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ABSTRACT

During the initial stages of iterative design process, a quick CAE (Computer-aided Engineering) analysis
of the CAD (Computer-aided Design) models is needed. To reduce the computational resources and
time needed for such analysis, the models are often simplified by removing the irrelevant details
and are abstracted by reducing the dimension, wherever appropriate. Thin-walled parts, such as sheet
metal parts are often abstracted to a set of surfaces lying midway, called mid-surface. The mid-surface
is expected to mimic the shape of the original solid, both geometrically and topologically. Widely-used
methods of accessing the quality of the mid-surface are geometric. Hausdorff distance from the mid-
surface its original solid is computed to find the gaps and medial-ness. Accuracy of such methods
depends on the sampling as well as on the complexity of the surface representation, making them
computationally intensive and error-prone.

This paper provides a topological method for verification, which is computationally simple and
robust. A novel topological transformation relationship has been derived between a sheet metal part
(solid) to its mid-surface (surface), in both directions (solid-to-surface and surface-to-solid) which can
be used to compare the predicted vs actual entities. Simple as well as practical shapes have been tested
to prove the efficacy of the newly-derived formulation.

Keywords: CAD, CAE, topology, Euler characteristics, Betti numbers, sheet metal parts, mid-surface,
cellular decomposition

1. INTRODUCTION

Mid-surface is an abstracted representation of a thin-
walled solid, used mainly for creating shell elements
in the CAE meshing process. It can also be used as
a shape-signature in shape matching/retrieval. It is
expected to express the contiguous flow of the solid’s
shape [15]. So, to be truly effective, the mid-surface
needs to mimic the original solid, in both, geometrical
and topological sense. Geometrically, the shape of the
mid-surface should be such that it lies in the middle
(at half the thickness) of the solid. Topologically, the
connectivity between the mid-surface patches should
be similar to that of their corresponding sub-shapes
in the original solid.

There are a large number of methods to compute
the mid-surface. They work on different input types
of the original solid, such as, faceted mesh, Boundary
Representation (Brep) solids, feature-based CAD mod-
els, etc. Quality of the output mid-surface depends on
the shape-characteristics of the original thin-walled
solid.

1.1. Thin-walled Solids

Many thin-walled solids are from the sheet metal
domain. These are unique in both, geometrical and
topological sense. They are characterized by:

• Constant thickness: Sheet metal parts are made
up of constant thickness blank roll.

• Absences: There are no blind holes but only
through holes, if any.

• Degeneracy: There are no degenerate capping
thickness faces (like “Wedge”).

• Cavities: There are no embedded volumes or
cavities (“bubbles”).

Quality of the output mid-surface depends on
the complexity of the original solid. The topologi-
cal validation method for the mid-surface developed
in this work has been devised for solids exhibiting
sheet metal shape characteristics. Such thin-walled
solids, with constant thickness, pose lesser problems
in the computation of the mid-surface as well as in
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the validation of the mid-surface, than the ones with
variable thicknesses. Although the validation method
mentioned in this work is derived for constant thick-
ness solids, it can be extended to thin-walled parts
with variable thickness as well, e.g., injection-molded
plastic parts having drafts. Shape with or without
draft angle are topologically the same, so the formu-
lation developed in this work applies equivalently.

Many of the commercial sheet metal CAD modelers
represent the thin-walled shape using a data-structure
called Boundary Representation (Brep). Section 2 pro-
vides the characteristics of Brep and its classification
into manifold and non-manifold representations. In
this work, the term ’manifold’ refers to an object
which is bound, closed and homeomorphic to a topo-
logical sphere (also known as 2-manifold), whereas
’non-manifold’ object does not have such restric-
tions of closure and completeness. This work uses
’non-manifold’ mainly for surfaces, unless stated oth-
erwise.

1.2. Mid-surface Computation

Mid-surface computation has been a widely-
researched topic and there are many methods such as
Medial Axis Transform, Chordal Axis Transform, and
Mid-surface Abstraction, etc. [18]. Out of these, very
few are based on the explicit shape transformation
operators.

Sheen et al. [17] used the deflation process to com-
pute mid-surface from a solid. Their algorithm did
not change the topology but just reduced the cap-
ping entities to zero size. The problem with such
an approach could be that the degenerated topology
would be potentially detrimental to the downstream
modeling operations.

Lee [10] proposed topological operators to trans-
form a sheet of solid topology into a thin-walled solid
by face geometry replacement. However, this method
could pose difficulty in representing the adjacency
relationships.

Even after extensive research in the academic
domain and wide availability in commercial imple-
mentations, mid-surface quality is still a concern. It
suffers from errors like gaps, overlaps, missing sur-
faces, etc. Validating the output mid-surface is a criti-
cal step in assessing the quality, after which corrective
actions can be taken.

1.3. Mid-surface Validation

To verify the quality of the mid-surface, the following
methods are used:

• Manual: Manual inspection for errors such as
missing surfaces, connection gaps, overlaps, etc.
One needs to ensure that the mid-surface lies
midway and is continuous throughout, espe-
cially at the connections and steps. This method

is obviously tedious, time-consuming and error-
prone.

• Inspection Tools: Tools provided in the CAD-
CAE packages can detect gaps and overlaps
but they cannot detect the correctness of the
mid-surface at critical locations, such as con-
nections and steps, where expectations could be
subjective.

• Geometric Tools: Hausdorff distance from the
mid-surface to its original solid is computed.
Accuracy of such methods depends on the sam-
pling as well as on the complexity of the surface
representation, making them computationally
intensive and error-prone.

• Topological Validation: This involves compar-
ison of a number of predicated topological
entities with the actual ones, and if there is
a mismatch, the problem is detected. Here,
the geometry of the shape is ignored. It has
an advantage over geometric validation since
computationally-intensive distance calculations
are not performed.

This work proposes a novel method for the topo-
logical validation of mid-surface of thin-walled solids.

1.4. Topological Validation

Topological validation proposed in this work pro-
poses two transformations with which the quality of
a mid-surface can be assessed. First, solid-to-surface,
where, the dimension-reduction transformation equa-
tions are applied to the thin-walled solid to predict
the topological entities of the corresponding mid-
surface and then compared with the actual topolog-
ical entities of the output mid-surface. In the sec-
ond approach, surface-to-solid, dimension-addition
transformation equations are applied to the output
mid-surface to predict the topological entities of the
corresponding thin-walled solid, and then compared
with the actual topological entities of the thin-walled
solid.

The validation method presented in this work can-
not be used in isolation from geometry. As the mid-
surface is applicable only for the thin-walled solids,
it is not computed and validated using this method
for thick solids. But such differentiation of the solid-
shape, being thick or thin, is ’geometrical’ and not
’topological’, which this method itself cannot detect.
So, the work presented below should be used only for
the known thin-walled solids for which mid-surface
are computable.

Use of topology for assessing the quality of mid-
surface is not widespread and there are very few such
attempts reported in the literature.

Lipson [13] stated that a topological invariant for
all the sheet metal parts and thin-walled objects
can be used as a necessary condition for topological
validity and reasoning.
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Lockett and Guenov [14] used both geometric and
topological variants for checking the validity of the
mid-surface. For geometric validation, they used the
Hausdorff distance between a mid-surface and its
corresponding principal faces (pairs). For topological
validation, they used proximity groups adjusted by an
angle criterion. The main limitation of their approach
appears that the geometric criteria (closest distance
proximity or angle between faces) are used in the
topological validations, which, ideally, should not be
the case.

Apart from CAE, skeletal structures such as mid-
surface are used in CAD model comparison solutions
such as shape-based retrieval, similarity assessment
and difference identification [3]. Skeletal graph match-
ing is one of the prominent techniques [7] used for
similarity assessment. A topologically-valid midsur-
face represents sub-shape connectivity better and
thus acts as more effective shape-signature in the
model comparison.

The work presented here, provides with trans-
formation relations and a topological variant, based
purely on the combinatorial topology for determining
the validity of a midsurface computed from a sheet
metal part.

2. PRELIMINARIES

2.1. Boundary Representation (Brep)

Brep is composed of two parts: topology and geom-
etry. Topological elements are shells, faces, edges,
vertices, etc. They are mentioned in the descending
order of the topological dimensionality:

• shell (s) is a connected set of faces.
• face (f) is a bounded portion of a surface (geom-

etry).
• loop (l) is a circuit of edges bounding a face.
• half-edges (he) are used to create a loop.
• edge (e) is a bounded portion of a curve (geome-

try).
• vertex (v) lies at a point (geometry).

Validity of the Brep model is checked using the
Euler-Poincaré equation.

2.1.1. Euler-Poincaré equation

Euler’s equation for polyhedral solids is:

v − e + f = 2

where, v, e, and f represent the number of vertices,
edges and faces respectively. It was discovered by
Leonhard Euler in 1752 and was later generalized by
Lhuilier [9] as follows:

v − e + f = 2 − 2g

where, g represents genus, the number of holes h
or handles (g and h are considered interchangeable

in this paper). Later on, Schläffi and Poincaré also
generalized the formula to the higher dimensional
n-polytopes.

The Euler characteristic (χ ) for combinatorial cell
complexes or polyhedral solids is defined as follows:

D∑

i=0

(−1)iNi =
D∑

i=0

(−1)iβi = χ (1)

For dimensions up to 3 (i = 3), equation (1)
simplifies to

No − N1 + N2 = β0 − β1 + β2 (2)

where, Ns are topological entities of the dimension
0, 1 and 2 respectively and βs are Betti Numbers. β0,
β1 and β2 correspond to the number of connected
components, holes and cavities, respectively [16].

Two homeomorphic topological spaces will have
the same Euler characteristic and Betti numbers.

Most of the CAD models are made up of solids
(manifolds), since they are considered to be com-
plete and having their own volumes. A manifold-solid
model can only represent one closed volume minus its
internal structure. It cannot represent heterogeneous
possibilities such as wires (curves), sheets (surfaces),
and solids (volumes) together, which although, are not
possible in the real world, but are possible during the
intermediate stages of design [26]. A non-manifold
model is a generic modeling framework which encom-
passes all these items in a single framework [12].

The Euler characteristic (χ ), in terms of Betti
numbers, provides a generic invariant for a shape
of any dimension. Manifestation of the Betti num-
bers in different dimensions is different. So, when
a thin-walled solid is transformed into its corre-
sponding mid-surface, the interpretation of the Betti
numbers changes from the manifold domain to the
non-manifold domain.

2.1.2. Manifold-solids

The Euler Poincaré equation for manifold-solids is:

v − e + (f − r) = 2(s − h) (3)

Its equivalence with equation (2) is as follows:

• N0 = v : number of vertices
• N1 = e : number of edges
• N2 = (f − r): number of faces (f ) - additional

artifact edges corresponding to inner loops (r)
• β0 = s : number of components or disjoint parts

(shells)
• β1 = 2h : number of independent closed curves

drawn without splitting. Twice the genus g or
h. For Torus, there are two such circles and one
genus-hole (2 h).

• β2 = s : number of space regions created by con-
nected surfaces. For an open surface β0 = 1 and
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β2 = 0 whereas for closed surface, β2 is equal to
β0 which is equal to s.

2.1.3. Non-manifold-surfaces

Solids found in the real world have the property that
on any point on the boundary, a small enough sphere
at that location is split into two pieces, one inside
and one outside the object. Non-manifolds do not
obey this rule [9]. Weiler ([20]) can be attributed for
the first significant contribution in defining the non-
manifold data structure, called Radial Edge Structure.
Core to this data structure lies the radial cycle, which
is an ordered list of faces around an edge. Similar to
manifold, the equation for non-manifold topology is:
[25]

v − e + (f − r) = s − h (4)

Its equivalence with equation (2) is as follows:

• N0 = v : number of vertices
• N1 = e : number of edges
• N2 = (f − r): number of faces (f ) - inner loops (r)
• β0 = s : number of components or disjoint parts

(shells)
• β1 = h : number of independent closed curves

drawn without splitting. Inner holes (g or h).
• β2 = 0 : number of space regions created by

connected surfaces is not present; so it is 0.

2.2. Cellular Decomposition

Cellular topology is one of the prominent repre-
sentations in solid modeling. The fundamental unit
is called Cell, which has dimensionality 0/1/2/3
and can have adjacency to its neighbor denoted
as Celldimension,adjacency . Actual size and the shape of
the cells can vary based on the underlying geometry
(Table 1).

2.2.1. Cellular entities

Cellular Decomposition is a process by which a shape
(called “Original solid”) is split in to multiple sub-
shapes (called “Cells”). According to Chen et al. [5],
a cellular model includes the topologies of various
dimensions.

M = (∪q
i=1C0

i ) ∪ (∪r
j=1C0

j ) ∪ (∪s
k=1C0

k ) ∪ (∪t
l=1C0

l )

where, C0
i are 0-dimensional vertices, C1

j are 1-

dimensional edges, C2
k are 2-dimensional faces, and

C3
i are 3-dimensional solids.

The cells have the following properties:

• Boundary: Except C0
i cells, all cells are bound by

cells with a dimension lower by 1.
• Overlap: No cells overlap. Ca

i ∩ Cb
i = ∅(0 ≤ a;

b ≤ 3; (a = b)(i �= j))
• Nature: Either additive or subtractive.

Cells can be of the following types:

Cell3,∗ 3D cells (solids),
topologically
similar to a simple
plate

faces = 6
edges = 12
vertices = 8

Cell2,∗ 2D cells, topologically
similar to a planar
surface

faces = 1
edges = 4
vertices = 4

Cell1,∗ 1D cells, topologically
equivalent to a line

edges = 1
vertices = 2

Cell3,h Hole is assumed
to be cylindrical
throughout (true
for sheet metal
parts)

edges = 1
vertices = 1

Tab. 1: Decomposition of shapes into cells.
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2.2.2. Classification of cells

When the original solid is decomposed into dis-
tinguishable cells, new interface boundaries are
introduced. Newly-created intersecting volumes or
touching boundaries are called interface cells, which
can be either 3D (solids) or 2D (faces) respectively.

Two shapes touching each other with an area
overlap, is called 2D-interface

Two shapes touching each other with a volume
overlap, is called 3D-interface

If two bodies spatially overlap then they are split
to form the 3D-interface (Fig. 2) cell. In case of 2D-
interface (Fig. 1), adjoining faces of the overlapping
face are extended [23] and used as a cutting tool
to create the intersecting volume, the 3D-interface
(Fig. 2) cell.

Fig. 1: 2D-interface.

Fig. 2: 3D-interface.

Prefix s is applied if the Cell is from the original
solid, i if it is of a newly introduced interface type,
(Fig. 3) and m for midsurface cells.

Fig. 3: Decomposition and classification [19].

3. TOPOLOGICAL VALIDATION OF MIDSURFACE

Topological validation can be performed using two
methods:

• Solid-to-Surface: Find the relationship between
the topological entities of a thin-walled solid and

its corresponding midsurface. Check whether
the predicted midsurface entities validate the
non-manifold equation (4).

• Surface-to-Solid: Predict the topological entities
of a possible thin-walled solid that could be gen-
erated by thickening of the given midsurface.
These predicted entities can be validated against
the entities of the original thin-walled solid as
well as with the manifold equation (3).

Following are the ways in which some of the mid-
surface errors can be detected using the predicted
entities:

• Missing Surfaces: Missing surfaces result in
lesser number of edges and vertices

• Missing Connections: Gaps result in lesser
radial edges and vertices

3.1. Sheet Metal Solid to Midsurface
Transformation

Given a thin-walled sheet metal solid, an approach
is given below to propose the dimension-reduction-
transformation equations for predicting the topologi-
cal entities of its corresponding midsurface. The given
original solid is first decomposed into sub-volumes,
called as “Cells” (Table 1) and then the dimension-
reduction-transformation is derived.

Many commercial as well as academic methods are
available for cellular-volumetric decomposition [23, 6,
4, 1, and 9]. Woo (maximal cells [21]), Boussuge (Extru-
sion decomposition [2]), Wu (Sweep Decomposition
[24]), Woo (Protrusion decomposition [22]), etc. are
some of the known cellular decomposition methods
used for feature recognition (FR).

Cellular decomposition starts facing problems as
the complexity of the original solid increases. The
method becomes very slow as the number of cells
increases [21]. If the cutting faces are extended
infinitely and intersected with the whole solid then
they generate a large number of unnecessary cells. If
the splits are not clean, it may generate degenerate
entities such as edges and vertices. The topologi-
cal validation method presented here assumes ’clean’
cellular decomposition and if it is not so, then the
validation results could be unpredictable.

3.1.1. Steps: Topological dimension reduction

Topological transformation of a solid (3D cells) to its
corresponding midsurface (2D cells) is as follows:

• sCell3,n : Solid cell with n touching sides trans-
forms into a midsurface cell mCell2,n , a surface
having n empty edges. Its topological entities are
denoted as

f = 1; e = 4 − n; v = 4 − 2n (5)
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Solid Midsurface sCells mCells Predicted Midsurface Entities

sCell3,0 mCell2,0 1f + (4 − 0)e + (4 − 2 × 0)v = 1f + 4e + 4v

2 × sCell3,1 +
iCell3,2

2 × mCell2,1 +
mCell1,2

2 × (1f + (4 − 1)e + (4 − 2 × 1)v) +
(1e + 2v) = 2f + 7e + 6v

3 × sCell3,1 +
iCell3,3

3 × mCell2,1 +
mCell1,3

3 × (1f + (4 − 1)e + (4 − 2 × 1)v) +
(1e + 2v) = 3f + 10e + 8v

3 × sCell3,1 +
iCell3,3 + sCell3,h

3 × mCell2,1 +
mCell1,3 +
mCell2,h

3 × (1f + (4 − 1)e + (4 − 2 × 1)v) +
(1e + 2v) + (1e + 1v) = 3f + 11e + 9v

2 × sCell3,1 + 2 ×
iCell2,2 + sCell3,2

2 × mCell2,1 +
2 × mCell1,2 +
mCell2,2

2 × (1f + (4 − 1)e + (4 − 2 × 1)v) +
2 × (1e + 2v) +
(1f + (4 − 2)e + (4 − 2 × 2)v) =
3f + 10e + 8v

Tab. 2: Dimension-reduction-transformations.

• sCell3,h : Negative solid cell representing a
through hole transforms into a midsurface
cell mCell2,h , a hole in the surface. Its topologi-
cal entities are denoted as

e = 1; v = 1 (6)

• iCell3,n : Interface solid cell with n adjacent
touching sides transforms into a midsurface
cell mCell2,h , a radial edge with n leaves. Its
topological entities are denoted as

e = 1; v = 2 (7)

• iCell2,2 : Interface face cell touched from
both sides transforms into a midsurface
cell mCell1,2 , a radial edge with 2 leaves. Its
topological entities are denoted as

e = 1; v = 2 (8)

3.1.2. Examples

Table 2 lists the various basic shapes and their
dimension-reduction-transformations into the corre-
sponding midsurfaces. It is evident that the predicted
midsurface entities of these simple shapes match
with the actual ones, thus the derived formulation
works for these simple shapes.

Following is the verification for a relatively-
complex practical shape.

• Solid cells: 5 × sCell3,h + 3 × sCell3,1 + 13
× sCell3,2 + 14 × iCell2,2

• Transformed midsurface cells: 5 × mCell2,h +
3 × mCell2,1 + 13 × mCell2,2 + 14
× mCell1,2

• Predicted midsurface entities: 5(1e + 1v) +
3(1f + 3e + 2v) + 13(1f + 2e + 0v)

+ 14(1e + 2v) = 16f + 54e + 39v

The derived formulation (Eqn 7, 8, 5, 6) predicts
correct topological entities for the midsurface. These,
when substituted in the non-manifold equation (Eqn
4) also prove to be valid. With s = 1; r = 5; h = 5, the
equation matches both sides: 39 − 54 + (16 − 5) =
1(1 − 5)

3.2. Midsurface to Sheet Metal Solid
Transformation

In this approach, given a midsurface, topological
entities of its corresponding sheet metal solid are
predicted. These predicted entities are verified to
check whether they validate manifold equation (Eqn
3). Topological entities of a midsurface contain far
richer (classifiable) topological information than its
corresponding solid model. For example, midsurface
of “T” shaped solid, which can be represented as
Figure 4 has the following classified entities:

• Faces (f ): Bound by two face-uses f u
• Sharp Vertex (vs): Connected to two edges of the

same face
• Sharp Edge (es): Connected to two sharp vertices
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Solid Cellular Classification

• Radial Vertex (vr): Connected edges of different
faces

• Degree (nr) at the radial edge is the number of
faces attached to it

• Cross Radial Edge (er): Connected between two
radial vertices and connects two different faces

• Side Radial Edge (err): Connected between two
radial vertices and is of same face

• Sharp Radial Edge (esr): Between sharp and radial
vertex

• Internal Edge (ei): Part of the inner loop
• Internal Vertex (vi):Connected to the internal

edge
• Internal Loop (ri) : Characterized by internal

edges and vertices

Fig. 4: Non-Manifold topological entities.

3.2.1. Steps: Topological dimension addition

Sheet Metal solid can be imagined to be the thick-
ened midsurface [11]. The topological entities of the
generated solid are calculated as per the following
steps:

• Face-uses become the principal faces.
• Sharp vertices create the capping edges.

• Apart from edge-use loop corresponding to face-
use, a new loop is proposed for the side-capping
faces. The loop is formed between two sharp
vertices (vs) using more than one sharp (esr)
or side radial (err) edges but not using the
cross radial edge (er). Such independent paths
creating individual side faces are called (lp).

• Loop between two sharp vertices. This gives rise
to a singular capping face (Fig. 5a).

• Loop between three branched sharp vertices.
This gives rise to a combined capping face
(Fig. 5b).

• Loop between two sharp vertices with multiple
radial vertices in between them. This gives rise
to a combined capping face (Fig. 5c).

Topological entities in the thickened solid are
predicted as follows:

• Manifold-Vertices (vm) = Double the sharp and
internal vertices (one up and one below) + ver-
tices for junctions of which are denoted by
the summation of number of the radial vertices
times their corresponding degrees.

vm = 2 (vs + vi) +
∑

nrvr (9)

• Manifold-Edges (em) = Double the sharp, sharp-
radial and internal edges (oset up and down) +
degree times radial edges for offsets at junctions
+ sharp vertices for vertical-capping edges +
internal vertices for vertical seam edges.

em = 2 (es + esr + +err + er ) +
∑

nrer + vs + vi

(10)
• Manifold-Faces (f m) = Double the faces (offset

up and down) + sharp edges for capping faces
+ paths to have one combined face + internal
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(a)

(b)

(c)

Fig. 5: Loops to faces.

edges for capping internal faces.

fm = 2f + es + lp + ei (11)

• Manifold-Shells (sm) = Remains the same
• Manifold-Rings (rm) = Double the internal rings

rm = 2ri (12)

• Manifold-Genus (hm) = Internal ring as it
becomes a hole

hm = ri (13)

3.2.2. Procedure to validate midsurface

a) Count the topological entities of the mid-
surface as per the classification suggested :
f , es , esr , err , er , ei , vs , vr , vi , s, h, r (more details
in Section 3.2)

b) Predict the topological entities of the corre-
sponding thin-walled solid using the equations
(9, 10, 11, 12, and 13).
a. Predicted solid-faces: fm = 2f + es + lp + ei
b. Predicted solid-edges: em =

2(es + esr + err + ei) + ∑
nrer + vs + vi

c. Predicted solid-vertices: vm = 2vs + ∑
nrvr

+ 2vi
d. Predicted solid-shells-holes: sm = s = 1,

hm = ri = 0, rm = 2ri = 0
e. Non-manifold equation left side: χnml = v −

e + f
f. Non-manifold equation right side: χnmr =

s − h + r

Midsurface f lp es esr er err ei vs vr vi fm em vm χm∗

1 0 4 0 0 0 0 4 0 0 6 12 8 2

2 2 2 4 1 0 0 4 2 0 8 18 12 2

3 2 3 6 1 0 0 6 2 0 11 27 18 2

3 2 3 6 1 0 1 6 2 1 12 30 20 2

3 2 2 4 2 2 0 4 4 0 10 24 16 2

Tab. 3: Validation of midsurface.
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Midsurface Edge Classification

g. Manifold equation left side: χml = vm −
em + fm

h. Manifold equation right side: χmr = 2(sm −
hm) + rm

c) Verify that the topological entities of the
midsurface satisfy the non-manifold equation
(Equation 4), by deducing that the left (χnml )
and right (χnmr =) hand side of the equation
match.

d) Verify that the predicted topological entities
of the thin-walled solid satisfy the manifold
equation (Equation 3), by deducing that the left
(χml ) and right (χmr ) hand side of the equation
match; thus proving that the transformation
equations are valid.

3.2.3. Examples

Table 3 displays the validation of a midsurface using
the proposed dimension-addition-transformation
equations. It is evident that the derived formulation
works for simple shapes.

Following is the verification for a relatively-
complex practical shape.

• Midsurface entities: f = 15; es = 3;
esr = 10; er = 14; err = 19; lp = 9; ei = 5;
vs = 8; vr = 24; vi = 5; s = 1; h = 5;
r = 5

• Predicted solid-faces: fm = 2f + es + lp + ei =
2 × 15 + 3 + 9 + 5 = 47

• Predicted solid-edges: em =
2(es + esr + err + ei ) + ∑

nrer + vs + vi =
2(3 + 10 + 19 + 5) + (2 × 12 + 4 × 2)

+ 8 + 5 = 119
• Predicted solid-vertices: vm = 2(vs + vi)

+ ∑
nrvr = 2 × (8 + 5) + 2 × 24 = 74

• Predicted solid-shells, holes: sm = s = 1; hm =
ri = 5; rm = 2ri = 10

• Non-manifold equation left side: χnml = v − e +
f = 32 − 46 + 15 = 1

• Non-manifold equation right side: χnmr = s −
h + r = 1 − 5 + 5 = 1

• Manifold equation left side: χml = vm − em +
fm = 74 − 119 + 47 = 2

• Manifold equation right side: χmr = 2(sm −
hm) + rm = 2(1 − 5) + 10 = 2

It can be observed that the predicted solid enti-
ties validate the manifold equation (χml = χmr = 2).
Validation can also be performed by comparing the
topological entities of the thin-walled solid with the
predicted ones.

4. CONCLUSION

This paper proposes a new way of topological valida-
tion of the midsurface, computed from sheet metal
solids. Validation is performed in both the direc-
tions, solid-to-midsurface and midsurface-to-solid.
The solid-to-midsurface method heavily depends on
the quality of the cellular decomposition of the orig-
inal solid. If the cells formed are not ‘clean’ or have
degeneracies like dangling edges and vertices, the
validation results could be unpredictable.

The primary advantage of the proposed method is
that it just needs counts of the topological entities,
making it quick and robust, in comparison with the
geometric methods, which tend to be computationally
extensive and approximate.

Another advantage is that changes in the geome-
try of the shape do not affect the validation criterion,
as long as the topology remains the same. So, a
plate having planar surfaces or curved ones or hav-
ing tapered draft angles, all can follow the same
topological invariant χsmm developed in this method.

The examples show that the newly-derived formu-
lation works not only for the simple shapes but also
for a relatively-complex practical part.
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