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Abstract 

In view of the difficulty of obtaining the optimal solution to the multi-objective scheduling of flexible 

job-shop by the general genetic algorithm, this paper takes into account the shortest processing time 

and the balanced use of machines, and puts forward the multi-population genetic algorithm based on 

the multi-objective scheduling of flexible job-shop. The method attempts to minimize the longest 

make-span of workpieces, the load of each machine, and the total machine load through the overall 

process scheduling of the job-shop. Research results reveal that the proposed method is highly 

efficient in seeking the optimal machine allocation chain, and effective in avoiding the complex 

process of intermediate assignment, making it easier to obtain the said optimal solution. The feasibility 

and effectiveness of the proposed method are also validated by two instances. Compared with the 

conventional flexible job-shop scheduling algorithms, the proposed algorithm boasts better population 

quality, algorithm starting point, and initial expression. Besides, it is far better than other algorithms in 

terms of the initial solution quality and the convergence rate. Despite the local fluctuations in the early 

phase of the genetic process, the total machine load and the machine load variance are gradually 

declining and the curves start to converge after the 50th generation. 
(Received, processed and accepted by the Chinese Representative Office.) 
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1. INTRODUCTION 

With the rapid economic development in recent years, large-scale production enterprises are 

increasingly concerned about centralized and automated production. More and more people 

are paying attention to improving efficiency in job-shop scheduling, one of the major 

influencing factors on the production and logistics efficiency of enterprises. Developed on the 

basis of conventional job-shop scheduling, flexible job-shop scheduling breaks through the 

limitation that each type of resource must be used for a unique purpose, and designs the 

optimal process chain to improve the production efficiency of enterprises. Hence, the new 

dispatching mode has important theoretical and practical significance for the research of 

flexible job-shop [1-6]. 

At present, flexible job-shop scheduling basically falls into such three categories as static 

scheduling, single-objective scheduling, and multi-objective dynamic scheduling. All of the 

three categories have been tackled by scholars at home and abroad. Betterton and Cox, Chen 

and Chen analysed static scheduling based on the DBR (Drum-Buffer-Rope) theory [7, 8]; 

Sun and Xue, Chtourou and Haouari conducted a re-planning of job-shop in view of the 

dynamic factorial-based fuzzy-stochastic (FFS) problem [9, 10]; Kacem et al. examined 

flexible job-shop from the angle of the localized genetic algorithm [11]; Xia and Wu proposed 

a multi-objective flexible job-shop scheduling method that combines the particle swam 

optimization (PSO) and simulated annealing [12]. Furthermore, multi-objective flexible job-
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shop dispatching has been explored through the integration of the genetic algorithm with the 

neighbourhood descent method [13], the combination of the PSO with the Tabu search 

algorithm [14], and the use of improved algorithms [15-18]. 

In view of the difficulty of obtaining the optimal solution to the multi-objective 

scheduling of flexible job-shop by the general genetic algorithm, this paper takes into account 

the shortest processing time and the balanced use of machines, and puts forward the multi-

population genetic algorithm based on the multi-objective scheduling of flexible job-shop. 

The findings provide a theoretical reference for flexible job-shop dispatching. 

2. DESCRIPTION OF THE FLEXIBLE JOB-SHOP DISPATCHING 

PROBLEM 

Let there be m workpieces Ji to be processed and n machines Mj that can process the 

workpieces in a job-shop. Suppose Ji has to go through Ni processes. Table I lists the five-step 

process flexible job-shop scheduling for three workpieces (5  3). The processing time of each 

workpiece is recorded in the intersections between the corresponding rows Oij and columns 

Mj. 

Table I: Processing time of general flexible job-shop scheduling. 

Workpiece Process  

Processing time  

M1 M2 M3 M4 M5 

J1 

O11 24 — 16 19 — 

O12 — 21 — 13 11 

O13 — — 15 14 11 

J2 

O21 — 5 — 5 4 

O22 9 — — 6 8 

O23 — — — 4 3 

J3 
O31 7 — — 4 3 

O32 — — 8 6 6 

 

All workpieces are subject to the following constraints during the processing: 

(1) There is a one-to-one correspondence between machine M and workpiece J; that is, Mj 

can only process one Ji at a time; 

(2) None of the processes Oij can stop halfway; 

(3) The processing of Ji must follow the pre-set processing route. 

The solution accuracy evaluation indices of flexible job-shop scheduling can be expressed 

by the following objective functions: 

The minimization of the longest make-span Tmax of a workpiece: 

max
1 1

min max max
n m

ik
i k

T t
 

  
   

  
              (1) 

The minimization of the running load of each machine WM: 

1
min max

m

M k
k

W W


 
  

 
          (2) 

The minimization of the total load of all machines in the job-shop WT: 

1

min
m

T k

k

W W


 
  

 
         (3) 

In the above formulas, tik stands for the time it takes for Mk to process Ji, and Wk is the 

load on the k
th

 machine during the processing. 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%b7%a5%e4%bb%b6&tjType=sentence&style=&t=workpiece
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3. FLEXIBLE JOB-SHOP MULTI-POPULATION GENETIC 

ALGORITHM 

3.1  Algorithm flow 

In this paper, the genetic algorithm based on vertical and horizontal double-layer co-evolution 

is shown in Fig. 1. The algorithm initializes n populations, sorts them out in descending order 

of fitness, extracts the excellent individuals to form the (n+1)
th

 excellent population, processes 

all populations synergistically, and selects the optimal solution according to the fitness values 

thus acquired. 
 

 

Figure 1: Flow chart of multi-population genetic algorithm. 

The specific steps of the proposed algorithm are as follows: 

(1) Initialize the parameters. Let there be b sub-populations in the system, each of which 

can generate p individuals, define the maximum number of evolutions as t, and set the 

probabilities of cross-operation and variation between different sub-populations as Pc and Pv, 

respectively. After the evolution of the sub-populations, there will be b initial populations. 

(2) Let the fitness function be f(x), calculate the f(x) of the individuals in all sub-

populations, sort out all the individuals by the fitness value, form the (n+1)
th

 population with 
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the first p individuals, and retain the optimal fitness and the smallest chromosome I in the first 

n populations. 

(3) Replace the worst chromosome of each sub-population with I and generate a new sub-

population operation. The probability that a sub-population individual is selected can be 

calculated by the following formula: 

   
1

p

ij ij ij

j

P f x f x


            (4) 

(4) Perform cross-operation and variation on population individuals according to Pc and 

Pv. Repeat Steps (1) – (3) for the newly generated populations. 

(5) According to the sorting order, select p excellent chromosomes to form the population 

POP1; replace the inferior individuals in the POP1 with the excellent individuals selected 

from the (n+1)
th

 population and regroup the resulting population into population POP2; 

calculate the fitness of all individuals in POP2. Terminate the calculation when the optimal 

individual satisfies the pre-set convergence threshold; otherwise, repeat the iteration process. 

3.2  Machine allocation strategy 

This section deals with the problem of machine assignment for flexible job-shop scheduling 

in conjunction with uniform testing. As shown in Fig. 2, the workpiece processing strategy for 

the machines in the job-shop gives comprehensive consideration to the parameters of the total 

load and the longest make-span, and finds the initial solution of the population in such three 

cases as local selection, global selection, and random selection. It defines the length of the 

array of machine make-spans such as the number of machines, and the array elements such as 

the sum of the make-spans of all workpieces being processed. The length of the array of ma-

chine make-spans is then updated using the shortest machine make-span as the benchmark. 

On the whole, the method proposed in this paper mainly considers the shortest processing 

time and the balanced use of a machine, and aims at minimizing the longest make-span of a 

workpiece, the running load of each machine, and the total load of all machines through the 

overall process scheduling of the job-shop. 
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Figure 2: Flow chart of machine allocation strategy. 

Fig. 3 is the Gantt chart for 3 × 4 flexible job-shop scheduling, where the shaded areas are 

empty rectangles, and the number-containing rectangles describe the processing steps. The 

Gantt chart visually displays the features of the work of the flexible job-shop. The total load 

of the job-shop is minimized when the total area of the process rectangles of all machines 

http://dict.cnki.net/dict_result.aspx?searchword=%e6%9c%ba%e5%99%a8&tjType=sentence&style=&t=machines
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reaches the lowest point. The strategy of the shortest make-span refers to the reduction of the 

size of each rectangle. The closer the areas of the rectangles, the more balanced the load 

distribution in the job-shop. Tmax is related to the latest make-span in the figure: the more left-

leaning the position of the make-span, the smaller the value of Tmax. The selection of a 

machine determines the area of the corresponding process rectangles. At this time, it is 

necessary to adjust the processing sequence so as to reduce the total load of the job-shop. 

Taking the total load of the job-shop and the balanced load of each machine as the evaluation 

indices, the author sets up a machine allocation chain, thereby converting the machine 

allocation problem into a multi-objective combinatorial optimization of the flexible job-shop. 
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Figure 3: Gantt chart of flexible job-shop scheduling. 

During the initialization of the machines in the flexible job-shop, the machine with the 

shortest make-span is the only one that is taken into account. Taking the shortest make-span 

as the horizontal reference, the author expands the search scale based on variation operation. 

Two instances of the machine combination problem, 10 × 10 and 15 × 10, are converted to test 

models for solving the uniform calculation. The relevant parameters are shown in Table II. 

DPS software is used for the uniform design of the flexible job-shop. 

Table II. Test models of uniform design. 

Number Instance Number of elements Level figure  

1 10 × 10 20 3 

2 15 × 10 10 2 
 

The random weight method is used to find the total load of all machines in the job-shop 

and the machine load variance. The fitness function after the combination and arrangement of 

weights can be expressed as: 

,

1

k

p p q q

q

F M f


              (5) 

where M is a sufficiently large positive number; fq is the objective function; ωp,q is the weight 

coefficient. During the calculation, the excellent individuals are selected from the parent 

population and inputted into the next generation based on the genetic algorithm. The chain of 

operation sequence is determined in light of the linear order and the priority crossover 

algorithm. 

4. EXAMPLE VALIDATION AND ANALYSIS 

The 10 × 10 and 15 × 10 instances (Table II) are resolved and analysed to validate the 

effectiveness of the multi-objective population genetic algorithm of flexible job-shop 

scheduling proposed in this paper. In the meantime, the proposed method is also contrasted 

with two conventional algorithms, i.e. the stochastic algorithm and the Kacem algorithm, for 

accuracy verification. The population size of the flexible job-shop is put at 2,500; the number 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%9b%a0%e7%b4%a0%e6%95%b0&tjType=sentence&style=&t=factor+number
http://dict.cnki.net/dict_result.aspx?searchword=%e6%b0%b4%e5%b9%b3%e6%95%b0&tjType=sentence&style=&t=level+figure
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of initial individuals in the proposed method, stochastic algorithm, and Kacem algorithm is 

set as 2,000, and the remaining 500 individuals are regarded as the initial values for all 

processing machines; the maximum number of generations is defined as 100; Pc = 0.65;  

Pv = 0.15. In order to ensure the accuracy of the calculated results and reduce the rate of 

accidental errors, the 10 × 10 and 15 × 10 instances are repeatedly calculated fifteen times, and 

the 15 calculated results are averaged to yield the final results of each instance. Fig. 4 is the 

Gantt chart of the 10 × 10 flexible job-shop scheduling instance. 
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Figure 4: Gantt chart of 10 × 10 flexible job-shop scheduling. 

Fig. 5 is the Tmax contrast histogram for the first and final iterations of the three algorithms 

in the 10 × 10 instance. On the x-axis, 1 and 2 represent the optimal and mean values of Tmax 

in the first generation of the genetic algorithm, respectively; 3 and 4 represent the optimal and 

mean values of Tmax in the 100
th

 generation of the genetic algorithm, respectively. As shown 

in the figure, the proposed algorithm boasts better population quality, algorithm starting point, 

and initial expression than the stochastic algorithm and the Kacem algorithm, no matter 

whether in the first generation or the 100
th

 generation. 
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Figure 5: Statistical indices of the 10 × 10 instance of the 3 algorithms. 
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Table III displays the final results of the 10 × 10 and 15 × 10 instances by the 3 algorithms. 

The proposed method is proved to be effective for it has obtained the best test results for the 

three objective functions of Tmax, WT,  and WM. 

Table III: Optimal results comparison of the 3 algorithms. 

Algorithm 
10 × 10 15 × 10 

Tmax WT WM Tmax WT WM 

Random 7 45 6 13 93 11 

Kacem 7 43 5 12 91 11 

The proposed algorithm 6 42 5 11 91 11 
 

Fig. 6 presents the Tmax convergence curves of the 10 × 10 instance by the three algorithms. 

The x-axis refers to the number of generations. In the first 30 generations, the scholastic 

algorithm boasts the longest make-span with the Kacem algorithm trailing far behind. The 

Tmax of the proposed algorithm, however, always stays at a very low level. Besides, the 

proposed algorithm is far better than the other algorithms in terms of initial solution quality 

and convergence rate. 
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Figure 6: Tmax convergent curves of 10 × 10 instance by the 3 algorithms. 

Fig. 7 shows how the total load of all machines in the job-shop WT and the machine load 

variance D change with the increasing number of generations in the 10 × 10 instance when the 

proposed algorithm is applied to the case of randomly generated populations and selected 

machines. 
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Figure 7: Total load and variance curves of the 10 × 10 instance. 
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It can be seen from the figure that WT and D fluctuate in local areas during the early phase 

of the genetic process, but the curves gradually decline and start to converge after the 50
th

 

generation. This once again proves the validity of the proposed method. 

5. CONCLUSION 

In view of the difficulty of obtaining the optimal solution to the multi-objective scheduling of 

flexible job-shop by the general genetic algorithm, this paper considers factors like the 

shortest processing time and the balanced use of machines, and develops the multi-population 

genetic algorithm based on the multi-objective scheduling of flexible job-shop. The 

conclusions are given below. 

(1) The proposed method is highly efficient in seeking the optimal machine allocation 

chain, and effective in avoiding the complex process of intermediate assignment, making it 

easier to obtain the said optimal solution. In addition, the overall process scheduling of the 

job-shop has successfully minimized the longest make-span of each workpiece, the load of 

each machine, and the total machine load. 

(2) The feasibility and effectiveness of the proposed method is validated by two instances. 

Compared with the conventional flexible job-shop scheduling algorithms, the proposed 

algorithm boasts better population quality, algorithm starting point, and initial expression. 

Besides, it is far better than other algorithms in terms of the initial solution quality and the 

convergence rate. Despite the local fluctuations in the early phase of the genetic process, the 

total machine load and the machine load variance are gradually declining and the curves start 

to converge after the 50
th

 generation.  
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