr
formation is highly dependent upon an achievable axial
depth of cut and feed rate which also results in a high
productivity.

& The approach and the methodologies employed in this
work can be utilized in optimizing micromachining of
other materials using micro-manufacturing processes.
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