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Abstract—Optimizing the Quality-of-Service (QoS) levels of
a service workflow is essential for the user satisfaction in
Service-oriented Computing. For that purpose, QoS computa-
tion models are applied to reflect the actual QoS experienced
by the user during service execution. Current QoS models
ignore the possible dependencies of QoS attributes, such as
the dependency on the time of the execution or on the input
data supplied to the service. Apart from that, composition
approaches consider only single workflows during service se-
lection, narrowing the number of possible compositions. Thus,
we introduce a novel QoS model that covers QoS dependencies
and discuss how this model can be used to consider multiple
workflows at the same time. Moreover, we adopt a multi-
objective optimization approach to offer solutions varying in
QoS such as finishing time and price, allowing the user to make
fine-grained decisions.

Keywords-QoS dependencies, QoS-aware Service composi-
tion, multi-objective optimization

I. INTRODUCTION

Services are re-usable, interoperable components that encap-
sulate well-defined business functionality. Service-oriented
Computing (SoC) facilitates the development of software
by discovering and combining these services in a loosely
coupled way [1], resulting in workflows like in Fig. 1.
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Figure 1: Two example workflows that both provide the
retrieval and compression of movie files. Sij refers to
services and Ti to service tasks

A. Quality-of-Service

In order to achieve user satisfaction, both the functional and
non-functional requirements [2] have to be considered when
selecting services for a workflow. Non-functional properties
are expressed by Quality of Service (QoS) attributes, such

as price, finishing time, compression rate, etc. The QoS
of a composition are the aggregated QoS of the individual
services according to the workflow patterns [3]. The user
specifies constraints on the QoS in order to limit possible
solutions. The appropriate matching of user requirements
and available services is one of the major factors of user
satisfaction [4].

Service providers declare the QoS attributes of their
services as fixed values in a Service Level Agreement (SLA).
These values for example define the price of the service or
guarantees a maximal response time.

B. Time- and Input-Dependencies

Certain mandatory aspects cannot be described by a single
value though. Consider for instance a time-dependent [5], [6]
pricing model for the “compress movie” service of Fig. 1,
illustrated in Fig. 2a. Invoking the service during business
hours is more expensive then invoking it during weekends.
Moreover, the price might dependent on the release date of
the movie for service “retrieve file”, as shown in Fig. 2b. If
we want to watch the movie right after its release we have to
pay more. As a consequence, the user has several choices to
execute the service, resulting in varying costs and finishing
times of the services. Table I illustrates resulting solutions
of the scenario using the time-dependent pricing model of
Fig. 2b.
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Figure 2: Time-dependent pricing models for the two exam-
ple services S22 and S12

Apart from that, more general dependencies between the
QoS values of interacting services are possible. For instance
the fee of “compress movie” might depend on the amount



of data generated by the service “retrieve file”. Inter-service
dependencies are considered as one central issue in service
computing in [7].

C. Multi-Objective Approach

In reality, QoS such as the price and response time tend to
be anti-correlated among the services. Therefore, in most
cases no single selection of services exists that dominates
all other solutions in terms of QoS. In order to select one
solution automatically, usually single-objective optimization
is applied, aggregating the QoS into a single utility value.
However, in this case the user is forced to precisely define
his QoS preferences beforehand, require time-consuming
methods such as the Analytical Hierarchical Process [8].
Moreover, including QoS dependencies, the number of deci-
sion variables and possible solutions increases even further.

Solution Finished by Costs Reliability
Solution 1 Today 10$ 99%
Solution 2 Today 5$ 95%
Solution 3 Saturday 5$ 99%
Solution 4 Saturday 1$ 95%

Table I: Example solutions for the workflow schemes of
Fig. 1, computed by a MOO algorithm

Thus, we employ a multi-objective optimization approach,
which computes a set of relevant solutions. In [9] we have
introduced a graphical tool that lets the user visualize and
compare possible solutions. This way, the user can choose
the solution with the best trade-off.

In contrast to related approaches, our approach also con-
siders multiple workflow schemes. For that purpose, we
encode planning decisions as input variables in our opti-
mization approach. This way, QoS aspects can be integrated
with composition planning.

D. Contributions

In this paper we present the following contributions:
1) We motivate and present a QoS model to cover time-

and input-dependent QoS attributes.
2) We leverage a data-structure to consider alternative

workflow templates in a service composition.
3) We solve the extended service composition problem by

applying an evolutionary algorithm. For that purpose,
we show which modification are necessary to encode
the composition problem as a genome.

4) We determine suitable parameters for the evolutionary
algorithm, and point out possibilities to further im-
prove the algorithm.

II. PRELIMINARIES

In this section we briefly present the preliminaries of this pa-
per. First, we discuss services and service-level agreements.
Next, we describe workflows and algorithms to compose

workflows automatically. Finally, we discuss algorithms that
are used to optimize the QoS of a workflow, in particular
multi-objective optimization algorithms.

A. Services & Service Tasks

Service providers specify both the functional and non-
functional properties of their services in a Service-Level
Agreement (SLA). Functionally equivalent services are
grouped in service tasks and non-functional properties, QoS,
can be used to differentiate between those services. QoS
are either discrete or continuous, numerical or textual. In
order to deal with QoS in a unified manner, we treat QoS
as continuous, numerical values, possibly by performing
some transformation. In this paper we consider the price
per service invocation, the time needed to return a response,
and the reliability of a service.

In addition, there can be many other QoS, which can
be domain specific, such as the compression rate or an
approximation ratio. Service providers either define exact
values, for e.g. the price, or an upper or lower bound, for
e.g. the response time. In this paper, we further consider
functions to compute more complex QoS, for instance a
time-dependent pricing model.

B. Workflows & Workflow Templates

Service workflows consist of a set of services that are in-
voked to carry out a certain purpose. The workflow describes
the dataflow between the services by defining service links.
If a service link exists between services S and S′ then S
provides output to service S′. Obviously, service S has to
be invoked and return a result before calling S′. In other
words, service links define a partial-ordering regarding the
execution time of the services.

Workflow templates contain service tasks instead of ser-
vices, therefore only the dataflow is defined but not the
concrete services. This way, QoS optimization algorithms
can customize the workflow to meet the non-functional
requirements of the users. The two workflows in Fig. 1
are workflow templates. In order to obtain an executable
workflow, we choose one service Sij for each task Ti.

Users usually define certain preferences towards the QoS
values, and some QoS constraints, e.g. a maximum price for
the workflow.

C. Service Composition

Service composition is applied to select services automati-
cally on behalf of the user to carry out a certain purpose.
Generally speaking, two general approaches have emerged
in the past years to realize service composition: service
planning and service selection.

1) Service Planning: In service planning an AI planning
algorithm usually starts from scratch, combining existing
services to a workflow. In [10] several service planning
approaches applied to SoC are discussed.



In this paper we employ Hierarchical Task Network
(HTN) planning where the planning problem is initially
described as a compound task. Compound tasks are split up
by decomposition rules into smaller sub-tasks or primitive
tasks that correspond to services tasks. Since multiple de-
composition rules might be applicable at the same time, the
main task of the planner is to select one decomposition rule
for each compound task until only primitive tasks remain.

2) Service Selection: In contrast to service planning,
service selection refines workflow templates to executable
workflows. QoS-aware selection algorithms choose for each
service task one single service in a way that the QoS of the
workflow are optimized and constraints are met.

Usually workflows are internally represented by a tree
structure. Inner nodes are either sequences, AND/OR
branches, or loop nodes. The leaf nodes of the tree are the
service tasks. Using this representation the computation rules
in [11, Table 1] can be applied to compute the QoS vector
F (x) =

(
f1(x).f2(x), . . .

)
of the entire service selection.

Each of the fi(x) yields a certain QoS of the workflow.
Most approaches scale the QoS between [0, 1] [12] and then
aggregate the vector to a single utility value µ by applying
e.g. a weighted sum:

µ
(
F (x)

)
=

n∑
1

wi · fi(x)

where wi are the preferences of the user towards the QoS.

D. Multi-objective Optimization

Instead of aggregating the QoS values into a single utility
value, in multi-objective optimization a dominates relation is
considered: a service selection x dominates another selection
x′ if all objective functions fi(x) yield at least the same
value as fi(x

′) and is strictly better for at least one i.
Therefore, the dominates relation defines a partial-ordering
on the selections. The set of non-dominated solutions is
called the Pareto-optimal set of the solution space. Multi-
objective optimization algorithms are applied to compute
approximations of this set.

III. RELATED WORK

In this section we review related service composition algo-
rithms and related works in multi-objective optimization.

A. Service Composition

As pointed out in Section II, we categorize service compo-
sition approaches into service planning and service selection
algorithms. We will compare our approach with algorithms
from both categories in the following.

1) Planning-Based Service Composition: Sirin et al. suc-
cessfully demonstrate the application of HTN-planning to
compute workflows automatically in [13], using the HTN
planner SHOP2. However, they do not consider QoS aspects.

For that purpose, Chen et al. [14] extend this approach
to optimize QoS during the planning phase. Similar to our
approach, a number of feasible plans are generated, and an
optimal plan regarding the expected utility is generated by
solving a Markov decision process. However, since possible
decompositions are pruned depending on static threshold
values, a Pareto set cannot be obtained or approximated.

Kalasapur et al. [15] introduce a framework for service
composition in pervasive computing. Their service model
was a partial archetype of our service model. The authors put
more emphasize on the semantic integration of services, and
their service composition relies on a shortest path algorithm.
Thus, they only find a single solution.

In [16] we apply a cluster algorithm to determine services
with the same purpose to detect backup services and prune
the solution space of the planning tool. This way, QoS
optimization algorithms can be employed after a workflow
template is fixed. Therefore, alternative templates cannot be
explored, like in approach presented in this paper.

2) Selection-Based Service Composition: The optimal
service selection cannot be computed in feasible time for
complex service workflows [11]. For that reason, heuristic
algorithms such as [17]–[19] are used to solve the selection
problem. The approach described in [20] extends the service
composition problem by introducing functional inter-service
dependencies; certain service combinations are declared as
not feasible. In our setting, inter-service dependencies only
concern the QoS attributes.

All presented selection approaches only optimize an
aggregated QoS utility value. Therefore, the user cannot
compare candidate solutions with different QoS trade-offs
against each other.

In summary, service selection algorithms narrow the num-
ber of possible solutions as they can only consider one
workflow template. Our approach provides more flexibility
as it picks an appropriate workflow template depending on
the QoS preferences of the user. Compared with planning
approaches, our approach computes a set of non-dominated
solutions. Apart from that, non of these approaches consid-
ered service-dependent QoS.

B. Multi-objective QoS-aware Service Composition

In [21], [22] genetic algorithms are employed for multi-
objective optimization. Wiesemann et al. [23] introduce a
multi-objective stochastic programm to consider risk during
the service composition process, which is not a trade-off be-
tween QoS attributes, but the worst-case risk functionals for
execution time and total costs. In [9] we apply an extension
of the NSGA-II algorithm that considers functionally diverse
services.

None of these approaches consider alternative work-
flow schemes within complex services or time- or input-
dependent QoS.



IV. APPROACH

Our approach consists of three steps: first, we model the
problem by using a Hierarchical Workflow Graph (HWG).
This way, we can treat alternative workflow schemes in
an unified manner. Next, we use the HWG to determine
time- and input-dependent QoS. Finally, we compute a set of
feasible solutions of the HWG by employing an evolutionary
multi-objective optimization algorithm.

A. Hierarchical Workflow Graph

In [5] we extended the service workflow model by Kalasupur
et al. [15] by introducing complex service nodes in order to
consider alternative workflow schemes. A workflow scheme
is defined by a directed acyclic graph (DAG) w = (S,D)
where the vertex set S represents the services and the edge
set D describes the input/output relations between services.
If an edge d = (SA, SB) ∈ D exists, then service SB
requires data from SA. Thus, service SA has to finish, before
invoking service SB . In the following, we will refer to
service SA as being parent of SB .

T0 T1 T1 T2

T3

T4

T5

C1 C2

UR

S0 S11 S12 S21 S22 S23

S31 S41 S42 S43 S51 S52

Start End

Implements
Depends

Provides

Figure 3: HWG of the scenario of Sect. I, including an
optional Task T0 used for encrypting the content. Ellipses
indicate complex services and user requests, circles are
atomic tasks and services. Rectangles are workflow schemes.

Similar to HTN planning, a workflow scheme can contain
three different types of services:

1) A user request (UR) that describes the functionality
of the requested workflow by the user.

2) A complex service c that can be realized by one or
more partial workflow schemes.

3) An atomic task t that can be realized by one or
more concrete services. All services provide the same
functionality.

Fig. 3 illustrates the HWG for the example of Section I.
By using complex services, alternative workflow schemes
are selectable. For instance, in the c1 node an additional
task T0 can be invoked that provides encryption of the input

data. This decision depends on the QoS preferences of the
user since invoking this task will increase the response time
and probably the price but also increase the security QoS.

The structure was originally defined for modelling man-
ufacturing problems and is called Hierarchical Precedence
Graph [24]. However, for the composition problem the term
Hierarchical Workflow Graph (HWG) is more appropriate.

B. QoS Dependencies
In general, we distinguish between two impact factors on
the QoS of a service:
• the time of the invocation, e.g. time-dependent pricing

models (cf. Fig. 2) or response times that depend on
the server load.

• the QoS properties describing one or more input pa-
rameters, e.g. encryption strength or the amount of data
sent to a storage service.

As mentioned in Sect. I, the dependent QoS of a service
cannot be modeled by a static value in the SLA. Therefore,
we model QoSiS for each attribute i of a service instance S
by a set of functions FQoSi

S
, shown in Equation 1.

QoSiS = FQoSi
S

(
tS ,
−−→
QoSP1

, . . . ,
−−→
QoSPn

)
(1)

tendS = tS + Fts
(
tS ,
−−→
QoSP1

, . . . ,
−−→
QoSPn

)
(2)

The value tS refers to the start time of service S and
P1, . . . , Pn are the direct predecessors of S in the workflow,
i.e. all parent service nodes in the HWG. Since the parent
nodes depend on the actual workflow scheme, the functions
depend on the selected scheme as well. As a shortcut, we
define

−−−→
QoSS = (QoS1

S , ..., QoS
n
S) as the tuple containing

all QoS of S. A special case is the end time tendS of the
service (cf. Eq. 2), which is computed with the function
FtS . In Fig. 4, the QoS dependencies are visualized for the
example scenario.
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Figure 4: Considering the QoS interdependencies on S51 of
the scenario, taking the price QoS1 and the response time
QoS2 into consideration



Examples: Apart from the price and response time,
the functions FQoSi

S
are used to cover any dependent QoS

attribute. In the following, we show three examples of the
FQoSi

S
function:

1) A data storage service: the price depends on the size
of the received file (cf. Eq. 3)

2) A sorting service: the execution time is estimated by
the average run time in dependency on the number of
received records (cf. Eq. 4)

3) A hotel inquiry service: the expected number of avail-
able rooms depends on the destination, check-in-date
(provided by the user), and start time tS (cf. Eq. 5)

The corresponding FQoSi
S

are as follows:

QoScostS = price per byte ·
∑
i...n

QoSfilesizei (3)

QoStimeS =
∑
i...n

QoS#recs
i · log

(∑
i...n

QoS#recs
i

)
(4)

QoS#rooms
S = E(#rooms | check-in-date, tS , dest.) (5)

For a complex service c the functions FQoSi
c

are not explic-
itly defined, but derived recursively from the services within
the selected workflow scheme. This is done in three steps:

1) Each child service of the workflow source inherits the
parent values QoSis of the complex service

2) The workflow is instantiated during the composition
and the QoS of the services are determined

3) Aggregation functions defined in [11, Table 1] are used
to determine the QoS values of the complex services

The start time parameter tS in F iQoSs
of a service S is a

relevant decision variable, since by delaying the execution
of a service, certain QoS attributes can be manipulated.
Obviously, even on a limited discrete time-horizon the num-
ber of possible start times can be very high and drastically
increase the number of feasible composition plans. However,
the relationship between start time and service quality is
expected to follow certain schemes. Figure 2 shows the two
expected schemes of time-dependent QoS attributes.

In the repeated pattern scheme (cf. Fig. 2a) we assume
that the same sequence of QoS values is repeated after a
certain number of periods. For instance, this pattern can de-
scribe service execution prices or the availability depending
on the daytime or weekday.

Applying the saturation scheme (cf. Fig. 2b) we expect
the QoS values to constantly move towards a worst value and
finally converge to that value. This scheme is appropriate to
describe the availability of physical services and goods, e.g.
such as hotel rooms depending on the time until check-in.

Both schemes can be used to reduce the number of
start times we need to consider. Given the repeated pattern
scheme, delaying the starting time within the length of a
sequence will not result in a new QoS value. As well, given
the saturation scheme a delay beyond the saturation period

does not result in a new QoS value. Given several time-
dependent QoS values of a service S, the lowest common
multiple of the period length or the distance to the saturation
point is sufficient to cover all relevant start times of S.

The considered QoS attributes define an n-dimensional
evaluation vector ev that is used to compare composition
plans. The dominance criterion is applied to identify a
relevant set of composition plans which should be presented
to the user. If CP is the set of feasible composition plans
given the HWG and the set of service providers, the set
of Pareto-optimal evaluation vectors ev ∈ EVp meets two
conditions: there is not evd that dominates ev and there is
at least one feasible composition cp in CP ev = evcp.

C. Multi-Objective Optimization

In the optimization phase, three types of decision variables
are taken into account:
• select a workflow scheme for each complex service c
• select a concrete service for each atomic task T
• determine a valid starting time for each service S

The objective vector contains the QoS of the resulting
workflow and the expected end time. In most cases, the
objectives are anti-correlated, i.e. are optimized in opposite
directions. Consider for instance Table. I. If we insist on
a prompt execution or want to improve the reliability of
the workflow, the price will increase. Therefore, no single
solution exists that dominates all other solutions. In these
cases, the user picks the solution that fits his needs best.

For that purpose, MOO algorithms are used to compute a
set of feasible solutions that are not dominating each other.
The decision variables of the workflow are encoded as a
genome and then a number of evolution steps are performed.
In each generation, the genomes are mutated, joined by a
crossover operator, and selected. In the end, a set of non-
dominated solutions is retrieved and presented to the user.

1) Encoding a workflow as a genome: In order to reflect
the three types of decision variables, the genomes are split
into three sub sequences, each representing one type of
variable. All decision variables are from a discrete and
finite set. Figure 5 illustrates the structure of the genome.
Basically, each gene in the genomes encodes one selection.

Due to the form of the saturation scheme, the number of
relevant start times depends on the earliest possible start time
of a service, and thus, on previous composition decisions.
Therefore, a static set of integers (referring to the start
times) is not sufficient. Instead, real valued variables are
used to select the workflow scheme, service provider, and
the start times from the actual available sets. This way,
standard algorithms and operators for mutation, crossover,
and selection are applicable.

2) Determining the start times of the services: Determin-
ing the start times of the services is a crucial task during
the optimization phase. Each start time is constricted by the
preceding services. In order to determine the earliest possible
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example and just shown for the sake of completeness. Gray
nodes indicate invalid/disregarded values.

start time of each service, we maintain the following four
lists of services:

1) Composition: Composition plan with the selected
services, service providers, and start times.

2) Ready: Operations that can be included into the
composition plan. All preceding services of these
operations are contained in Composition.

3) Open: Services that cannot be included yet into the
composition, since at least one preceding service is
not contained in Composition.

4) Wait: Complex services that have been selected, but
are not entirely included in the composition plan.

In each iteration, one service Si from the Ready list is moved
to Composition. In case Si is an atomic service, a service
provider and a start time is determined. All directly suc-
ceeding services from Open are updated. If a child service
Sc of Si is ready (all parents are included in Composition)
the service is moved to Ready. In the update step, the QoS
values of Si are forwarded to the child services Sc in order
to determine the

−−→
QoSxi . If Si is a complex service, it is

moved to Wait instead and a workflow implementing Si is
selected. The source of the workflow is moved to Ready,
and all its child services are moved to Open.

3) Computing the solution set: We apply a genetic al-
gorithm (GA) to compute a set of feasible solutions. GAs
initially generate a set of candidate solutions, encoded as
genomes. In each iteration, an offspring population is created
by applying a select, crossover, and mutate operator. The GA
terminates either after a fixed number of generations or if
the fitness of the top genomes converges.

In this work we use the non-dominated sorting genetic
algorithm II (NSGA-II) [25], employing binary-tournament
selection, simulated binary crossover (SBX), and uniform
distribute mutation operators. Binary-tournament selects so-
lutions depending on (a) constraint violation, (b) dominance,
and (c) distance to the population. SBX defines a spread
factor β that is defined as the ratio of the distance between

the real number representation of the offspring to the real
number representation of the parents. This way, an one-point
crossover for binary encoded genomes can be simulated
since the offspring tends to be similar to their parents. Each
objective has to be minimized.

V. IMPLEMENTATION AND VALIDATION

We have implemented our approach in the jMETAL 3.1
framework [26]. In the following section we want to de-
termine by experiment the parameters that yield the best
results in terms of utility and performance. Therefore, we
compare various probabilities for applying the mutate and
crossover operators since these values have a strong impact
on the performance of an evolutionary algorithm.

For the experiment, HWGs are randomly generated based
on five different workflow templates, containing three to five
free slots. These templates are filled with complex services
and 100 different atomic tasks, containing between 3 and
10 concrete services. The percentage of creating a complex
services is set to 40% for services of depth 1, 25% for
services of depth 2, and 10% for services of depth 3.

Each service is associated with four QoS values: reliabil-
ity, execution time, price, and a general quality value. This
quality value indicates the general quality of the service.
Since we assume that services belonging to the same task
will have similar QoS values we first generate a random
mean value for a task for each QoS and then assign random
values with a possible deviation between 30% below and
30% above to each service. The reliability is generated
between 0.85 and 0.9 and the execution times between 8
possible periods. The other two attributes vary for each
service from 0.0 to 1.0.

When adding an atomic service to the workflow, QoS
dependencies are generated. As we regard the reliability and
execution time of services as independent values, only the
price and the general QoS value are considered as dependent
values. These two values depend on one or more preceding
services. All other parent services have an impact with
probability 30%. The dependent QoS attributes of a service
S are modelled according to Eq. 6, where BaseiS is a basic
value for QoSiS , f is a factor between 0 (parent irrelevant)
and 0.3. The direction of the influence (±1) is chosen with
50% probability.

FQoSi
S

(
tS ,
−−→
QoSP1 , . . . ,

−−→
QoSPn

)
=

= BaseiS︸ ︷︷ ︸
Base QoS of S

+

n∑
j=1

±1 ·QoSiPj
· f︸ ︷︷ ︸

Impact of the parent nodes

(6)

In total, a time horizon of 7·24 = 168 periods is considered.
The pattern length for time-dependent QoS values varies
between 5 and 20 periods. Finally, several QoS constraints
are applied: the minimal reliability is set between 0.85 and



0.93, the maximal total execution time between 118 and 168
periods and random constraints on the two other QoS values.

In order to compare different settings, we test 30 HGW
problem instances with different settings for the probabilities
of the mutate and crossover operator (0.1, 0.4, 0.7, 0.95),
resulting in 16 different configurations. Each setting is
executed 30 times and repeated 5 times to falsify outliers.
The initial population size was set to 80, evolving for 300
generations.

Due to the complexity of the problem, even for small
problem sizes the optimal solution cannot be computed in
feasible time. Therefore, we compute an approximation of
the ideal solution in order to compare and evaluate the com-
puted solution sets of the algorithm. For that purpose, in each
run the best results of each QoS dimension are combined in
a single vector. We compare two computed result sets N and
M based on a modified epsilon indicator [27], determined
by the following equations:

ε1 = min
ε∈R

(
∀n ∈ N . ∀m ∈M . ∃i ∈ QoS .

ni < mi(1 + ε)
)

ε2 = min
ε∈R

(
∃n ∈ N . ∀m ∈M . ∀i ∈ QoS .

ni < mi(1 + ε)
)

The basic idea is to multiply the objective vectors of all
solutions in S2 with a scalar (1 + ε) until none of the solu-
tions S1 is dominated. The epsilon values were calculated in
reference to the ideal solution and the best solution found.

In Fig. 6 the average epsilon values for varying crossover
and mutation probabilities are shown. We conclude that
a rather high crossover probability is important to achieve
fast progress in the first generations and mutation has only
a minor effect. However, with progressing generations, the
difference between the crossover probabilities of 0.7 and
0.95 becomes smaller. At this step, a high mutation rate
is mandatory to achieve further improvements. Considering
that the crossover operation consumes up to 35% of the
CPU time in dependency of the chromosome length, this
indicates the necessity to adjust the probabilities once the
improvements start to slow down.

εi εb FFavg FFmax No solution
NSGAII 0.27 0.40 3 70 4%
Random 0.57 0.63 31 300 13%

Table II: Comparison of Random Search and NSGAII

Table II shows a comparison of the results of the best
parameters for the NSGA-II algorithm and the baseline
random search. The NSGA-II dominates the baseline in all
relevant criteria. The epsilon values refer to the comparison
with the ideal point (εi) and the best solution (εb) in the last
generation. Due to the difficulty of comparing to an empty

set and the higher number of failed optimization runs of the
random search, the epsilon values favor the random search.
FFavg and FFmax give the average and maximum number
of generations in which the first feasible solution was found.
The average CPU time per generation1 was 40ms for the
genetic algorithm and 15ms for the random search.

VI. CONCLUSION

In this paper we have motivated the problem of service
composition in the context of time- and input-dependent QoS
values. By considering these values, complex interactions
between services can be modeled and the QoS values of
the resulting workflow can be determined. However, such
dependencies increase the complexity of the service com-
position problem and hinder the users’ ability to define a
single objective function describing his QoS preferences a
priori. Thus, we have applied multi-objective optimization
(MOO) to present the user a set of feasible solutions. In
order to solve the MOO problem we have employed a
genetic algorithm (GA) and discussed how to encode the
problem as a genome. Moreover, we have determined by
experiment suitable parameters and also pointed out how to
further optimize the performance of the GA.

Future work concerns the completion of the approach
towards a holistic system for service composition. This
includes a framework that derives QoS dependencies from
past execution logs, and also provides means to define these
dependencies. Apart from that, users should be able to define
their time preferences in more detail. For instance, a user
might consider all possible finishing times of a workflow as
equally good until a certain point in time. Furthermore, a
suitable selection interface has to be developed, similar to
the interface presented in [9].

ACKNOWLEDGEMENTS

The work of Florian Wagner is partially supported by the
KDDI Corporation. Adrian Klein is supported by a Research
Fellowship for Young Scientists from the Japan Society for
the Promotion of Science.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,
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