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In recent years, the optimization of multi-objective service composition in distributed systems has become an important issue.
Existing work makes a smaller set of Pareto-optimal solutions to represent the Pareto Front (PF). However, they do not support
complex mapping of the Pareto-optimal solutions to quality of service (QoS) objective space, thus having limitations in providing
a representative set of solutions. We propose an enhanced multi-objective diferential evolution algorithm to seek a representative
set of solutions with good proximity and distributivity. Specially, we propose a dual strategy to adjust the usage of diferent
creation operators, to maintain the evolutionary pressure toward the true PF.Ten, we propose a reference vector neighbor search
to have a fne-grained search. Te proposed approach has been tested on a real-world dataset that locates a representative set of
solutions with proximity and distributivity.

1. Introduction

Service composition became popular after introducing
service-oriented architecture (SOA), as it allows complex
and distributed software systems to be composed of web
services through open standards. QoS attributes [1] (e.g.,
reliability or throughput) provide the quality criteria for
selecting and composing web services, thus establishing
QoS-aware service composition (QOSC). Since QoS re-
quirements usually involve multiple conficting objectives,
QOSC is a multi-objective optimization problem (MOP) to
fnd a set of Pareto-optimal solutions.

Existing work [2–4] has explored multi-objective evolu-
tionary algorithm (MOEA) that allows a set of feasible so-
lutions to approximate the Pareto-optimal set, based on
analyzing a set of non-dominated solutions after one run and
maintaining a good solution diversity during the search [5, 6].
However, this approach includes elitist preservation in the
selection strategy. Terefore there may be a lack of evolu-
tionary pressure to explore optimal solutions, especially as the
number of service requests increases. Second, this approach

does not explicitly consider fne-grained search. Tis can lead
to overlapped or unstructured searches, resulting in uneven
distribution of Pareto-optimal solutions.

In this work, we tackle the issue by proposing an en-
hanced multi-objective diferential evolution (EnMODE)
algorithm for searching for a representative set of feasible
solutions to approximate the Pareto-optimal solutions in
terms of proximity and distributivity. Our main contribu-
tions are summarized as follows:

(1) Sufcient evolutionary pressure - We propose a dual
strategy to adjust the usage of “rand/2/bin” and
“current-to-best/1/bin” as the iteration evolves.
“rand/2/bin” expands the evolution ability by per-
forming new exploration around two diferent so-
lutions. At the same time “current-to-best/1/bin”
improves the evolution robustness by performing
guided exploration around the current best. Te
dynamic execution of “rand/2/bin” and “current-to-
best/1/bin” provides sufcient evolutionary pressure
as the population evolves.
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(2) Fine-grained search - Te reference vectors are used
as neighborhood axis to divide MOP, and accu-
mulate the non-dominated compositions around the
nearest reference vector and the dominated com-
positions around the essential non-dominated
compositions. Te reference vector neighbor
search simplifes MOP by systematically breaking it
down into similar sub-problems and directing the
search to the Pareto-optimal set.

We have evaluated the enhanced multi-objective difer-
ential evolution algorithm on a real-world dataset, which
shows that the proposed method has better proximity and
distributivity than the baselines. Te rest of the paper is
organized as follows. In Section 2, we compare it with related
work. Section 3 introduces the multi-objective service com-
position model. We outline the proposed approach for the
MOP in Section 4. Section 5 evaluates the proposed method
in terms of proximity degree and uniformity. Finally, Section
6 concludes the paper and outlines future work.

2. Related Work

Tis section outlines the related work on MOSC. Section 2.1
focuses on Pareto-based multi-objective service composition
(PMOSC), which fnds a set of Pareto-optimal solutions
based on the hypothesis that users cannot accurately pre-
defne weights or priorities for multidimensional objectives.
Section 2.2 presents the utility-based multi-objective service
composition (UMOSC), which computes the utility value of
a solution based on the hypothesis that the weights or
priorities can be accurately specifed. Te summary of the
related work is presented in Section 2.3.

2.1. Pareto-Based Multi-Objective Service Composition. Te
intuitive method is to explore all Pareto-optimal solutions
exhaustively. Since the Pareto-optimal set may include all
possible solutions that exponentially grow in the sizes of
service requests, the optimization cost of such a method
would be prohibitive.

To solve this problem, Guo et al. [7] proposed a compu-
tationally efcient dropout neural network as a computation-
ally scalable alternative of the Gaussian process model for
assisting the solution of expensive high-dimensional multi-
objective and many-objective expensive optimization prob-
lems. Li et al. [8] built the energy-efcient job-shop scheduling
problem to a many-objective model with fve objectives, i.e.,
makespan, total tardiness, total idle time, total worker cost, and
total energy. Tey adopted a novel ftness evaluation mecha-
nism based on fuzzy correlation entropy to solve this many-
objective optimization problem. Cruz et al. [9] proposed an
evolutionary algorithm-based search strategy for choosing an
efcient design of an ensemble of Convolutional Neural
Networks (CNNs), which includes not only the networks ar-
chitecture but also the voting policy. During the running of the
search strategy, not only the combination of CNNs with dif-
ferent architectures is taken into consideration, but also the
most suitable policy used by the ensemble for generating the
unifed response.

Zhou et al. [3] proposed a multi-population diferential
artifcial bee colony optimizer for PMOSC.Te optimization
problem is divided into several sub-problems to reduce the
search scale. Diferent search behaviors are considered in the
artifcial bee colony algorithm to select the solutions set
toward the Pareto-optimal set. Te work of [10] integrated
hyper-heuristics with genetic programming to solve the
multi-objective dynamic service composition optimization.
A set of Pareto-optimal solutions are provided to satisfy
varied preferences. Wang et al. [11] proposed an improved
whale optimization algorithm to divide the population into
several populations. A pareto strategy is presented to im-
prove the optimization. Yang et al. [12] adopted a multi-
objective immune algorithm to implement PMOSC. Te
global ranking is incorporated into the evolution of multiple
populations to obtain better generations.

Chen et al. [13] proposed an objective space partition-
based adaptive multi-objective evolutionary algorithm to
maintain diversity during strength convergence. Te pro-
posed approach defnes the forward population distance as
a metric to dynamically identify efcient subspaces and
adaptively allocate computational resources to each sub-
space. In [14], an enhanced decomposition-based evolu-
tionary many-objective optimization algorithm is proposed
to solve irregular many-objective optimization problems.
Te local search is performed on external archives to alle-
viate the adverse efects of inappropriate weight vectors and
strengthen the performance. Dai et al. [15] proposed
a problem-specifc multi-objective evolutionary algorithm
where a decomposition scheme decomposes PMOSC into
multiple scalar sub-problems. Te evolutionary operators
search Pareto solutions in terms of maximizing the service
quality and minimizing the overhead. Seada and Deb [16]
developed a unifed evolutionary optimization algorithm U-
NSGA-III to solve mono-, multi-, and many-objective op-
timization problems. Te ability of U-NSGA-III to solve
diferent types of problems equally efciently and sometimes
better, with the added fexibility brought in through pop-
ulation size control, remains a hallmark achievement.
Dhiman et al. [17] proposed a novel hybrid many-objective
evolutionary algorithm named Reference Vector Guided
Evolutionary Algorithm (H-RVEA). It decomposed the
optimization problem into several sub-problems by refer-
ence vectors, and used an adaptation strategy to adjust the
reference vector distribution.

Lin et al. [18] proposed an adaptive immune-inspired
multi-objective algorithm. Tis method embeds three dif-
ferential evolution (DE) strategies with distinct features into
multi-objective immune algorithms. At each generation, one
of them is adaptively selected to be used based on the current
search stage. Tis adaptive DE strategy selection efectively
cooperates with three DE strategies, signifcantly improving
search capability and population diversity. Kumar et al. [19]
proposed a diferential evolution and sine cosine algorithm-
based new hybrid optimization method. Tis method
adapted multi-objective versions of evolutionary
optimization-based methods to mine the reduced high-
quality numerical association rules automatically. Altay
and Alatas [20] proposed an enhanced version of the multi-
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operators variant diferential evolution model, named
ESHADE. ESHADE utilized various mutation strategies, and
an exponential population size reduction (EPSR) technique
to reduce the population size for the next iteration. Besides,
ESHADE employed a version of the univariate sampling
method in later iterations to balance exploitative and ex-
plorative searches. We can conclude that the multi-operator
variant [18–20] implemented the task of enhancing the
diversity of the candidate solutions.Te diference is that the
execution probability for the multi-operator variant is not
a quantitative benchmark that accurately refects the current
search stage. At the same time, we calculate the probability as
the search continues. Tis diference leads to problems
because the multi-operator variant has difculty tackling
MOPs with diferent characteristics, and our proposed
method solves these problems.

2.2. Utility-Based Multi-Objective Service Composition.
Diferent approaches are developed to fnd the composition
with the best utility, such as graph search [21, 22], evolu-
tionary algorithms [23, 24], and so on.

Rodrı́guez-Mier et al. [25] used a Service Match Graph
to represent all matches between the relevant services. On
this basis, they proposed a hybrid local/global search to fnd
the optimal solution. Siebert et al. [26] transformed the
service composition problem into the subgraph iso-
morphism problem. A message-efcient localized algo-
rithm is proposed to compose the component services
according to the information from the collaboration can-
didate. Tere are also existing works on evolutionary al-
gorithms for fnding the optimal solution. For example,
Hossain et al. [27] extended the particle swarm optimi-
zation algorithms to improve global and local optimization.
Te particles search the service space with guidance from
extreme individual value and population extreme value.
Mart́ın et al. [28] proposed an ant colony optimization
algorithm, in which a set of ants fnd the shortest path
according to the pheromone mechanism. Some works used
machine learning technologies to fnd the optimal solution.
Wang et al. [29] integrated reinforcement learning with
multi-agent techniques for fnding the optimal solution.
Game theory and a fctitious play process are combined to
help improve performance. Peng et al. [30] and Wang et al.
[31] used a restricted Boltzmann machine to learn the
probability information of the global optimization con-
tribution of concrete service. Te information helps guide
the search for solutions. Palade and Clarke [32] adopted
collaborative agent communities to approximate the op-
timal solution.

2.3. Summary. Te existing work for UMOSC can fnd an
optimal or near-optimal solution efectively by maximizing
or minimizing the utility value, which is computed under the
basis of specifying weights. However, it is not easy to de-
termine weights in practice. Te reason might be that the
information on user preference for multiple attributes is lost.
Even if they know the user preference, it is hard to provide
accurate quantitative values.

Te work for PMOSC fnds a set of Pareto-optimal
solutions under the assumption of unknown weights, but
the performance, such as proximity and distributivity, needs
to be improved. In this paper, we focus on the work for
PMOSC, and provide a hybrid approach to search for
a smaller set of solutions with proximity and distributivity.

3. Multi-Objective Service Composition Model

3.1. QoS Vectors

Defnition 1. (QoS vector) Assuming a web service ws hasM
attributes, the quality of ws is described by M attributes that
are considered an M-dimensional QoS vector.Tus, the QoS
vector for ws is defned as Q(ws) � a1(ws),

a2(ws), . . . aM(ws)}, where am(ws) represents the mth QoS
attribute value of ws (for 1≤m≤M).

Defnition 2. (QoS vector for a composition) A composition
is represented as cs � (ws1, ws2, . . . , wsn), where
wsi(1≤ i≤ n) is the concrete service of specifying the in-
stantiation of the ith abstract service. Te QoS vector for cs is
defned as Q(cs) � f1(cs), f2(cs), . . . fM(cs) , where
fm(cs) is the aggregation value of the mth QoS attribute for
all concrete services in cs.

As shown in Table 1, the aggregation value is computed
based on the aggregation function. Other QoS attributes
share similar aggregation functions, e.g., the cost compu-
tation in the case of sequential execution has a similar
summation aggregation function.

3.2. Pareto-Optimality

Defnition 3. (Pareto-dominance) Given two compositions
csa and csb, their QoS vectors are denoted by
Q(csa) � f1(csa), f2(csa), . . . fM(csa)  and
Q(csb) � f1(csb), f2(csb), . . . fM(csb) .csb is said to
Pareto-dominate csa if i) for every attribute csb has a better
QoS value than csa or equivalent value like csa, and ii) for
some attributes, csb has better QoS values than csa, i.e.

∀m ∈ 1, . . . , M{ }, fm csa( ≤fm csb( ∧

∃m ∈ 1, . . . , M{ }, fm csa( <fm csb( .
(1)

For brevity, the relation that csb dominates csa is denoted
by csa≺csb.Trough the notion of Pareto-dominance, we can
also determine that csb and csa are non-dominated by each
other if neither csa≺csb nor csb≺csa.

Defnition 4. (Pareto-optimality) Given a set of composi-
tions CS, a composition cs ∈ CS is a Pareto-optimal solution
if it is feasible and not strictly dominated by any other
feasible composition cs′,i.e.

∄cs′ ∈ CS: cs′≻cs. (2)

Consider a set of feasible compositions, and we have the
relations cs4≻cs1, cs4≻cs2, cs4≻cs3, cs6≻cs5, cs6≻cs7, and
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cs6≻cs8. Since other compositions do not dominate cs4 and
cs6, they are Pareto-optimal.

3.3. Problem Statement. Te MOP of service composition
can be defned as follows:

maxQ(cs) � f1(cs), f2(cs), . . . fM(cs)( ,

subject  to  cs ∈ CS,
(3)

where cs represents a composition (ws1, ws2, . . . , wsn), CS is
the set of composite services.

Considering multiple QoS attributes, service compo-
sition optimization is regarded as MOP. Due to conficting
objectives and unavailable preferences, fnding a solution
with the best values for all objectives is complex. An
intuitive method to address this problem is to explore all
Pareto-optimal solutions. However, the solution space
size grows exponentially as service requests increase.
Finding all Pareto-optimal solutions will cost a lot.
Terefore, it is more desirable to approximate the Pareto-
optimal set to allow runtime multi-objective service
composition. Tis work aims to solve multi-objective
service composition by seeking a representative set of
solutions with good proximity and distributivity in QoS
objective space.

4. The EnMODE for Multi-Objective
Service Composition

4.1. Initialization. Te initialization of the proposed ap-
proach is conducted from two aspects: the population and
the reference vectors.

An individual corresponds to a composite service
composed of several concrete services for the population.
Te concrete service is randomly chosen from the service
candidates. A unique identifer id(ws) is used to identify
the concrete service ws. After identifying the concrete
service, an individual cs is represented as
cs � (id1(ws), id2(ws), . . . , idD(ws)), where D is the
number of abstract services. Te QoS vector of cs is rep-
resented as Q(cs) � f1(cs), f2(cs), . . . , fM(cs) , where M
is the size of the objectives.

For the initialization of the reference vectors, the key
steps are listed. First, the reference point is generated by
sampling points on a hyperplane. Ten the reference points
are mapped on the PF to generate the reference vectors. A
reference vector is a vector that starts from the origin point
in the objective space and ends in the reference point. Let H
be the parameter that controls the division on the objective
axis, a reference vector λi � (λi1, λi2, . . . , λiM) is generated by
selecting λim from 0/H, 1/H, . . . H/H{ } and satisfying


M
m�1λim � 1. Usually, the number of reference vectors

equals the population size N. Te initial reference vector is
stored in λ0. Terefore, the initial reference vectors are
represented as λ0 � (λ01, . . . λ0N).

4.2. Ofspring Creation with Dual Strategy. According to
references [33], the state of the search space varies with the
evolutionary process. At the early stage, the available in-
formation (e.g., the individuals with better QoS) about the
search is limited. Te available information about the search
is accumulated with the increase of the iterations. Entering
the latter stage, many individuals might be close to the true
PF, so it is less likely to fnd better individuals even if taking
longer. Such a change would leave the population without
evolutionary pressure. To solve this problem, a dual strategy
is needed to tweak the use of creation operators to provide
sufcient evolutionary pressure in the evolutionary stage.

First, two creation operators, namely, “rand/2/bin” and
“current-to-best/1/bin”, are selected to manipulate in-
dividuals. Te “rand/2/bin” shows better disturbance and
creates ofspring based on diferent individuals. Tese
characteristics make it capable of expanding its evolution
ability. Te “current-to-best/1/bin” creates the ofspring by
searching around the current best, which improves the
evolutionary robustness. Tese two creation operators
regard the abstract service as the operational dimension to
generate a new individual. Te new individual
cs′ � (id1(ws′), . . . , idD(ws′)) is produced as follows.

(1) rand/2/bin

idd
i ws
′

  �

idd
r1

(ws) + F1 × idd
r2

(ws) − idd
rs

(ws) 

+F2 × idd
4(ws) − idd

rs
(ws) ,

if   rand(0, 1)< 0.9 or d � drand

idd
i (ws), otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

(2) current-to-best/1/bin

idd
i ws
′

  �

idd
i (ws) + F3 × idd

best(ws) − idd
i (ws) 

+F4 × idd
r1

(ws) − idd
r2

(ws) ,

if   rand(0, 1)< 0.1or d � drand

idd
i (ws), otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where r1, r2, r3, r4, and r5 are the indices of diferent
random individuals in the current population; best is
the index of the best individual; drand is the random
index within the range [1, . . . , D]; F1, F2, F3 and F4
control the proportion of diferent individuals.

Table 1: Examples of QoS aggregation functions.

Attributes Sequential Parallel Loop Conditional
Response time 

n
i�1q(wsi) maxn

i�1q(wsi) k∗ q(wsi) maxn
i�1q(wsi)

Troughput minn
i�1q(wsi) 

n
i�1q(wsi) minn

i�1q(wsi) maxn
i�1q(wsi)
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Due to the fniteness of the service candidates, the
identifer of the concrete service might exceed its limit.
Terefore, the identifer needs to be reset, which is con-
ducted according to the following formula.

idd
i (ws)

″
� idd

i (ws)
′
+ σi × idi(ws)

max
− idi(ws)

min
 ,

(6)

with

σi �
(2 × rand(0, 1))

1/20
− 1, if   rand(0, 1)< 0.5,

1 − (2 − 2 × rand(0, 1))
1/20

, otherwise,

⎧⎨

⎩

(7)

where idd
i (ws)max and idd

i (ws)min represent the upper and
low bounds of the identifer, respectively.

Second, these two operators are adjusted by a dual
strategy, which controls the execution probability of “rand/
2/bin” and “current-to-best/1/bin” in the evolutionary stage.
Tere is no clear division between the various evolutionary
stages throughout the evolution process. Terefore, we
defne the ratio of the current iteration to the total iteration
to distinguish between the diferent evolutionary stages. On
account of the ratio, we represent their probabilities as prand
and pbest, and compute them as follows.

prand �
1

1 + exp 10 × i/itermax(  − 0.5( ( 
,

pbest � 1 − prand,

(8)

where i is the number of the current iteration and itermax is
the number of total iteration. To exhibit the whole dynamic
changes of prand and pbest more clearly, their tendencies are
illustrated in Figure 1. At the early stage, the “rand/2/bin” is
run with a high probability of exploring more high-quality
individuals. As the evolution continues, the execution
probability of the “rand/2/bin” dynamically reduces. In
contrast, the execution probability of the “current-to-best/1/
bin” dynamically increases. Te exploration of the “rand/2/
bin” and the exploitation of the “current-to-best/1/bin” are
used to speed up convergence and prevent premature
convergence. Entering the latter stage, the “current-to-best/
1/bin” is preferred to exploit the local information.

4.3. Reference Vector Neighbor Search. Tis search frst
unfolds the two-stage clustering to implement a fne-grained
search under the guidance of the reference vectors and the
elites in the non-dominated individuals, and then carries out
the selection of the solutions set towards the true PF.

4.3.1. Two-Stage Clustering. In the two-stage clustering, the
frst-stage clustering uses the reference vector as the anchor
to gather the non-dominated individuals. Te second-stage
clustering groups the dominated individuals under the di-
rection of the elites in the frst cluster.

For the frst-stage clustering, we frst search the non-
dominated individuals from the union of the ofspring and
the current population. Ten, the non-dominated

individuals are clustered by computing their closeness de-
gree with the reference vectors. Te closeness degree can be
measured by the perpendicular distance from the individual
cs to a reference vector λ. Te perpendicular distance is
computed as follows.

d(Q(cs), λ) �

������������

‖Q(cs)‖
2
2 − d

2
1,


(9)

where d1 represents the distance along λ, which is computed
by d1 � Q(cs)λT, and ‖ · ‖2 represents the l2 norm of the
vector. Each non-dominated individual can be attached to
the nearest reference vector by comparing the distance
values. Reference vectors attached by non-dominated in-
dividuals are labeled as active, while reference vectors
without attached individuals are labeled inactive.

Since there may be more than two non-dominated in-
dividuals attaching to one reference vector, we need to sort
them within a cluster. We evaluate one individual from its
proximity and distributivity. Te proximity is refected by
the distance along the closest λ. Te smaller the value, the
closer the individual is to the true PF. Te distributivity is
measured by the perpendicular distance between the non-
dominated individual cs and λ. Tis distance represents the
distribution error between cs and λ. Te smaller the value,
the closer cs is to λ. Tese two criteria are integrated into the
following formula.

P(cs) � d1 + αd(Q(cs), λ),

� Q(cs)λT
+ α ×

�����������

‖Q‖
2
2(cs) − d

2
1



,
(10)

where α is a parameter that controls the proximity and
distributivity. We can sort the non-dominated individuals in
ascending order based on the compromise value of cs.

For the second-stage clustering, we also need guidance
for the search of the dominated individuals towards prox-
imity and distributivity. Some characteristics of the second-
stage clustering are summarized below.

(i) For each cluster in the frst stage, the top individual
is taken as the center of the second-stage clustering.

(ii) Te dominated individuals are assigned to the
closest center according to the Euclidean distance
between the individuals and the centers.

500 150 200100
Number of iterations

Prand
Pbest

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

Figure 1: Te tendencies of prand and pbest.
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(iii) Te dominated individuals in the same cluster are
sorted in ascending order based on the comparison
of their closest value to the center.

4.3.2. Population Selection. We propose a cyclic selection to
distribute a new population close to the true PF evenly. Te
idea behind this is that, by selecting the feasible individuals
having the best values in diferent clusters, we have a higher
chance of obtaining a set of solutions with good proximity
and distributivity. More specifcally,

(i) For each frst-stage clustering, the feasible head of
the sorted non-dominated individual’s list is
selected.

(ii) Te feasible head of the sorted dominated in-
dividuals’ list is selected in order.

(iii) If the number of the selected individuals is less than
the population size, other feasible non-dominated
individuals are selected in order.

5. Experiments and Analysis

5.1. Experiment Design

5.1.1. Dataset. Given a workfow with a set of tasks, there are
concrete services with similar functions but diferent QoS
values for each task. Terefore, there are a large number of
composition instances. For each test case, the concrete
services are randomly assigned using the QWS dataset
(https://qwsdata.github.io/), which records the QoS mea-
surements of real-world web services. We focus on the
response time, availability, throughput, successability, and
reliability attributes. All experimental results are collected on
a 3.4GHz PC with 8GB RAM.

5.1.2. Comparative Approaches

(i) MODE: it is a basic multi-objective diferential
evolution algorithm for verifying the impact of the
dual strategy and fne-grained search on the per-
formance of our proposed algorithm.

(ii) MOGP: A multi-objective genetic programming
algorithm is proposed in [34]. It is a powerful
evolutionary metaheuristic to fnd the best trade-
ofs between more than two objectives.

(iii) MS-DABC: An improved artifcial bee colony al-
gorithm is proposed in [3]. It has a competitive
performance produced by cooperating with a syn-
ergistic mechanism, a diversity maintenance strat-
egy, and a well-maintained external achieve with the
artifcial bee colony algorithm.

(iv) NSGA-III-DDR: An improved evolutionary multi-
objective optimization algorithm using reference-
point based non-dominated sorting approach is
proposed in [35]. It provides a distance dominance
relationship in NSGA-III. Te algorithm not only
considers the diverse solutions but also retains good
convergence.

5.1.3. Parameter Setting. Te shared parameters for all al-
gorithms are as follows: the number of epochs is set to 200;
the population size N is set to 100.

Te individual parameters for each algorithm are as
follows. For the EnMODE, the values of F1 and F2 are
respectively set to 0.8; the values of F3 and F4 are respectively
set to 0.4; the parameter that controls the division on the
objective axis is H� 8; the parameter that controls the
proximity and distributivity is α � 5; Te maximum number
of iterations is itermax� 200. For the comparative algo-
rithms, the crossover rate and mutation rate are set to 0.7
and 0.3, respectively.

5.1.4. Evaluation Metrics. GD [36] measures the proximity
degree of the obtained solutions set toward the true Pareto-
optimal set. It is computed using the quadratic mean of the
Euclidean distances from N compositions in the obtained
solutions set to the closest composition in the true Pareto-
optimal set. Based on [37], we identify the true Pareto-
optimal set by selecting N compositions from the union of
the obtained solutions from the EnMODE and the com-
parative algorithms. Te formula of GD is computed as
follows.

GD CS, CS
∗

(  �

�������������������


N
i�1,csi ∈ CS d

2
csi, CS

∗
( 



N
,

(11)

where CS and CS∗ represent the obtained solutions set and
the true Pareto-optimal set, respectively. d(csi, CS∗) is the
Euclidean distance from csi to the closest composition in
CS∗. Te smaller the value of GD, the better the proximity
degree.

SP [38] measures the uniformity of the obtained solu-
tions set on distribution. It is computed using the distance
variance between compositions in the obtained solutions set.

SP(CS) �

������������������


N
i�1 d csi, csj  − d 

2

N − 1
,



(12)

where d(csi, csj) represents the Euclidean distance from csi

to the closest csj, with csj ∈ CS and j≠ i.
d � (

N
i�1(d(csi, csj))/N). Te smaller the value of SP, the

more uniform the obtained solutions set.
Te size of the evaluation metrics is afected by the

number of abstract services and concrete services. Tus,
diferent parameter confgurations are given as follows: the
size of abstract services varies from 5 to 50 with a step of 5,
and the size of concrete services varies from 100 to 1000 with
a step of 100.

5.2. Analysis of Experimental Results

5.2.1. Analysis of the Proximity Problem. Figure 2 shows the
GD values obtained by the fve algorithms on 10 test cases
with diferent numbers of concrete services. From the fgure,
we can see that the GD values obtained by the EnMODE on
all test cases are smaller than the GD values obtained by
other algorithms. More specifcally, Te EnMODE has
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smaller GD values than the baseline MODE. Meanwhile, the
GD values obtained by the EnMODE on test cases of 100,
300, 400, 600, 700, 800, 900, and 1000 concrete services are
slightly smaller than those obtained by NSGA-III-DDR,
while the GD values obtained by the EnMODE on test cases
of 200 and 500 concrete services are signifcantly smaller
than those obtained by the NSGA-III-DDR. Te GD values
obtained by the EnMODE are signifcantly smaller than the
GD values obtained by the MOGP and MS-DABC. As the
number of concrete services grows, the GD values for each
algorithm increase at a slow growth rate. Te EnMODE has
the slowest rate of increase. Figure 3 displays the GD values
on 10 test cases with diferent numbers of abstract services.
Te fgure shows that the EnMODE has smaller GD values
than the baseline MODE, MOGP, NSGA-III-DDR, and
MS-DABC in all test cases. Specifcally, the EnMODE has
slightly smaller GD values on frst night test cases than the
NSGA-III-DDR. Meanwhile, the EnMODE has signifcantly
smaller GD values than the baseline MODE, MOGP, and
MS-DABC. As the number of abstract services increases,
there is a growing gap between EnMODE and other
algorithms.

Trough the experimental results on diferent test cases,
we can see that the EnMODE has better proximity in terms
of GD values by comparing the baseline MODE. It can be
seen that the EnMODE with the dual strategy and fne-
grained search can better improve the performance of the
algorithm, especially in the proximity problem.

Te experimental results on diferent test cases show that
the EnMODE has the best GD values by comparing the
competing approaches MOGP, NSGA-III-DDR, and MS-
DABC. Te reason for our analysis may be that as pop-
ulations evolve, there is less evolutionary pressure. However,
the dual strategy proposed in Section 4 provides sufcient
evolutionary pressure for the population at diferent stages.

In the early stage, the exploration ability of “rand/2/bin” is
developed with a high probability. More and more services
would be utilized to compose diferent value-added services,
which result in a more high-quality composition with
a higher chance of success. As the number of iterations
increases, “current-to-best/1/bin” is gradually utilized to
search around the potential high-quality region. Te opti-
mized information guides the exploration toward the po-
tential optimized region, which makes EnMODE possible to
converge to true PF. “rand/2/bin” is used simultaneously to
explore more new compositions. Te usage of “current-to-
best/1/bin” would be enlarged during the posterior stage so
that the creation operator uses more information to generate
high-quality compositions. Even if the search status changes
with the increase of concrete services and abstract services,
the EnMODE provides sufcient evolution pressure to re-
duce the infuence. Because MOGP, NSGA-III-DDR, and
MS-DABC ignore the evolutionary pressure, they have
worse proximity than the EnMODE.

5.2.2. Analysis of Uniform Distribution Problem. Te SP
results of each algorithm over 10 test cases for diferent
numbers of concrete services are shown in Figure 4. We can
see that the EnMODE has optimal SP values on test cases of
300, 400, 500, 700, 800, 900, and 1000 concrete services, and
the NSGA-III-DDR has optimal SP values on test cases of
100, 200, and 600 concrete services. In general, the EnMODE
algorithm has the strongest competitiveness. In contrast, the
baseline MODE, MOGP, NSGA-III-DDR, and MS-DABC
have worse SP values. As the number of concrete services
grows, the SP values for each algorithm increase, but the
growth rate of the EnMODE is less than other algorithms.
Te SP results of each algorithm over 10 test cases for
diferent numbers of abstract services are displayed in
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Figure 5. From the fgure, EnMODE outperforms its rivals.
More specifcally, the EnMODE has slightly smaller SP
values than the NSGA-III-DDR, while the MODE, MOGP,
and MS-DABC have signifcantly bigger SP values than the
EnMODE. As the increase of abstract services, the SP values
for EnMODE and NSGA-III-DDR, in general, increase at
a low rate, while the values for MODE, MOGP, and
MS-DABC increase quickly in all cases. Especially the
growth rate of the EnMODE is less than the NSGA-III-DDR.

We can conclude from the experimental results on
diferent test cases that the EnMODE has a more uniform
distribution in terms of SP values by comparing the baseline
MODE. It can be seen that the EnMODE with the dual
strategy and fne-grained search can better improve the
performance of the algorithm, especially in the uniform
distribution problem.

From the experimental results, we also conclude that the
EnMODE has the best uniform distribution in terms of SP
values. We also found out that the numbers of concrete
services and abstract services would infuence the sizes of SP
values. Still, the EnMODE has a narrower range of variation
in SP values than other algorithms. As stated in Section 4, the
reference vector neighbor search uses two-stage clustering to
downsize the problem and then conducts a fne-grained
search. Te frst stage of clustering divides the non-
dominated compositions under the guidance of the refer-
ence vector to cause similar and distinct compositions to
gather. Te second stage of clustering assembles similar and
distinct dominated compositions around the elites in the
frst stage. Two-stage clustering achieves natural-organized
decomposition. A cyclic selection is used to make the dis-
tribution of the new generation close to the true PF evenly.
Even if the sizes of concrete services and abstract services
grow, the EnMODE provides a fne-grained search to make
the distribution of the obtained solutions set over the whole

extent of the current PF more uniform. Te reason why the
NSGA-III-DDR algorithm has slightly poor uniformity may
have a good distance dominance relationship. Te MOGP
and MS-DABC achieve an evolutionary process by the ge-
netic operators, which makes them difcult to make the
solutions set close to the true PF evenly.

5.3. Summary of Results. Based on the evaluative results of
the experiments, we have verifed that the EnMODE algo-
rithm fnds a smaller set of solutions with better proximity
and distributivity. Compared with MODE, NSGA-III-DDR,
MS-DABC, and MOGP, the reference vector neighbor
search gives EnMODE better proximity and distributivity. In
addition, with the increase of concrete and abstract services,
the infuence of EnMODE is less than other algorithms.

6. Conclusion and Future Work

Tis paper proposes a novel multi-objective diferential
evolution algorithm as the search scheme. Te proposed
approach implements the natural-organized decomposition
of MOP, and guides the search of multiple sub-problems
around the active reference vector and high-quality non-
dominated compositions. Experimental results verify that
the proposed approach is more likely to fnd a representive
set of solutions with proximity and distributivity.

Tis work is expected to investigate the impact of the
number of QoS objectives on the optimization problem of
MOSC. Furthermore, the proposed approach is improved to
adapt to the workfow change.

Data Availability

Te experimental data used to support the fndings of this
study are available upon request to the author.
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