
Applied Intelligence (2022) 52:16916–16939
https://doi.org/10.1007/s10489-022-03329-2

Multi-objective vehicle routing with automated negotiation

Dave de Jonge1 · Filippo Bistaffa1 · Jordi Levy1

Accepted: 31 January 2022
© The Author(s) 2022

Abstract
This paper investigates a problem that lies at the intersection of three research areas, namely automated negotiation,
vehicle routing, and multi-objective optimization. Specifically, it investigates the scenario that multiple competing logistics
companies aim to cooperate by delivering truck loads for one another, in order to improve efficiency and reduce the distance
they drive. In order to do so, these companies need to find ways to exchange their truck loads such that each of them
individually benefits. We present a new heuristic algorithm that, given one set of orders for each company, tries to find the
set of all truck load exchanges that are Pareto-optimal and individually rational. Unlike existing approaches, it does this
without relying on any kind of trusted central server, so the companies do not need to disclose their private cost models to
anyone. The idea is that the companies can then use automated negotiation techniques to negotiate which of these truck load
exchanges will truly be carried out. Furthermore, this paper presents a new, multi-objective, variant of And/Or search that
forms part of our approach, and it presents experiments based on real-world data, as well as on the commonly used Li &
Lim data set. These experiments show that our algorithm is able to find hundreds of solutions within a matter of minutes.
Finally, this paper presents an experiment with several state-of-the-art negotiation algorithms to show that the combination
of our search algorithm with automated negotiation is viable.

Keywords Vehicle routing problem · Automated negotiation · Multi-objective optimization · Logistics · Horizontal
collaboration

1 Introduction

Logistics companies have very small profit margins and are
therefore always looking for ways to improve their effi-
ciency. It is not uncommon for such companies to have their
trucks only half full when they are on their way to make their
deliveries. Moreover, after completing those deliveries they
often head back home completely empty. This is a clear
waste of resources, not only economically, but also environ-
mentally, as it causes unnecessary emissions of CO2 [1].

� Dave de Jonge
davedejonge@iiia.csic.es

Filippo Bistaffa
filippo.bistaffa@iiia.csic.es

Jordi Levy
levy@iiia.csic.es

1 IIIA-CSIC, Campus de la UAB, 08193, Bellaterra,
Catalonia, Spain

For this reason, many logistics providers are looking for
collaborative solutions that allow them to share trucks with
other logistics companies. This is often referred to as hori-
zontal collaboration (i.e. collaboration between companies
that operate at the same level of the supply chain). In logis-
tics, one typically distinguishes between two types of hor-
izontal collaboration, namely co-loading (multiple compa-
nies loading their orders onto a shared vehicle) and back-
hauling (after making its deliveries, a truck picks up another
load for a different company and delivers it on its way back
home).

Finding the optimal co-loading and backhauling opportu-
nities that minimize the costs of the companies is a difficult
problem, because the number of possible solutions is expo-
nential, and for each of these solutions calculating its cost
savings amounts to solving a Vehicle Routing Problem
(VRP). This collaborative variant of the VRP has been stud-
ied before, but mainly as a single-objective optimization
problem. That is, one tries to find the solution that mini-
mizes the total cost of all companies combined, under the
assumption that the benefits will be fairly divided among
them, according to some pre-defined scheme.

/ Published online: 29 March 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03329-2&domain=pdf
http://orcid.org/0000-0003-2364-9497
mailto: davedejonge@iiia.csic.es
mailto: filippo.bistaffa@iiia.csic.es
mailto: levy@iiia.csic.es

Multi-objective vehicle routing with automated negotiation

Unfortunately, however, such a single-objective approach
is problematic in a real-world scenario, because it requires
the companies to share highly sensitive data with each other
about their respective cost functions (e.g. how much they
pay their drivers, and how much they pay for fuel). The
logistics companies that we have been working with have
indicated that sharing such information is absolutely out of
the question for them. In fact, they are not even willing to
share such information with a trusted central server.

Therefore, in this paper, we are instead looking at collab-
orative vehicle routing from the point of view of automated
negotiation. That is, we have developed an agent that only
represents one of the companies involved, and only knows
the exact cost function of that company, while it can only
has an estimation of the other companies’ cost functions
because they are kept secret. Our agent first tries to find
the set of all solutions that are Pareto-optimal and individ-
ually rational (i.e. beneficial to each individual company),
and then proposes these solutions to the other companies,
according to a negotiation strategy that only aims to max-
imize the profits of the agent’s own company. These other
companies (which are also each represented by their own
negotiating agent) can then decide for themselves whether
or not they accept the proposed solutions, and can make
counter-proposals.

The work presented in this paper mainly focuses on the
first task of this agent: to find the set of Pareto-optimal and
individually rational solutions, which is a multi-objective
optimization problem.

Of course, even if the other companies’ cost functions
are not exactly known, one could still consider a single-
objective approach, using a standard VRP-solver to find
the solution that minimizes the total estimated costs of
all companies combined. The problem with this approach,
however, is that it only yields one single solution, and this
solution may not be acceptable to the other companies,
either because the estimations were not accurate enough, or
because the returned solution is not individually rational,
or because some of the other companies simply demand
higher benefits, for strategic reasons. In contrast, our
approach has the advantage that it can find a large set of
potential proposals, which allows our agent to propose many
alternatives in a negotiation process.

This research was carried out in cooperation with two
major logistics providers in the UK, namely Nestlé and
Pladis. Although both these companies’ primary activity is
the production of fast-moving consumer goods (i.e. food,
beverages and toiletries), they each have a large logistics
department with large truck fleets that deliver several
hundreds of loads throughout the UK every day. Their main
operations consist in carrying products from their factories
to their distributions centers (DC), and from their DCs to
their customers, typically large supermarket chains.

It should be stressed that the goal of this work is to create
a system that can truly be used in real life by our industrial
partners. Therefore, we need to take into account as many
constraints as possible that may appear in real life. For
example, each delivery has to be picked up and delivered
at specified locations and within a specified time-window,
and each vehicle has volume- and weight- constraints. In
other words, the problem we are dealing is known in the
literature as a capacitated pickup and delivery problem with
time windows (CPDPTW). Although in the rest of this paper
we will just use the more general term VRP to refer to this
problem.

Also, it should be remarked that, although we assume
the companies involved do not disclose their cost models
to each other, they do still have to disclose the locations
of their customers. Otherwise, co-loading and backhauling
would obviously not be possible. Fortunately, our partners
have indicated that this is not a problem for them (their
customers are mainly supermarkets, so their locations are
not really secret anyway).

An earlier version of our algorithm was presented in [2],
but several improvements have been made since, which are
discussed later on.

In summary, this paper makes the following contribu-
tions:

– A new heuristic search algorithm that allows a logistics
company to find a large set of potential exchanges of
orders between itself and some other company. These
exchanges of orders should yield financial benefit for
the company itself as well as for the other company.

– A new multi-objective variant of And/Or search, which
is used to combine the solutions found by our heuristic
search into larger solutions.

– Experiments that show that our approach is able to
find hundreds of solutions in a matter of minutes (on
real-world data, as well as on an artificial benchmark).

– Experiments that show that existing negotiation algo-
rithms can be employed by the companies to negotiate
about which of the found solutions should be executed.

2 Related work

In this section we discuss existing work on the Vehicle
Routing Problem, and how it has been combined with
negotiation and other forms of multi-objective optimization.

2.1 Vehicle routing problems

The Vehicle Routing Problem (VRP) is a generalization
of the well-known Traveling Salesman Problem, in which
the goal is to find optimal routes for multiple vehicles

16917

D. de Jonge et al.

visiting a set of locations. The VRP was introduced by
Dantzig and Ramser in 1959 [3], and is one of the most
extensively studied combinatorial optimization problems
in the literature. They described a real-world application
concerning the delivery of gasoline to service stations and
proposed the first mathematical programming formulation
and algorithmic approach. Since it is a generalization of
the Traveling Salesman Problem, it is well-known that the
VRP is NP-hard. In 1964, Clarke and Wright proposed an
effective greedy heuristic that improved on the Dantzig–
Ramser approach [4]. Following these two seminal papers,
hundreds of models and algorithms were proposed to find
optimal or approximate solutions to various versions of the
VRP. A classification scheme was given in [5]. The VRP has
been covered extensively in by Toth & Vigo [6] and a more
recent survey of the state-of-the-art can be found in [7].

Many different versions and extensions of the VRP have
been defined in the literature, such as the capacitated VRP
[8] in which the vehicles are constrained by volume and/or
maximum load weight, the VRP with pickups and deliveries
[9], in which the loads have a specific pickup and delivery
location, so if a vehicle passes a certain location to pick up
a load it should also pass the delivery location of that load,
and the VRP with time windows [10], in which the vehicles
have to arrive at each location within a given time window.
A recent survey of techniques applied to the VRP with time
windows can be found in [11].

2.2 Collaborative vehicle routing problems

The collaborative VRP is a variant that involves multiple
logistics operators. A recent survey of this topic was
presented in [12]. This survey distinguishes between three
methodologies: centralized collaborative planning, auction-
based decentralized planning, and decentralized planning
without auctions. For our purposes we are mainly concerned
with the last type. They identify 14 papers of this type,
but only four of them deal with VRPs that include time
windows, and pickup-and-delivery. In [13, 14], and [15] the
goal is to find a globally optimal solution that maximizes
the total profit, and in [16] the central system calculates a
price that fairly divides the benefits of collaboration among
the two collaborating companies.

Although these approaches are labeled as ‘decentralized’,
this really only means ‘not fully centralized’ because,
although the final decisions are made by the individual
logistics companies, in each of these cases there was still
a central system that performed the search for potential
solutions, based on the companies’ cost models. This means
that the collaborative VRP is still mostly treated as a
classical single-objective optimization problem. Therefore,
none of the solutions suggested in these papers is feasible
in our context, as our industrial partners have indicated that

any form of sharing of information about their respective
cost models is out of the question, even if it is only shared
with a trusted central system.

2.3 Multi-objective vehicle routing problems

Since we are assuming each company has its own individ-
ual cost function, our work is also related to the Multi-
Objective VRP. A large survey of VRPs with multiple objec-
tive functions has been conducted in [17], but all papers
discussed in this survey assume there is just one logistics
company which has multiple objective functions that are
perfectly known by the algorithm. For example, a company
may wish to minimize the distance traveled, as well as the
number of vehicles used in the solution [18] so they try
to find all Pareto-optimal solutions w.r.t. those objectives.
None of the papers discussed in this survey covers the case
that there are multiple companies, which are not willing to
disclose their respective cost models.

2.4 Vehicle routing problems with negotiation

While many papers have been published that either involve
multiple companies with a single shared objective function
(the collaborative VRP) or a single company with multiple
objective functions (the multi-objective VRP), much less
has been published about VRPs with multiple companies
where each company has its own individual objective
function. We are aware of only a few papers that do treat
somewhat similar problems.

In [19] a case study was presented that explores one-to-
many negotiations between one 4PL provider and several
3PL providers (a 3PL provider is a logistics company with
its own truck fleet, while a 4PL provider does not have a
fleet, but receives large transport orders from shippers and
then redistributes them among 3PL providers). A very similar
scenario was treated in [20], except that they used auction
mechanisms instead of negotiations. The two papers that are
probably most closely related to our work, are [21] and [22].
In [21] the initial idea for a negotiation algorithm based
on Branch & Bound was first put forward, which could be
applied to negotiations among competing package delivery
companies that could exchange their packages. A more
detailed description of this algorithm was later presented in
[22]. These papers, however, did not take into account time
windows, or volume- and weight- constraints, and they only
used artificial test cases, rather than real-world data.

3 Automated negotiation

The research field of automated negotiation deals with multi-
agent systems in which each agent is purely self-interested,

16918

Multi-objective vehicle routing with automated negotiation

but in which the agents still need to cooperate to ensure
beneficial outcomes. Each agent can propose potential
solutions to the other agents, and each agent, upon receipt of
such a proposal, may decide whether to accept it or to reject
it [23].

Each agent associates a certain utility value with each
potential solution, but that utility is only obtained if that
solution is accepted by all agents involved in it. If the agents
cannot come to any agreement before a given deadline,
then none of the potential collaborative solutions can be
executed. This situation is often referred to as the conflict
outcome. The utility value an agent obtains in that case, is
called its reservation value. A rational agent would only
ever accept a proposal if the utility it obtains from it is
greater than or equal to that agent’s reservation value. After
all, the agent is already guaranteed to obtain its reservation
value anyway without making any agreements. For this
reason, in automated negotiation we are main interested in
those solutions for which each agent receives a utility value
that is greater than or equal to its reservation value. Such
solutions are called individually rational.

One typically assumes the agents have to make their
proposals according to some negotiation protocol, which
defines when each agent is allowed to make or accept a pro-
posal, and when such proposals become binding agree-
ments. The most commonly used protocol is the alternating
offers protocol [24], in which the agents take turns making
proposals.

Although each agent is purely self-interested, the pro-
posals it makes must also benefit the other agents, because
otherwise they would never accept it. Therefore, a negotiat-
ing agent must strike a balance between maximizing its own
utility, and providing enough utility to its opponents to make
them accept the proposal. To do this, agents typically start
by making very selfish proposals, but, as time passes, they
slowly concede and make proposals that are less and less
selfish. For the rest of this paper, it is important to under-
stand that such a strategy requires the agent to have a large
set of potential proposals available, with varying degree of
selfishness.

Formally, a problem instance in the field of automated
negotiations (a negotiation domain) is defined as follows.

Definition 1 A negotiation domain consists of:

– A finite set of agents a1, a2, . . . am.
– A set Ω of potential proposals, called the agreement

space.
– A set of utility functions U1, U2, . . . Um, one for each

agent. Each utility function maps the agreement space
to the set of real numbers Ui : � → R.

– A set of reservation values rv1, rv2, . . . rvm ∈ R, one
for each agent.

A typical example of a negotiation domain is the negoti-
ation of a car sale between a customer and a salesperson. In
that case, there are two agents (the customer and the sales-
person), and the agreement space consists of all possible
combinations (c, p) where c is a car and p is the price to pay
for the car. The salesperson would start by making an offer
with a high price, while the customer would start by mak-
ing an offer with a low price. They alternate making offers,
until they meet somewhere in the middle and one of them
makes an offer that is acceptable to the other.

3.1 Applying automated negotiations to co-loading
and backhauling

The aim of this work is to develop a negotiating agent
that can be applied by a logistics company to negotiate
co-loading opportunities with other logistics companies.
However, this paper mainly focuses on one component of
such an agent, namely the search algorithm to find the set of
potential proposals. This set of potential proposals can then
be fed as the input to some negotiation strategy.

The question how to implement such a negotiation strat-
egy is beyond the scope of our work because many such
algorithms have already been proposed, for example for
the Automated Negotiating Agents Competition (ANAC),
which has been organized annually since 2010. Throughout
the years this competition has focused on many differ-
ent aspects of automated negotiation. From simple bilateral
negotiations with linear utility functions [25], to very large
domains with non-linear utility functions [26], multilateral
negotiations [27], negotiations with only partially known
utility functions [28], negotiations between agents and
humans [29], negotiations in the game of Diplomacy [30]
or the game of Werewolves [28], to negotiations in a sup-
ply chain environment [28]. As we shall see in Section 7.5,
some of the algorithms that were implemented for ANAC
can indeed be applied to our scenario as well.

One important detail that should be pointed out, is that
we are assuming the companies only negotiate about which
company will deliver which orders, and not about any
form of financial compensation for the delivery of another
company’s orders. There are several reasons for this. Sci-
entifically, price negotiations would make our scenario less
interesting because the problem of finding a set of poten-
tial proposals would just be a single-objective optimization
problem again, in which the goal is to find those solutions
that minimize the sum of the costs of the companies. The
companies would then only need to negotiate how to divide
the joint financial gains. Such one-dimensional negotiations
are not very interesting compared to the state-of-the-art in
automated negotiations. A more practical reason, is that
our partners have indicated that automated price negotia-
tions would not be acceptable to them in a real-life working

16919

D. de Jonge et al.

system, because automated day-to-day price negotiations
could lead to a highly opaque pricing mechanism with
strongly fluctuating prices. This would be a serious problem
for their bookkeeping. Instead, our partners require prices to
be fixed over a longer term, such as a whole year.

So, any form of financial compensation should be fixed
in advance, and cannot be subject to automated negotiation.
In this paper we simply assume the financial compensation
is zero, meaning that any company would only accept to
make a delivery for another company if that other company
returns the favor by making a delivery for the first one in
return.1

The negotiation domain discussed in this paper is differ-
ent from the more commonly studied domains in the auto-
mated negotiations literature, in the following two aspects:

1. Although the agents do not have exact knowledge about
their opponents’ utility functions, they can make rea-
sonable estimations.

2. Utility functions are expressed as a computationally
complex problem (a VRP), so even with perfect knowl-
edge an agent would still not be able to calculate utility
values exactly. Instead, it has to resort to heuristic
estimations.

Regarding the first point, most studies in automated nego-
tiations assume the agents have absolutely no knowledge at
all about their opponents’ utility functions [31]. Alterna-
tively, in some work it is assumed that agents have perfect
knowledge about each others’ utility [32]. In our domain,
however, the truth lies somewhere in between. The agents
do not know each others’ exact utility functions, but they are
able to make reasonable estimations. After all, it is known
that each company aims to minimize distance and time, and
the distances between the locations are known. Furthermore,
although each company may pay somewhat different prices
for its fuel, the write-off of its vehicles, or the salaries of its
drivers, those prices cannot be radically different among the
companies.

One main example of a negotiation domain that has
been studied extensively and that does also involve these
two aspects, is the game of Diplomacy [33], but this is a
purely artificial game, while in this paper we are studying a
real-world scenario.

Search algorithms for automated negotiations have been
studied, for example using simulated annealing [34], or
genetic algorithms [35]. However, these papers only looked
at problems in which the utility of a single deal could be
computed quickly. They did not involve the complexity of

1More complex deals are also possible, as long as each company
involved in the deal benefits.

the VRP. Also, as mentioned before a Branch & Bound
approach has been proposed, but to a simpler and purely
artificial scenario [22].

4 Definitions

Formally, the problem tackled in this paper is the following
(the precise definitions of these concepts are given in the rest
of this section). Let C1, . . . Cm denote a number of logistics
companies. Then, given a location graph (L, R, d), a
distance cost dc ∈ R a time cost tc ∈ R, and, for each
company Ci a set of orders Oi , a vehicle fleet Vi and an
initial fleet schedule fsi , find the set of order assignments
that are both individually rational and Pareto-optimal with
respect to the cost model (dc, tc).

We use N to denote the set of natural numbers and R

to denote the set of real numbers. We indicate time using
natural numbers, which can be interpreted, for example, as
Unix time stamps.

Definition 2 A location graph (L, R, d) is a weighted
graph with vertices L, which we refer to as locations, edges
R, which we refer to as roads, and a weight function d :
R → R, representing the length of a road (in kilometers).

A location graph represents a set of possible locations
where a logistics provider could pick up or drop off loads
(i.e. the factories and distribution centers of the logistics
companies, as well as the locations of their customers), and
the roads between those locations. It is assumed, without
loss of generality, that the graph is complete and symmetric
and that d satisfies the triangle inequality.

Customers place orders with the logistics companies. An
order represents a certain number of pallets to be picked
up and delivered within specified time windows and at
specified locations.

Definition 3 An order is a tuple (vol, w, lpu, t1, t2, tpu,

ldo, t3, t4, tdo), where: vol ∈ N is the volume of the load,
measured as a number of pallets. w ∈ R is the weight
of the load, measured in kilograms. lpu ∈ L is the pick-
up location. t1 ∈ N and t2 ∈ N represent the earliest
and latest time respectively that a company can pick up the
order (so they must satisfy t1 < t2), tpu ∈ N is the pick-
up service time, i.e. time it takes to load the pallets onto
a vehicle, ldo ∈ L is the drop-off location. t3 ∈ N and
t4 ∈ N represent the earliest and latest time respectively
that a company can drop off the order (so they must satisfy
t3 < t4), and tdo ∈ N is the drop-off service time, i.e. time
it takes to offload the pallets from a vehicle.

16920

Multi-objective vehicle routing with automated negotiation

To be precise, the interval [t1, t2] represents the time
window within which a company can start loading the
order onto the vehicle, so it must finish within the time
window [t1 + tpu, t2 + tpu]. Similarly, [t3, t4] is the time
window within which a company can start unloading the
vehicle, so unloading should finish within the time window
[t3 + tdo, t4 + tdo].

Definition 4 A vehicle is a tuple (volmax, wmax, s), where:
volmax ∈ N is the volume of the vehicle, i.e. the maximum
number of pallets it can carry. wmax ∈ R is maximum load
weight of the vehicle, measured in kilograms, and s ∈ R is
the average speed we can realistically assume the vehicle to
drive.

4.1 Jobs and schedules

We define the solutions of a VRP in terms of what we
call jobs. A job represents a number of orders scheduled
to be picked up and/or a number of orders scheduled to be
delivered, by a single vehicle, at a single location, starting
at a specific time.

Definition 5 A job J is a tuple: (l, Opu, Odo, ts, te) with:
l ∈ L some location, Opu a (possibly empty) set of orders
to be picked up at l, Odo a (possibly empty) set of orders
to be dropped off at l, ts ∈ N the scheduled start time of
the job, and te ∈ N the scheduled end time, satisfying the
following constraints:

– for each o ∈ Opu its pick-up location must be the
location l of this job.

– for each o ∈ Odo its drop-off location must be the
location l of this job.

– ts < te.
– ts and and te must be consistent with the time windows

of the orders (formalized in Section 4.4 by (6) and (7)).

A vehicle-schedule represents the itinerary of a single
vehicle.

Definition 6 A vehicle schedule is an ordered list of jobs
(J0, J1, J2, . . . , Jn) where n ∈ N can be any natural
number. Any vehicle schedule must satisfy the following
constraints (in the following, the sets of pick-up and drop-
off orders of job Ji are denoted as Opu,i and Odo,i

respectively).

– The jobs are listed in chronological order: if i < j then
te,i < ts,j (i.e. job Ji must be finished before we can
start job Jj).

– Each order appearing in any of the jobs of the vehicle
schedule has to be picked up and dropped off exactly
once (formalized in Section 4.4 by (8)).

– Each order must first be picked up before it can be
dropped off: if o ∈ Opu,i and o ∈ Odo,j then i < j .

– The location of J0 is equal to the location of Jn, and
is known as a depot (each company has one or more
depots).

If o is an order, and vs is a vehicle schedule, we may
write o ∈ vs when we mean that o is picked-up and dropped
off by vs. That is, o ∈ vs is a shorthand for o ∈ ⋃

i∈0,1...n

Opu,i ∪ Odo,i . The set of all possible vehicle schedules is
denoted V S.

Definition 7 A fleet schedule fs for a set of vehicles V

and a set of orders O is a map that assigns every vehicle in
V to some vehicle schedule vs such that every order o ∈ O

appears in exactly one of these vehicle schedules.

fs : V → VS such that ∀o ∈ O ∃!v ∈ V : o ∈ fs(v)

Furthermore, for each vehicle v ∈ V the corresponding
vehicle schedule vs = fs(v) must satisfy:

– After each job of vs, the volume and weight of the
orders loaded onto the vehicle v cannot exceed the
vehicle’s maximum load weight volmax and volume
volmax (formalized in Section 4.4 by (9) and (10)).

– The difference between the end time te,i and the start
time ts,i+1 of any pair of consecutive jobs Ji, Ji+1 must
be consistent with the distance between the locations of
the two jobs and the speed s of the vehicle. That is, if
li and li+1 are the respective locations of Ji and Ji+1,
and d(li , li+1) the distance between them, then we must
have:

∀i ∈ 0, 1, . . . n − 1 : s · (ts,i+1 − te,i)

≥ d(li , li+1) (1)

4.2 Cost functions

For any vehicle schedule vs its cost c(vs) ∈ R is calculated
as follows:

c(vs) := dc ·
n∑

i=1

d(ri) + tc · (te,n − ts,0) (2)

where dc ∈ R is the distance cost2 (in euros per kilometer),
ri the road between the locations of Ji−1 and Ji of vs,
tc ∈ R is the time cost (in euros per hour), te,n ∈ N is the
scheduled end time of the last job Jn of vs, and ts,0 ∈ N is
the scheduled start time of the first job J0 of vs.

2Perhaps surprisingly, the distance cost does not depend on how much
weight is loaded onto the vehicle. This may seem unrealistic, but this
is how many real-world logistics companies do calculate their costs.
Furthermore, to keep the discussion simple we here assume that dc

does not depend on the vehicle. The implementation or our algorithm,
however, does allow dc to be different for each vehicle.

16921

D. de Jonge et al.

The distance- and time costs dc and tc are together
referred to as the cost model. In reality, each company
would use a different cost model to calculate its own costs.
However, since our algorithm represents only one company,
and the cost models of the other companies are unknown,
it always calculates the costs of any other company using
the same cost model (of the company it represents). On the
other hand, there is nothing that prevents our algorithm from
using a different estimated cost model for every company, if
there is reason to believe that that would yield more accurate
results.

If fs is a fleet schedule for some set of vehicles V , then
its cost c(fs) ∈ R is defined as the sum of the costs of all its
vehicle schedules:

c(fs) :=
∑

v∈V

c(fs(v)) (3)

4.3 Assignments

Suppose there are m logistics companies C1, C2, . . . Cm.
Each of these companies has a fleet of vehicles Vi and a set
of orders Oi to fulfill. We say an order is owned by Ci if
o ∈ Oi . However, any two companies Ci and Cj may agree
together that some order o owned by Ci will be picked up
and delivered by the other company Cj . In that case we say
that an order is assigned to Cj .

Definition 8 An order assignment (or simply assignment)
α for a set of orders O is a map that assigns each order in O

to some company Ci .

α : O → {C1, C2, . . . Cm}.
We let Oα,i denote the set of orders assigned to Ci by α.

Oα,i := {o ∈ O | α(o) = Ci}
So, if O consists of all the orders owned by any of the
companies and α is an assignment for O then we have
O = ⋃m

i=1 Oi = ⋃m
i=1 Oα,i . The initial assignment

α is the assignment that simply assigns each order to the
company that owns it, i.e. α(o) = Ci iff o ∈ Oi . Therefore,
we have Oα,i = Oi .

If Vi is the fleet of some company Ci and α some
assignment, then FSα,i denotes the set of all possible fleet
schedules for fleet Vi and orders Oα,i . Furthermore, fs∗α,i

denotes the optimal fleet schedule for company Ci under
assignment α. That is:

fs∗α,i := arg min{c(fs) | fs ∈ FSα,i} (4)

and ci(α) denotes the cost of that fleet schedule:

ci(α) := c(fs∗α,i) = min{c(fs) | fs ∈ FSα,i} (5)

In other words, if the companies have agreed to exchange
orders between them according to assignment α, then fs∗α,i is
the most cost-effective way for company Ci to pick up and
deliver all the orders assigned to it, and ci(α) is the cost of
that solution. Furthermore, note that if the companies do not
exchange any orders, then each company just delivers their
own orders Oi , which corresponds to the initial assignment
α, so in that case the cost of each company Ci is ci(α).

An assignment α dominates another assignment α′ iff
for all i ∈ {1, . . . m} ci(α) ≤ ci(α

′), and for at least one of
these companies the inequality is strict. An assignment α is
Pareto-optimal iff there is no α′ that dominates α, and we
say that α is individually rational iff it dominates α.

We are mainly interested in those assignments that are
both Pareto-optimal and individually rational. After all, if
an assignment α is not Pareto-optimal, it means that there
is some assignment α′ that is better for everyone, so the
companies would rather accept α′ than α. Furthermore, if an
assignment α is not individually rational, it means that there
is at least one company that prefers the initial assignment α

over α, so it has no reason to ever accept α.
It should be remarked here that whenever we use terms

like ‘Pareto-optimal’ or ‘individually rational’, we actually
mean Pareto-optimal or individually rational with respect to
the cost model (dc, tc). After all, our algorithm calculates
all costs for all companies using that cost model, even
though in reality each company would calculate its own
costs using a different cost model.

In the language of the automated negotiation literature,
our problem is a negotiation domain, where the agreement
space consists of all possible assignments α for the orders
of all companies. The utility functions are the (negations of)
the cost functions ci(α) defined by (5), the conflict outcome,
representing the case that no agreement is made, is the initial
assignment α, and the reservation values are given by ci(α).

Finally, note that to calculate ci(α) one needs to find
the optimal fleet schedule fs∗α,i which amounts to solving a
Vehicle Routing Problem.

4.4 Time- and capacity- constraints

In the previous subsections it was mentioned that jobs, vehi-
cle schedules and fleet schedules need to satisfy certain
constraints. We here give a precise mathematical formaliza-
tion of these constraints. Readers who are not interested in
this can safely skip this section.

In Definition 5 it was mentioned that the start- and end-
times ts and te of a job must be consistent with the time
windows of the orders. This is formalized as follows. For
any job J with orders Opu and Odo, the earliest time tes it
can possibly start is given by:

tes := min{ min
o∈Opu

t1,o , min
o∈Odo

t3,o}

16922

Multi-objective vehicle routing with automated negotiation

where t1,o is the earliest time one can start picking up o and
t3,o is the earliest time one can start dropping off order o.
Similarly, the latest possible time the job can start is given
by:

tls := min{ min
o∈Opu

t2,o , min
o∈Odo

t4,o}

where t2,o is the latest time one can start picking up order o

and t4,o is the latest time one start dropping off order o. So,
the job has to start between the earliest and latest start times:

tes ≤ ts ≤ tls (6)

Furthermore, the amount of time required to pick up and
drop off all the orders of the job (the service time) is given
by:

tserv :=
∑

o∈Opu

tpu,o +
∑

o∈Odo

tdo,o

so the job can only end after at least tserv has passed since
the start time:

te ≥ ts + tserv (7)

In Definition 6 it was mentioned that each order
appearing in any of the jobs of the vehicle schedule has
to be picked up and dropped off exactly once. This can be
formalized as:

∀o ∈ vs : |{i | o ∈ Opu,i}| = |{i | o ∈ Odo,i}| = 1

(8)

Recall here that o ∈ vs is a shorthand for o ∈ ⋃
i∈0,1...n

Opu,i ∪ Odo,i

In Definition 7 it was mentioned that for each vehicle v

and vehicle schedule vs such that fs(v) = vs (meaning that
the vehicle schedule vs is executed by vehicle v) one must
have that after each job of vs, the volume and weight of the
orders loaded onto the vehicle v cannot exceed the vehicle’s
maximum load weight wmax and volume volmax . That is:

∀k ∈ 0, 1, . . . n−1 :
k∑

i=0

∑

o∈Opu,i

volo −
k∑

i=0

∑

o∈Odo,i

volo

≤ volmax (9)

∀k ∈ 0, 1, . . . n − 1 :
k∑

i=0

∑

o∈Opu,i

wo −
k∑

i=0

∑

o∈Odo,i

wo

≤ wmax (10)

where volo and wo represent the volume and weight of order
o, and where the total number of jobs in the vehicle schedule
is n + 1.

To better understand these equations, note that
∑

o∈Opu,i

volo represents the total volume of all orders that are being
loaded onto the truck at job Ji . Therefore,

∑k
i=0

∑
o∈Opu,i

volo represents the total volume of all the orders that have

been loaded onto the truck during the first k + 1 jobs.
However, some of the orders that have been loaded onto
the truck at some job Ji , may have already been offloaded
at some other job that came after Ji , but before job Jk .
Therefore, to get the total volume of all orders that are on the
truck after job Jk , we have to subtract the volume of all those
orders that have already been offloaded before Jk , so we get
the expression

∑k
i=0

∑
o∈Opu,i

volo − ∑k
i=0

∑
o∈Odo,i

volo.
Clearly, this value has to be below wmax at any stage of the
vehicle schedule, so the inequality has to hold for all values
of k ∈ 0, 1 . . . n − 1.

5 Order package heuristics

In this section we finally present our new search algorithm.
In order to know which deals to propose, the negotiating

agents have to evaluate the possible ways to exchange orders
between companies, and find the best ones. If there are
m companies and each company has X orders, then there
are mmX possible order assignments. For realistic cases
this number is astronomical, because our industrial partners
each typically have more than a hundred orders to deliver,
every day. This means that our problem has two layers of
complexity:

1. There are many possible assignments: mmX.
2. Given a single assignment α, it is hard to calculate its

exact cost ci(α), because it involves solving a VRP (by
(4)).

Typical (meta-)heuristic search algorithms like genetic algo-
rithms and simulated annealing can deal with the first layer
of complexity, because they are able to find good solutions
while only evaluating a small fraction of the entire search
space. However, such algorithms typically may still require
thousands of evaluations, so if each of these evaluations
requires solving a VRP, then the overall algorithm will still
be prohibitively slow. For this reason we needed to invent a
new heuristic algorithm that can deal with the complexity at
both levels. We call it the Order Package Heuristics.

The idea is that we first only look at what we call one-
to-one exchanges, which are exchanges of orders in which
one company gives a number of orders to another company,
which were originally scheduled to be delivered by the same
vehicle, and that other company incorporates those orders
into the schedule of one of its own vehicles. So, ‘one-to-one’
refers to the fact that the orders are moved from one vehicle
to one other vehicle. After determining and evaluating the
one-to-one exchanges they are then combined into more
general solutions. Furthermore, the construction of one-to-
one exchanges is restricted to the exchange of sets of orders
that correspond to a sequence of consecutive locations to be
visited. We call such sets of orders order packages.

16923

D. de Jonge et al.

Our algorithm represents company C1 and receives as
input:

– A location graph (L, R, d).
– A set of orders Oi for each company Ci .
– A set of vehicles Vi for each company Ci .
– The cost model (dc, tc) of company C1.
– For each company Ci , an initial fleet schedule fsi ∈FSα,i .

The output of the algorithm is:

– A set of assignments {α1, α2, . . . }, which, in the ideal
case, would be exactly the set of all Pareto-optimal
assignments.

The initial fleet schedules fsi are the schedules the com-
panies would execute if there was no collaboration at all.
These initial schedules can either be given to our agent by
the other companies, or our agent can determine them by
itself using a VRP-solving algorithm (although in that case
they may be different from the ones actually used by the
other companies). Ideally, the initial fleet schedules would
be exactly the optimal initial fleet schedules fs∗α,i , but these
may be hard to calculate so in practice they may differ.

The rest of this section will give a detailed, step-by-step
description of our algorithm.

5.1 Step 1: find compatible order-vehicle pairs

Given the orders Oi and the the initial fleet schedule fsi of
each company, our approach starts by determining for each
order o which vehicles of other companies could adjust their
schedules to also pick up and drop off that order. If indeed
it is possible for a vehicle v with schedule vs to make two
detours to do this, then we say that o and vs are compatible,
or that o and v are compatible.

Definition 9 Let o be an order of one company Ci , let vs =
(J0, J1, . . . Jn) be a vehicle schedule of another company
Cj , and let v be the vehicle scheduled to execute vs (i.e.
vs = fsj (v)). We say that o and vs are compatible if it
is possible to insert two jobs Jpu, Jdo anywhere into vs to
obtain a new vehicle schedule

vs′ = (J ′
0, . . . J

′
k, Jpu, , J

′
k+1, . . . J

′
m, Jdo, J

′
m+1, . . . J

′
n)

that satisfies all relevant time- and capacity-constraints (9),
(10), and (1), where job Jpu is the pickup of order o, job Jdo

is the drop-off of order o, and where every other job J ′
i is

exactly the same as Ji , except that the scheduled start- and
end times may have been adjusted. We then also say that o

and v form a compatible order-vehicle pair.

Note that the operation of converting vs into vs′ is
essentially the same as what Li and Lim call the PD-shift
operator [36].

Knowing all compatible order-vehicle pairs will allow us
to prune a large part of the search space in Step 3, because
one can discard all solutions involving orders and vehicles
that are incompatible.

Proposition 1 If there are m companies and each company
has X orders, then the time complexity of Step 1 is
O(m2X2).

Proof If there are m companies and each company has X :=
|Oi | orders and for each company their initial fleet schedule
involves Y vehicle schedules, then there are mX · (m − 1)Y

possible order-vehicle pairs. For each of these order-vehicle
pairs we need to check whether the order and the vehicle
schedule are compatible or not. This means we need to
check whether the pick-up and the drop-off of the order can
be inserted into the vehicle schedule. If the vehicle schedule
has n+1 different jobs then the pick-up and the drop-off can
both potentially be inserted in n different places, but since
the drop off always needs to take place after the pickup,
there are 1

2n·(n−1) options to check. Furthermore, the value
n can be estimated as n ≈ 2X/Y (if a company has X orders
and Y vehicle schedules, then each vehicle schedule has on
average X/Y orders to pick up and drop off, so it may need
to visit 2X/Y locations). So, for each possible order-vehicle
pair we need to check whether it is compatible or not, which
takes 1

2 · 2X/Y · ((2X/Y) − 1) checks, so the overall time
complexity is (mX · (m− 1)Y) · 1

2 · 2X/Y · ((2X/Y)− 1) =
O(m2X3/Y).

Finally, it is fair to say that the number of vehicle sched-
ules of a company should grow linearly with the number of
orders, since each vehicle has a limited capacity. Therefore,
within the big-O notation one can set X equal to Y , which
means that Step 1 has a time complexity of O(m2X2).

5.2 Step 2: determine all order packages

The previous step checked for each individual order whether
it can be delivered by some given other vehicle, but in
general we want to know whether a set of orders can be
exchanged from one vehicle (of one company) to another
vehicle (of another company). However, since the number
of such sets is exponential we only look at a particular
type of order set, which we call an order package. An
order package is a set of orders, originally scheduled in one
vehicle schedule, such that if one removes them from the
schedule, the vehicle can skip a set of consecutive locations.

The idea behind this, is that if a few of the locations to
be visited by a vehicle are close to each other, then one is
most likely to achieve a significant distance reduction if all
of those locations are skipped, and such closely clustered
locations are likely to be visited consecutively in the original
schedule (as demonstrated in Fig. 1).

16924

Multi-objective vehicle routing with automated negotiation

Fig. 1 Skipping a sequence of
consecutive locations
(right-hand image) often yields
a higher distance reduction than
skipping an arbitrary set of
locations (middle image)

If J is a set of jobs, then let Ord(J) denote the set of
all orders that are either picked up or dropped off in any of
the jobs in J .

Definition 10 Let vs = (J0, J1, . . . Jn) be a vehicle
schedule. An order package op from vs is a set of orders
such that there exist two integers k, l with 0 < k < l < n

for which

op = Ord({Jk, Jk+1, . . . Jl})

Step 2 consists in extracting all order packages from the
vehicle schedules of the initial fleet schedules fsi . For each
of these order packages we then calculate the cost savings
sav(op) associated with it. That is, the difference between
the cost of the original vehicle schedule minus the cost of the
new vehicle schedule vs′ obtained by removing all pick-ups
and drop-offs of the orders in op from vs.

sav(op) := c(vs) − c(vs′) (11)

In order to calculate c(vs′) one does not actually need to
determine vs′ itself. Instead, one only needs to know its
total time and distance (see (2)). To calculate the distance
one can simply take vs and remove the locations that are
skipped. Calculating the new time cost is more difficult, so
we simplify it by simply assuming the start time ts,0 of the
first job and then end time te,n of the last job stay the same.
In reality, of course, this may be overly pessimistic, so in
general the true cost savings will be even better than the
calculated ones.

Note that Definition 10 indeed implies that removing an
order package from a vehicle schedule will cause a number
of consecutive locations to be skipped, corresponding to
jobs Jk to Jl , but it may also imply that a number of other
locations are skipped. For example, if some order o is picked
up in Jl , but is dropped off in Jl+2, and no other order is
picked up or dropped off in Jl+2, then Jl+2 will also be
skipped. So, in practice an order package does not always
correspond to a consecutive sequence of locations. This is
not a problem, because it just means that sometimes even
more locations can be skipped than the intended sequence,
which is only an advantage.

Proposition 2 If there are m companies and each com-
pany has X orders, then the time complexity of Step 2 is
O(mX).

Proof Given a vehicle schedule vs, each order package from
vs is uniquely defined by the integers k and l, which can
be any number between 1 and n − 1. Therefore, for each
vehicle schedule there are (n−1)·(n−2)

2 = O(n2) different
order packages. As explained above, n can be estimated as
2X/Y , so the number of order packages obtained from vs
is O(X2/Y 2). Since the order packages are obtained from
each vehicle schedule of each company one has to repeat
this mY times, so there are O(mY · X2/Y 2) = O(mX2/Y)

order packages in total. Furthermore, calculating the cost
savings means summing the distances of all n roads between
the visited locations, and again using n ≈ 2X/Y the
total time complexity of Step 2 is O(mX2/Y · 2X/Y) =
O(mX3/Y 2). Arguing as before that X can be set equal to
Y , this can be simplified to O(mX).

5.3 Step 3: generate one-to-one exchanges

Step 3 takes all order packages from Step 2, and all vehicle
schedules from the initial fleet schedules fsi and combines
them into one-to-one order exchanges.

Definition 11 A one-to-one order exchange or simply
one-to-one exchange ξ is a pair ξ = (op, vs) where op is an
order package of one company, and vs is a vehicle schedule
of another company. A one-to-one exchange is feasible if it
is possible to find a single vehicle schedule vs′ that delivers
all orders of op as well as all orders of vs while satisfying
all relevant time- and capacity constraints (9), (10), and (1).

Definition 12 Let ξ = (op, vs) be some one-to-one
exchange. Then the vehicle schedule vs of ξ is called the
receiving vehicle schedule, which we may also denote as
vsr (ξ). Furthermore, we define the receiving vehicle vr(ξ)

to be the vehicle that was scheduled to execute vs (i.e.
fsi (vr (ξ)) = vs), and the receiving company Cr(ξ) to be
the company that owns the receiving truck.

Similarly, we use the notation op(ξ) to denote the
order package op of ξ , and we define the donating
vehicle schedule vsd(ξ) to be the vehicle schedule that
was originally supposed to pick-up and deliver the orders
in op, the donating vehicle vd(ξ) to be the vehicle that
was supposed to execute the donating vehicle schedule (i.e.
f s(vd(ξ)) = vsd(ξ)), and the donating company Cd(ξ)

to be the company that owns the donating vehicle and the
orders of the order package op.

16925

D. de Jonge et al.

These concepts are illustrated in Fig. 2.
Determining whether a one-to-one exchange (op, vs) is

feasible or not amounts to solving a VRP. For this, we
use an existing VRP-solver from the OR-Tools library by
Google [37]. Specifically, we take the set consisting of all
orders from op and all orders from vs and then ask the VRP-
solver to find a schedule for a single vehicle that delivers
all those orders. If this is indeed possible, the solver will
output a new vehicle schedule vs′. We then calculate the
loss loss(op, vs) for the receiving company, which is the
difference between the cost c(vs ′) of this new schedule
and the cost c(vs) of the original schedule (both calculated
with (2)).

loss(op, vs) = c(vs′) − c(vs) (12)

However, calling the VRP-solver is computationally expen-
sive, so before doing this the results from Step 1 are used to
directly discard many one-to-one exchanges without calling
the solver. Specifically, a pair (op, vs) is only considered if
every order o ∈ op is compatible (Def. 9) with vs. All other
pairs (op, vs) are discarded.

It should be noted, however, that this procedure may dis-
card many one-to-one exchanges that are actually feasible,
because even if some orders of op are not compatible with
vsr it may still be possible to find some vehicle schedule
that does deliver all orders. This is because ‘compatible’
only means that the order can be incorporated in the vehicle
schedule with a few minor adjustments. It does not take into
account that an entirely re-arranged vehicle schedule could
still be found that does succeed in delivering all orders.

After obtaining the set of feasible one-to-one exchanges,
one can again discard many of them. Namely, those that

Fig. 2 These two images illustrate the concept of a one-to-one order
exchange. Left: the two original vehicle schedules for Nestlé (red, the
‘receiving vehicle schedule’) and Pladis (blue, the ‘donating vehicle
schedule’) respectively, before the exchange. Right: the two new
vehicle schedules obtained by removing an order package from Pladis’
vehicle schedule, and adding it to Nestlé’s vehicle schedule. The
exchanged order package involves the three consecutive locations A,
B and C. Note that this exchange yields large savings for Pladis (the
donating company), while yielding only a small distance increase (and
hence financial loss) for Nestlé (the receiving company)

do not yield any overall benefit because the loss for the
receiving company is greater than the savings of the donat-
ing company, i.e. if loss(op, vs) > sav(op).

Proposition 3 If there are m companies and each com-
pany has X orders, then the time complexity of Step 3 is
O(m2X2).

Proof The number of one-to-one exchanges equals the
number of order packages times the number of vehicle
schedules. The first has been calculated to be O(mX2/Y)

and the second is mY , so the number of one-to-one
exchanges is O(m2X2). In the worst case the VRP-solver
needs to be called for each of these. Although calling the
VRP-solver is expensive in practice, and solving a VRP in
general takes exponential time, the formal computational
complexity of this step is only O(1). This is because our
approach only requires solving problem instances with a
single vehicle, and the size of such instances is bounded by
the capacity constraints of the vehicle. This means that the
overall time complexity of Step 3 is O(m2X2).

5.4 Step 4: combine one-to-one exchanges into full
exchanges

After Step 3 one is left with a set of feasible one-to-
one exchanges. Each of these already represents an order
assignment, but many more order assignments can be found
if they are combined, so that multiple order packages can
be exchanged and loaded onto multiple other vehicles.
Furthermore, if there is no form of payment between the
companies, then a single one-to-one exchange would never
be an acceptable deal, because the receiving company only
loses money. But, if the overall benefit of each one-to-one
exchange is positive (i.e. sav(op) > loss(op, vs)) then one
can combine multiple one-to-one exchanges into bundles
that are individually rational.

However, not every such bundle is feasible, because
several one-to-one exchanges may contradict each other.
For example, two different order packages, op1 and op2,
may contain the same order o, and may appear in two
different one-to-one exchanges (op1, vs1) and (op2, vs2)

with different receiving schedules.

Definition 13 A full order exchange ϕ is a set of one-
to-one exchanges, i.e. ϕ = {(op1, vs1), (op2, vs2), . . . (opk,

vsk)}, such that all order packages are mutually disjoint:
opi ∩ opj = ∅ for all i, j ∈ 1 . . . k.

Again, determining the exact set of all full order
exchanges is costly, so we simplify this by only looking for
those sets ϕ that satisfy the following constraint:

16926

Multi-objective vehicle routing with automated negotiation

– If a vehicle v is the receiving vehicle of any one-
to-one exchange in ϕ, then it cannot appear in any
other element of ϕ (neither as donating vehicle, nor as
receiving vehicle).

This constraint not only reduces the size of the set of
possible solutions, but also has one other great advantage: it
means that for any company its total profit from the deal can
be calculated simply as the sum of the profits (or losses) it
makes from the individual elements of ϕ. On the other hand,
if one vehicle acted as a receiver for more than one one-
to-one exchange, then it is not guaranteed that the loss for
that vehicle would be equal to the sum of the losses incurred
from the two individual one-to-one exchanges. In fact, the
combination of the two one-to-one exchanges might not
even be feasible, because the receiving vehicle might not
have the capacity to handle them both. Therefore, thanks to
this constraint, we can define for any company Ci and any
full order exchange ϕ a utility value as follows.

Definition 14 For any company Ci and any one-to-one
exchange ξ = (op, vs) we define its utility ui(ξ) as:

ui(ξ) :=

⎧
⎪⎨

⎪⎩

sav(op) if Ci is the donating company

−loss(op, vs) if Ci is the receiving company

0 otherwise

(13)

and, for any company Ci and any full order exchange ϕ we
define its utility as:

ui(ϕ) :=
∑

ξ∈ϕ

ui(ξ) (14)

Note, in this definition, that sav and loss are both always
non-negative, so a positive loss gives negative utility. Fur-
thermore, note that each full order exchange ϕ corresponds
to a unique assignment αϕ and a fleet schedule fsϕ,i ∈
FSαϕ,i for each company Ci , defined by (15) and (16).

αϕ(o) =
{

Cr(ξ) if o ∈ op for some ξ = (op, vs) ∈ ϕ

α(o) otherwise

(15)

where Cr(ξ) is the receiving company of ξ . That is, all
orders that appear in the order package of any one-to-one
exchange ξ in ϕ should be assigned to receiving company of
that one-to-one exchange, while all other orders are assigned
to their respective owners.

fsϕ,i(v)=

⎧
⎪⎨

⎪⎩

vs′
r if v is the receiving vehicle of some ξ ∈ϕ

vs′
d if v is the donating vehicle of some ξ ∈ϕ

fsi (v) otherwise

(16)

where vs′
r is the vehicle schedule resulting from incorpo-

rating op(ξ) into vsr (ξ) and vs′
d is the vehicle schedule

resulting from removing op(ξ) from vsd(ξ).
Furthermore, note that by (3), (11) and (12), ui(ϕ)

is equal to c(fsi) − c(fsϕ,i), which can be seen as an
approximation for the true cost savings ci(α) − ci(αϕ).

The problem of finding the set of full order exchanges
that are Pareto-optimal can now be modeled as a multi-
objective optimization problem (MOOP), i.e. a constraint
optimization problem with multiple objective functions (one
for each of the m companies involved). That is, given the set
� of all one-to-one exchanges we found in Step 3, we aim
to find those subsets ϕ ⊆ � that are Pareto-optimal with
respect to the objective functions ui(ϕ), under the given
constraints. Formally:

maximize
ϕ∈2Ξ

(u1(ϕ), u2(ϕ), . . . , um(ϕ))

subject to: If ξi, ξj ∈ϕ and i �=j then op(ξi) ∩ op(ξj)=∅.

If ξi, ξj ∈ ϕ and i �= j then vr(ξi) �= vr(ξj)

If ξi, ξj ∈ ϕ then vr(ξi) �= vd(ξj)

In principle, this can be solved with any existing
MOOP algorithm. However, for our specific case we have
implemented our own algorithm which is a multi-objective
variant of And/Or Search [38]. This algorithm is discussed
in Section 6.

As a final step, every full exchange ϕ returned by the
MOOP solver is converted to the corresponding assignment
αϕ , through (15). The set of these assignments in then
returned by the algorithm.

Proposition 4 The time complexity of Step 4 is exponential
in the number of one-to-one exchanges found by Step 3 (at
least, if P �= NP), so it has a time-complexity of O(2m2X2

).

Proof (Sketch) Step 4 entails solving a (multi-objective)
constraint optimization problem with hard constraints. The
simpler problem of finding any solution ϕ that satisfies the
hard constraints is already an NP-hard problem, because
each one-to-one exchange ξ can be seen as a binary variable,
so this is essentially a boolean satisfaction problem. As
we already mentioned in the proof of Proposition 3, the
number of one-to-one exchanges is O(m2X2), so any
algorithm that solves this boolean satisfaction problem has
a computational complexity of O(2m2X2

).

5.5 Discussion

The overall computational complexity of our algorithm is
given simply by the combination of the four steps. We
have seen that Steps 1 and 3 are quadratic (Propositions
1 and 3), Step 2 is linear (Proposition 2), and Step 4 is

16927

D. de Jonge et al.

exponential (Proposition 4), so the overall time-complexity
of our algorithm as a whole is also exponential.

Since it still takes exponential time, one may wonder
what we have actually achieved with our heuristics. The
point is that the problem to be solved in Step 4 is much
simpler than the original problem. Firstly, because the
preceding steps have greatly pruned the search space, and
secondly because the new problem is an ordinary (multi-
objective) constraint optimization problem with linear
objective functions (by (14)). In other words, we have
removed the second layer of complexity that we discussed
at the beginning of this section. As we will see below in
Section 7.4, our algorithm indeed turns out to have a very
low run time in practice.

In summary, our approach is fast for the following reasons:

1. The VRP-solver is only used to evaluate one-to-one
exchanges rather than full exchanges, because one-to-
one exchanges much smaller, and there are a lot less of
them.

2. The number of one-to-one exchanges is reduced by
discarding those that involve non-compatible order-
vehicle pairs.

3. The number of one-to-one exchanges is further reduced
by only considering those that exchange order packages
rather than general sets of orders.

4. The number of one-to-one exchanges is reduced even
further, by discarding those for which the loss is greater
than the savings.

5. Our approach only considers full exchanges in which
vehicles can act either as donating vehicle or receiving
vehicle, but not both, and in which a vehicle can
only receive at most one order package. This has the
advantage that the number of full exchanges is reduced
and that the cost saving of a full solution can be
calculated with a linear formula.

On the other hand, our approach has the disadvantage
that it may be pruning the search space too strongly, because
the constraints that are imposed may also cause a number of
good solutions to be discarded.

The algorithm presented here differs in three major points
from the algorithm we presented earlier in [2]. Namely:

– The current version takes into account service times (the
time it takes to load or unload a vehicle).

– The current version allows any vehicle that was not
scheduled to also act as a receiving vehicle in a one-to-
one exchange (so the receiving vehicle schedule can be
the trivial schedule in which the vehicle never departs
from the depot).

– In the current version, the multi-objective optimization
problem solved by the And/Or search is modeled a bit
differently (see Section 6.3).

6Multi-objective and/or search

In order to execute Step 4 of our algorithm, we need an
algorithm to solve a discrete multi-objective optimization
problem. Many algorithms for such problems exist [39],
but most of them are only approximate and based on
meta-heuristics. To the best of our knowledge, very few
of them can solve the problem exactly, and are able to
deal with domains in which the set of feasible solutions is
very sparse.

For this reason we propose a new algorithm, which is a
multi-objective variation of so-called And/Or Search [38].
And/Or Search is an exact search technique for constraint
optimization problems that exploits the fact that not all
variables depend on each other, which makes ordinary
depth-first search unnecessarily inefficient. We propose a
new variant of this technique, adapted to MOOPs, so, rather
than just returning one solution or all solutions, it returns the
set of Pareto-optimal solutions.

6.1 Ordinary and/or search

This subsection gives a brief overview of the existing
And/Or Search algorithm for single-objective constraint
optimization problems. For a more detailed discussion we
refer to [38]. In the next subsection we will discuss our own
multi-objective variant.

Definition 15 A (single objective) constraint optimiza-
tion problem (COP) is a tuple 〈X ,D, F 〉 where X =
{x1, x2, . . . xN } is a set of variables, D = {D1, D2, . . . DN }
a set of domains, that is, for each variable xi the correspond-
ing domain Di is a set of possible values for that variable,
and F = {f1, f2, . . . fM} is a set of functions, called con-
straints. Each constraint is a map from the cartesian product
of some subset of D, e.g. D2×D3×D7, to the set R∪{−∞}.

Definition 16 Let 〈X ,D, F 〉 be a COP. A full solution, or
simply a solution �x is an element of the Cartesian product of
all domains, i.e. �x ∈ D1×D2×. . . DN . Furthermore, if X ′ is
a subset of X , then a partial solution �x on X ′ is an element
of the Cartesian product of all domains corresponding to the
the variables in X ′. For example, if X ′ = {x2, x3, x7} then
a partial solution on X ′ would be an element from the set
D2 × D3 × D7.

The goal of a COP is to find the full solution �x that
maximizes the objective function f (�x) := ∑M

j=1 fj (πj (�x))

(where πj is the projection operator that projects the full
solution onto the domain of fj).

And/Or search iteratively expands a search tree, consist-
ing of two kinds of nodes, called AND nodes and OR nodes.
The root node is an AND node, the children of any AND

16928

Multi-objective vehicle routing with automated negotiation

node are OR nodes, and the children of any OR node are
AND nodes. Every OR node is labeled with a variable xi of
the COP and will have exactly |Di | children. Each of these
children will be labeled with a different variable assign-
ment xi �→ di where di ∈ Di . The children of an AND
node (which are OR nodes) are each labeled with a different
variable xj .

For ordinary tree search algorithms such as depth-first
search (DFS), each solution corresponds to a linear branch
from the root to a leaf node. In And/Or search, on the other
hand, each solution is represented by a sub-tree rather than
a branch. Specifically, a solution tree τ is a sub-tree of
the fully expanded And/Or search tree σ that satisfies the
following conditions:

– The root of τ is an AND node.
– For each OR node ν in τ , τ also contains exactly one

child of ν.
– For each AND node ν in τ , τ also contains all children

of ν.

If the root of τ is also the root of the full tree σ , then τ

will contain exactly one AND node for each variable of the
problem, so the labels of all the AND nodes in this solution
tree together form a full solution to the COP. Otherwise, the
solution tree just represents a partial solution.

The intuitive idea behind And/Or search is that each
AND node ν corresponds to a partial solution xν consisting
of all labels of all AND nodes in the path from the root
to ν, and that given this partial solution, the rest of the
problem can be simplified by dividing it into several sub-
problems, involving different variables, that can be solved
independently from each other.

The great advantage of And/Or search is that if not
all variables depend on each other, then it is much faster
than DFS because it exploits these independencies. In fact,
in the extreme case that all variables can be optimized
independently from each other, And/Or search can solve a
COP in linear time. On the other hand, in the other extreme
case that all variables depend on all other variables, then
And/Or search cannot exploit any independencies, and it
becomes equivalent to an ordinary depth-first search.

6.2 Ourmulti-objective variant of and/or search

This subsection describes our new variant of And/Or search,
for multi-objective optimization problems.

Definition 17 A multi-objective constraint optimization
problem (with m objectives) is a tuple 〈X ,D, (F1, F2, . . .

Fm)〉, where X and D are as before, but now the constraints
are divided into m different sets Fi = {fi,1, fi,2, . . . fi,Mi

},
which define m different objective functions fi(�x) :=∑

fi,j ∈Fi
fi,j (πj (�x)).

First note that (just as in an ordinary And/Or search) one
can associate with any AND node ν a set of partial solutions
Xν , corresponding to exactly all solution trees with root ν.
The idea of our multi-objective And/Or search, is that for
each AND node ν, it stores a set of solutions pfν , consisting
of exactly those partial solutions in Xν that are Pareto-
optimal (within Xν). We call this set the local Pareto-set of
ν, and it is generated as soon as the subtree under ν is fully
expanded. If ν is a leaf node, then pfν is the singleton set
consisting of the unique partial solution corresponding to ν,
which is exactly the label of ν (i.e. pfν = Xν = {xi �→ di}).
Otherwise, pfν is generated by taking the union of the local
Pareto-sets of all the grandchildren of ν (recall that the
children of ν are OR nodes, so the grandchildren are AND
nodes), then extending each of them with the label of ν, and
then finally removing all dominated elements of this set,
so that pfν is indeed a Pareto-set. Once the entire search
tree has been expanded, the local Pareto-set for the root is
generated. This Pareto-set will then be returned as the output
of the algorithm. Note, however, that often it is not really
necessary to expand the entire search tree, because pruning
techniques such as brand-and-bound can be used.

6.3Multi-objective and/or search applied to our case

We have applied our Multi-Objective And/Or Search to
implement Step 4 of our algorithm. To do this, we modeled
our problem as a MOOP 〈X ,D, (F1, F2 . . . Fm)〉, where m

is the number of companies. X in this case is a set of binary
variables, one for each one-to-one exchange found by Step
3 of our algorithm. That is, X = {x1, x2, . . . xN }, where N

is the number of one-to-one exchanges found, i.e. N = |Ξ |.
These variables are binary, so for each xi its domain is
Di = {0, 1}.

Thus, a solution �x is an N-tuple consisting of zeroes and
ones. Each solution represents a full order exchange ϕ by:
ξj ∈ ϕ iff xj = 1. The constraints are given by Fi = {gi,1,

gi,2, . . . gi,N , h1,2, . . . hN−1,N }, consisting of one soft
constraint gi,j : Dj → R for each variable xj , defined by:

gi,j (xj) = xj · ui(ξj) (17)

with ui as in (13), and one hard constraint hj,k : Dj ×Dk →
{−∞, 0} for every pair of different one-to-one exchanges
ξj , ξk , defined by:

hj,k(xj , xk)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∞ if xj = xk = 1 and
(
op(ξj) ∩ op(ξk) �=∅, or vr (ξj)=vd(ξk), or
vd(ξj) = vr (ξk), or vr (ξj) = vr (ξk)

)

0 otherwise

(18)

Note that (17) says that the utility of one-to-one exchange
ξj contributes to the utility of a solution for company Ci

16929

D. de Jonge et al.

iff ξj is included in that solution (i.e. xj = 1), while the
hard constraints defined by (18) are simply those mentioned
earlier in Section 5.4. Also note that the hard constraints are
the same for each company, so each Fi contains exactly the
same hard constraints h1,2, . . . , hN−1,N .

This MOOP is different from the MOOP that was
presented in our previous paper [2], where each variable
corresponded to a vehicle, rather than a one-to-one order
exchange. However, they represent the same problem of
combining one-to-one order exchanges into a full order
exchange.

7 Experiments

We have tested our algorithm on two data sets. The first one
is the Li & Lim benchmark data set [36], which is one of
the most commonly used benchmarks for vehicle routing
problems. The second data set consists of 10 new test
cases that we generated from real-world data provided to
us by our industrial partners. Furthermore, we performed an
experiment in which we passed the solutions found by our
search algorithm to a number of state-of-the-art automated
negotiation algorithms to demonstrate the feasibility of
automated negotiations applied to our scenario.

7.1 The Li & Lim data set

The Li & Lim data set [36] is a widely used benchmark
for vehicle routing problems. This data set contains 6 types
of test cases, labeled LR1, LC1, LRC1, LR2, LC2, and
LRC2 respectively. The test cases of types LR1 and LR2
have locations that are randomly distributed, while for the
types LC1 and LC2 the locations are clustered. Test cases
of types LRC1 and LRC2 have a combination of random
and clustered locations. The test cases of types LR1, LC1,
and LRC1 have a short time horizon, while the test cases of
types LR2, LC2, and LRC2 have a longer time horizon.

The Li & Lim data set was designed for non-collaborative
vehicle routing, so we had to transform its instances to make
them applicable to a collaborative setting. For this, we took
a similar approach as Wang & Kopfer [13]. That is, we
generated collaborative test cases for two companies, by
combining pairs of instances from the original Li & Lim
data set. In such a collaborative test case, each company
owns a set of orders corresponding to one of the two
original instances. To do this, all locations of one of the two
instances have to be moved by a fixed amount of distance
in one direction, to ensure the two companies do not have
their depots at the same location. For our experiments we
used the instances with 100 orders for each company (i.e.
100 pick-ups and 100 deliveries), and only those of types

LC1, LR1, and LRC1, because Wang & Kopfer observed
that the test cases with longer time horizon do not offer as
much opportunity for collaboration.

We first determined which pairs of original test cases
have the highest potential for improvement by collaboration.
To do this, we considered all combinations of different test
cases of the same type (e.g. there are 10 instances of type
LRC1, so we can make (10·9)/2 = 45 combinations). Since
we used 3 types of test case, we could potentially generate
3 × 45 = 135 different collaborative test cases.

Then, for each of these 135 possible test cases we had to
find out the best way to move the locations of one of the
two original instances. To do this, for each pair of original
instances, we tried to combine them in 32 different ways, by
shifting the second instance in 8 different directions (north,
north-east, east, etc..), and over 4 different distances (30, 45,
60, and 75 ‘units’ of distance). Then, for each of these 32
shifts we used the VRP solver from OR-Tools to calculate
the best collaboration-free solution and the best centralized
collaborative solution, and picked the one for which the
difference was greatest.

Finally, out of the 135 possible test cases, we picked
the 5 best ones of each type (LC1, LR1, and LRC1), so
in the end we used 15 instances for our experiments (by
‘best’ we again mean the instances that had the greatest
difference between the optimal collaboration-free solution
and the optimal centralized solution). They are listed in
Tables 1 and 2.

We have given the collaborative test cases names of
the form ‘A + B (x,y)’ where A and B are the names
of the original test cases, and x and y are the number of
units that instance B was shifted in the x-direction and y-
direction respectively. For example, the test case LC1 2 10
+ LC1 2 4 (30,0), was composed from original test cases
LC1 2 10 and LC1 2 4, and the second of these was shifted
30 units in the x-direction, and 0 units in the y-direction.

7.2 Real-world test cases

As mentioned above, we also generated 10 test cases from
real-world sample data provided to us by our industrial
partners. In each of these test cases the two companies each
had 100 orders to pick up and deliver on the same day. The
total number of locations to be visited by either company
varied among the test cases between 117 and 140. The
average distance between any two locations varied between
189 km and 218 km and the diameter of each graph varied
between 594 km and 680 km. The average volume of the
orders was around 26 pallets. Each vehicle was assumed
to have a maximum volume capacity of 56 pallets and a
maximum weight capacity of 25,000 kg. The average speed
of a vehicle was assumed to be 54 km/hr.

16930

Multi-objective vehicle routing with automated negotiation

Table 1 The first column
shows the name of each test
case

Test case #Assign. #IR (γ̂1, γ̂2) Soc. Welf. Single Obj.

LC1 2 10 + LC1 2 4 (30,0) 449 68 (12% , 8%) 9.92% 16.4%

LC1 2 2 + LC1 2 6 (42,-42) 60 33 (20% , 15%) 13.8% 14.1%

LC1 2 2 + LC1 2 7 (32,-32) 61 18 (20% , 17%) 12.1% 12.1%

LC1 2 4 + LC1 2 7 (-30,0) 354 69 (4% , 5%) 10.6% 15.7%

LC1 2 4 + LC1 2 8 (-30,0) 405 59 (7% , 8%) 10.5% 14.8%

LR1 2 10 + LR1 2 3 (0,-30) 921 146 (3% , 3%) 10.7% 16.7%

LR1 2 10 + LR1 2 8 (0,30) 1011 159 (6% , 5%) 8.78% 15.8%

LR1 2 3 + LR1 2 8 (0,30) 580 122 (4% , 7%) 11.4% 17.9%

LR1 2 5 + LR1 2 8 (0,30) 1351 210 (3% , 5%) 9.24% 15.6%

LR1 2 8 + LR1 2 9 (0,-30) 1309 264 (3% , 3%) 9.84% 15.2%

LRC1 2 1 + LRC1 2 9 (-45,0) 261 51 (11% , 5%) 9.81% 14.6%

LRC1 2 4 + LRC1 2 7 (21,21) 1132 188 (8% , 11%) 7.56% 13.6%

LRC1 2 6 + LRC1 2 7 (-21,-21) 714 172 (5% , 3%) 11.6% 13.6%

LRC1 2 7 + LRC1 2 8 (21,21) 173 35 (9% , 15%) 11.8% 15.3%

LRC1 2 7 + LRC1 2 9 (21,21) 363 71 (5% , 4%) 10.1% 13.4%

Real-World A 496 106 (3% , 5%) 2.97 % 5.99 %

Real-World B 1302 466 (2% , 1%) 6.73 % 7.16 %

Real-World C 133 33 (10% , 14%) 2.16 % 3.47 %

Real-World D 128 75 (6% , 6%) 3.80 % 5.19 %

Real-World E 977 283 (2% , 2%) 4.76 % 7.61 %

Real-World F 352 105 (5% , 7%) 3.22 % 7.16 %

Real-World G 376 74 (3% , 4%) 2.14 % 2.58 %

Real-World H 436 143 (3% , 2%) 3.93 % 7.92 %

Real-World I 1037 257 (1% , 25%) 6.52 % 10.6 %

Real-World J 341 51 (5% , 10%) 3.12 % 4.90 %

The second column shows the number of solutions found by Order Package Search. The third column
shows how many of these solutions were individually rational. The fourth column shows the uniformity of
the solutions found. The fifth column shows the highest relative welfare improvement among the solutions
found, and, for comparison, the final column shows the relative social welfare improvement for the unique
solution found by a Single-objective Search

The most important differences between the real-world
test cases and the Li & Lim test cases are the following:

1. In the real-world test cases a company may have
multiple depots (but each vehicle still needs to return to
the same depot as were it started).

2. The vehicles in the real-world test cases have two types
of constraints: volume and weight, whereas the Li &
Lim test cases only involve one type of constraint.

3. In the real-world test cases most of the orders are picked
up at one of the companies’ depots, while for the Li
& Lim test cases the pick-up locations are typically
entirely different from the depots.

4. In the real-world test cases we assume each company
has access to an unlimited supply of vehicles, while the
Li & Lim test cases involve finite fleets.

The assumption that the companies in the real-world
cases have an unlimited fleet is justified by the fact that

in reality the companies can always rent vehicles from
third parties whenever they do not have enough vehicles
themselves (which indeed happens very often).

The 10 real-world test cases are exactly the same as the
ones that were used for our experiments in [2], but since
several improvements to our algorithm have been made
since then, the results are different.

7.3 Performancemeasures

We have assessed the quality of our algorithm using five
different performance measures. Let � denote the set of
all full order-exchanges found by Step 4 of our algorithm.
Then, our quality measures are the following:

1. The total number of full order-exchanges found with
positive social welfare: |{ϕ ∈ Φ | ∑

i ui(ϕ) > 0}|.
2. The total number of full order-exchanges found that are

individually rational: |{ϕ ∈ Φ | ∀i ui(ϕ) ≥ 0}|.

16931

D. de Jonge et al.

Table 2 Run times (in seconds)
of steps 3 and 4 of the order
package search, compared with
single-objective search

Test Case Step 3 Step 4 Single Obj.

LC1 2 10 + LC1 2 4 (30,0) 60 ± 0 2 ± 0 103 ± 1

LC1 2 2 + LC1 2 6 (42,-42) 6 ± 0 1 ± 0 45 ± 0

LC1 2 2 + LC1 2 7 (32,-32) 6 ± 0 1 ± 0 42 ± 1

LC1 2 4 + LC1 2 7 (-30,0) 40 ± 0 1 ± 0 86 ± 1

LC1 2 4 + LC1 2 8 (-30,0) 45 ± 0 1 ± 0 88 ± 1

LR1 2 10 + LR1 2 3 (0,-30) 41 ± 0 5 ± 0 94 ± 1

LR1 2 10 + LR1 2 8 (0,30) 230 ± 0 1283 ± 449 102 ± 1

LR1 2 3 + LR1 2 8 (0,30) 116 ± 0 111 ± 11 105 ± 1

LR1 2 5 + LR1 2 8 (0,30) 87 ± 0 105 ± 0 102 ± 0

LR1 2 8 + LR1 2 9 (0,-30) 118 ± 0 171 ± 38 94 ± 1

LRC1 2 1 + LRC1 2 9 (-45,0) 19 ± 0 1 ± 0 82 ± 1

LRC1 2 4 + LRC1 2 7 (21,21) 192 ± 0 22 ± 0 89 ± 1

LRC1 2 6 + LRC1 2 7 (-21,-21) 22 ± 0 43 ± 10 82 ± 0

LRC1 2 7 + LRC1 2 8 (21,21) 31 ± 0 1 ± 0 79 ± 1

LRC1 2 7 + LRC1 2 9 (21,21) 26 ± 0 2 ± 0 81 ± 2

Real-World A 37 ± 0 1 ± 0 100 ± 1

Real-World B 16 ± 0 34 ± 0 70 ± 1

Real-World C 12 ± 0 1 ± 0 91 ± 1

Real-World D 23 ± 0 1 ± 0 107 ± 1

Real-World E 9 ± 0 2 ± 0 90 ± 0

Real-World F 25 ± 0 1 ± 0 109 ± 1

Real-World G 44 ± 0 2 ± 0 80 ± 1

Real-World H 33 ± 0 2 ± 0 73 ± 0

Real-World I 14 ± 0 3 ± 0 93 ± 1

Real-World J 16 ± 0 1 ± 0 90 ± 1

3. The diversity among the solutions (γ̂1 and γ̂2, explained
below).

4. The highest relative social welfare improvement among
all full order exchanges found:

max
ϕ∈Φ

∑
i ui(ϕ)

∑
i c(fsi)

· 100%

Note that the numerator represents the total cost savings
of all companies combined, while the denominator
represents the total initial costs of all companies
combined.

5. The time it takes to execute the algorithm.

As explained in Section 3, a negotiation algorithm needs
to have a large set of possible solutions available to propose
to its opponent. Ideally, this set of possible proposals
would be very diverse, with some proposals being very
profitable to the agent itself, some being very profitable to
the opponent, and others somewhere in between. The more
diverse the set of solutions (in terms of utility), the easier it
will be for the agent to follow a smooth, gradual, concession
strategy. We therefore assess the diversity of the Pareto-
frontier as follows. First, let (ϕ1, ϕ2, . . . ϕK) be a sorted list

containing all full order exchanges found by Step 4 of our
algorithm, plus the ‘empty solution’ ∅ representing the case
that there is no exchange of orders. This list is sorted in order
of increasing utility for company Ci , i.e. ui(ϕ1) ≤ ui(ϕ2) ≤
. . . ui(ϕK). We then define the max-gap γi as follows:

γi := max
1≤j<K

ui(ϕj+1) − ui(ϕj)

That is, the largest ‘gap’ between any two neighbors in the
Pareto frontier. The lower this value, the more evenly the
solutions are distributed along the frontier. We also calculate
the largest possible gap between any two solutions: Γi :=
ui(ϕK) − ui(ϕ1) which we then use to calculate the relative
max-gap:

γ̂i := γi

Γi

· 100% (19)

The lower this value, the better the quality of the Pareto-
frontier. See also Fig. 3 for a visualization of this quantity.

7.4 Results

The experiments were performed on a machine with a 12-
core 3.70GHz CPU and 32GB RAM. Our algorithm was

16932

Multi-objective vehicle routing with automated negotiation

Fig. 3 The ‘diversity’ of the Pareto-frontier is measured by the
quantities γ̂1 := γ1/Γ1 and γ̂2 := γ2/Γ2. The lower these values, the
more uniformly the solutions are distributed along the Pareto-frontier

implemented in Java. The results are displayed in Tables 1
and 2.

In Table 1 the first column shows the identifier of each
test case. The second, third, fourth, and fifth column show
the quality measures 1-4 listed in Section 7.3 (the fifth
quality measure is listed in Table 2). In order to compare our
algorithm with the single-objective approach discussed in
the introduction, the last column displays the relative social
welfare improvement of the solution found by the single-
objective approach (obtained with the same VRP-solver as
we used for Step 3).

One main observation from Table 1, is that the results
display high variance among the test cases. For some
test cases we find many more solutions than for others.
Furthermore, we note that for the artificial benchmark
instances by Li & Lim better results are achieved than
for the real-world test cases. For the Li & Lim instances
solutions are found that reduce the combined costs by
between 7% and 14%, while for the real-world test cases
cost reductions are found between 2% and 7%. We also
notice that in most cases the single-objective search is much
better at finding a socially optimal solution, but of course
such a search only returns one solution, while our approach
yields hundreds of alternatives which can be proposed in
the negotiations. Also, it can be seen that in most cases our
approach yields a fairly uniform Pareto-frontier, with values
of γ̂i between 1% and 10%, with only a few exceptions
where this value is higher.

Table 2 displays the average time it took to execute Steps
3 and 4 of our algorithm, as well as the average time for the
single-objective search, for comparison. The time it took to
run Steps 1 and 2 was negligible (typically less than 100
ms.), so they are omitted. All values are averaged over 5
repetitions. The standard errors of these measurements are
also displayed, but in many cases they were so small that
they were rounded off to 0.

Again, one can see very high variance among the test
cases, especially for Step 4. Step 3 took between 6 seconds
and almost 4 minutes, while Step 4 took, in the far majority
of cases, less than 5 seconds but with some exceptions
taking between 1 and 3 minutes, and in one instance even
more than 21 minutes. For the single-objective approach the
VRP solver was given a time-budget of 5 minutes, but it
can be seen that in all cases it converged to a near-optimal
solution in much less time. Finally, one can observe that in
most cases our heuristic approach finished faster than the
single-objective approach, with a few exceptions.

7.5 Negotiations

As explained above, the idea of our heuristic search algo-
rithm, is that its output can be used as the input to a nego-
tiation algorithm. Since automated negotiations have been
studied extensively in the literature there is no point in
discussing how such algorithms can be implemented here.
Instead, the goal of this section is to show empirically that
such algorithms are indeed applicable to our scenario, and
to determine which of them performs best in our scenario.

The experiments in this section were run on the Genius
platform [40], which is arguably the most commonly used
platform for experimentation in the field of automated
negotiation. We used some of the best performing agents
that were submitted to the Automated Negotiating Agents
Competitions (ANAC) of 2017, 2018 and 2019 [28, 41],
which are freely available with Genius. Specifically, the
following agents were used:

– PonPokoAgent Winner of the ‘individual utility’ cate-
gory of 2017.

– AgentHerbWinner of the ‘social welfare’ category of 2018.
– AgreeableAgent2018 Winner of the ‘individual utility’

category of 2018.
– KakeSoba Second place in the ‘individual utility’ cate-

gory of 2019.
– SAGA Third place in the ‘individual utility’ category of

2019.
– FSEGA2019 Second place in the ‘social welfare’ cate-

gory of 2019.

It should be remarked, however, that these agents were
developed for negotiation domains that are slightly different

16933

D. de Jonge et al.

from ours. Firstly, these agents were built under the assump-
tion that each deal is represented as a tuple of values, and
that the utility function is a linear additive function over
these values. Specifically, they assume there is a set of
‘issues’ I = {I1, I2, . . . In}, where each issue Ij is itself a
finite set and each deal ω is a tuple from the Cartesian prod-
uct of the issues ω = (w1, w2, . . . wn) ∈ I1×I2 · · ·×In. The
utility function of each agent ai is then supposed to have the
following form:

Ui(w1, w2, . . . wn) =
n∑

j=1

Ui,j (wj) (20)

where each Ui,j is a function Ij → R. Furthermore,
the utility function is supposed to be normalized, so that
Ui(ω) ∈ [0, 1] for all possible deals ω.

In Section 4.3 it was explained that our scenario can be
seen as a negotiation domain in which each deal ω is an
assignment α, and in which the utility functions are the
negations of the cost functions ci(α). However, this model
does not have the normalized and linear additive structure
required by the ANAC agents.

Nevertheless, with some modification we can still fit our
domain into the required model, simply by modeling it as
a single-issue domain. So, we set I = {I1}, and I1 =
{α1, α2, . . . αK}, where each α is one of the individually
rational assignments returned by our search algorithm. So,
the utility function Ui(ω) of (20) then becomes:

Ui(α) =
1∑

j=1

Ui,j (α) = Ui,1(α)

and we can define Ui,1 as:

Ui,1(α) = ui(ϕ)

ui(ϕmax,i)

with ui as in (14), ϕ the full order exchange corresponding
to α (through (15)), and ϕmax,i the full order exchange found
by our algorithm with highest utility for Ci among those that
are individually rational.

This means that the utility Ui(α) is always a value
between 0 and 1, and the reservation value (i.e. the utility
of the initial assignment) is 0 for each agent (note that we
only use the individually rational assignments, so we ignore
those assignments with utility smaller than zero).3 Recall
that ui(ϕ) is an approximation to ci(α)−ci(α), so this model
is still very close to the model discussed in Section 4.3.

A second major difference, is that the ANAC agents
do not have any knowledge about their opponents’ utility

3Initially, we also performed some experiments in which we also
included all deals that were not individually rational, but it turned out
that some of the agents were not able to handle such domains well, as
they made agreements below their own reservation values.

functions. Therefore, it is not obvious for them whether a
given deal is good or bad. For example, a deal ω that yields a
utility of 0.6 may look good to agent a1, but if the opponent
a2 receives a utility of 0.9 for that same deal, and they could
have made another deal ω′ that yields 0.8 for both agents,
then ω is actually quite unfair to a1. Typically, the agents are
able to infer some information about their opponents’ utility
functions from the offers they make combined with the
knowledge that their utility functions have a linear-additive
structure, but in our case there is no such linear-additive
structure. However, as discussed in Section 3.1, in our
scenario we can actually make estimation of the opponent’s
utility function, so an agent developed specifically for our
scenario might be be able to perform better than the ANAC
agents, by using that knowledge.

To run our experiments, we generated 10 Genius domains,
by taking the output of our algorithm from our 10 real-
world test cases, and transforming these results into Genius’
xml-format4 (although we only used five of them in our
experiments). Then, we used the Genius platform to run a
tournament in which each agent negotiated 15 times against
every other agent (including itself) in each of the first five
test cases (labeled A-E), with a deadline of one minute. The
results are displayed in Table 3. The first column shows
the names of the agents, the second column shows in how
many negotiation sessions the agents successfully came to
an agreement, the third column shows the average utility
obtained by the agents in those cases where an agreement
was made, and the final column shows the average utility
over all negotiation sessions (successful or unsuccessful),
which is exactly the product of columns 2 and 3.

Note that a good negotiator does not necessarily always
strike a deal. After all, in order to enforce a good deal,
one should be able to make a credible threat to walk away
from the negotiation table if the opponent is not willing
to concede enough. Therefore, one should strike a balance
between taking a hard stance demanding a good deal for
oneself, and, on the other hand, being lenient enough to
make a deal acceptable for the opponent. Indeed, Table 3
shows that the two most extreme negotiators are also the two
worst performing ones. AgreeableAgent2018 takes a very
harsh approach which allows it to obtain maximum utility
in those cases that it strikes a deal, but this approach also
leads a high rate of failure, striking a deal in only 30% of the
cases, yielding low overall utility. SAGA, on the other hand,
takes an overly lenient approach which does yield a success
rate of 100%, but at the price that it only receives very
low utility for those deals. We see that the algorithm that
performs overall best is FSEGA2019, which takes a more
balanced approach. We therefore conclude that FSEGA2019

4these will be made publicly available at https://www.iiia.csic.es/
∼davedejonge/homepage/downloads.

16934

https://www.iiia.csic.es/~davedejonge/homepage/downloads
https://www.iiia.csic.es/~davedejonge/homepage/downloads

Multi-objective vehicle routing with automated negotiation

Table 3 Results of negotiation experiments with ANAC agents

Agent name Success Utility if successful Overall utility

FSEGA2019 40% 0.900 0.360

KakeSoba 33% 0.933 0.311

PonPokoAgent 31% 0.982 0.308

AgentHerb 95% 0.319 0.302

AgreeableAgent2018 30% 1.000 0.300

SAGA 100% 0.093 0.093

The second column shows the number of times each agent came to
a deal. The third column shows the average utility obtained by each
agent in case deal was made. The fourth column shows the average
utility over all negotiations, successful or not

would be the best negotiation strategy to employ in our
setting.

In order to test whether the difference between FSEGA2019
and its opponents was statistically significant, we per-
formed, for each of its opponents, a Welch t-test. Indeed,
this test showed that FSEGA 2019 outperformed KakeSoba
with p-value 0.01, that it outperformed PonPokoAgent with
p-value 0.0075, that it outperformed AgentHerb with p-
value 0.001, that it outperformed AgreeableAgent2018 with
p-value 0.002, and that it outperformed SAGA with p-value
2 · 10−48.

7.6 Analysis of results

This section discusses a number of observations that can be
made from the experiments.

Observation 1 There is high variance in the number
of solutions found by our algorithm. This fact is true
for all types of test cases. For example, among the real-
world domains there is one instance for which we find
128 solutions, and one instance for which we find 1302
solutions. Similarly, among the LC1 instances there is one
instance with 60 solutions, and one with 449 solutions.
Therefore, it is difficult to say what exactly causes this high
variance. We will leave it as future work to answer this
question.

Observation 2 Better results are obtained on the Li &
Lim test cases than on the real-world test cases. This
may be partially explained by the fact that in the real-
world test cases most of the orders are picked up at one
of the companies’ depots, while for the Li & Lim test
cases the pick-up locations are typically entirely different
from the depots. This greatly reduces the potential benefit
of collaboration in the real-world test cases, because it
means a company needs to drive much farther to pick up
another company’s order than to pick up its own orders.

Furthermore, this difference can also be seen when looking
at the solutions found by the single-objective search. This
suggests that it is indeed an artifact of the test cases
themselves, rather than our algorithm.

Observation 3 The solutions found by our algorithm are
fairly uniformly distributed. This is a very nice feature
of our algorithm, because it allows a negotiation algorithm
to follow a smooth negotiation strategy that makes very
gradual concessions.

Observation 4 The solution found by the single-
objective search is typically much better than the solu-
tions found by our algorithm (in terms of social welfare).
This is not surprising, given the fact that the single-objective
search can dedicate all computational power towards find-
ing one single optimal solution, whereas our algorithm aims
to find many different solutions. However, it does show that
apparently the socially optimal solution cannot be found
simply by combining one-to-one order exchanges in the way
our approach does. In other words, although our heuris-
tics are efficient, they do tend to miss certain high-quality
solutions.

Observation 5 In most cases our algorithm is faster than
the single-objective search, but with a few exceptions.
The comparison between the run time of the two algorithms
should only be seen as a rough ‘ballpark’ estimation.
Note that it does not even make sense to really compare
them in detail, firstly because the two algorithms do
different things (our algorithm aims to find the Pareto-
frontier, while the single-objective search aims to find a
single optimal solution), and secondly, because the variance
among the problem instances is too large to draw any
general conclusions. Nevertheless, it is important to note
that their respective speeds are of the same order of
magnitude, which allows us to conclude that our approach
is a viable alternative to the single-objective approach.

Observation 6 The run time of Steps 1 and 2 are
negligible compared to Steps 3 and 4. The fact that Step 4
takes much more time than Steps 1 and 2 makes sense, given
that Steps 1 and 2 have quadratic and linear time complexity
respectively, while Step 4 is exponential. What may seem
more surprising, is the fact that Step 3 often takes more time
than Step 4, even though Step 3 only has quadratic time
complexity. However, recall from Section 5.3 that Step 3
involves solving a vehicle routing problem, and even though
this formally only has constant time complexity (because
the VRP instances have bounded size), in practice this is
very costly. It is unlikely that this step can be made any
faster, since it depends on the VRP solver from Google
OR-Tools, which is already highly optimized.

16935

D. de Jonge et al.

Observation 7 The run time of our algorithm displays
very high variance among the various test cases. For any
given test case, the variance in the run times is generally
low (with a few exceptions), but between different test
cases we actually see very high variance, both in the
run time of Step 3 and of Step 4. For Step 4 this can
be easily explained, because the effectiveness of And/Or
Search highly depends on the structure of the problem. If all
variables in the instance depend on each other, then And/Or
search is no more effective than DFS, while if all variables
are completely independent from each other it can solve the
problem in linear time. Therefore, small variations between
instances can yield very large variations in run time.

Furthermore, the effectiveness of And/Or search also
heavily depends on the order in which the variables appear
in the tree. To find the optimal variable ordering our
algorithm uses a non-deterministic heuristic, so this may
sometimes yield less effective orderings.5 This explains
why there are a few test cases for which the variance is
actually high. That is, because in those cases the And/Or
search sometimes (but not always) fails to find the optimal
variable ordering.

For Step 3 it is much more difficult for us to reason about
the origin of the high variance of its run time, because this is
mainly determined by the VRP solver of Google OR-Tools.

Observation 8 our results are different from (but similar
to) the results published in our previous paper [2]. There
are two reasons why the results are different. The first
reason is that we are now taking into account that it takes
time to load or unload a vehicle, which was not taken into
account in our previous paper. This is an extra constraint
that makes the problem more difficult, so we can expect
this to have a negative impact on our results. Secondly, a
number of improvements have been made to our algorithm
(as mentioned in Section 5.5), which have had a positive
effect on the results. Overall, it seems the positive and the
negative effects roughly cancel out against each other, so
the quality of the solutions is similar. Of course, the single-
objective search is only affected by the increased difficulty
of the problem, and indeed for the single-objective search
the results are not as good as those in our previous paper.

Observation 9 The best negotiation algorithm is one
that makes a trade-off between being very hard-headed,
and being very conceding. This is actually well known
in the literature on automated negotiation. However, most
research in this area is based on artificial test cases, so it is

5The outcome of the algorithm is still perfectly deterministic, though.
It is just the run time that may differ as a consequence of this
non-deterministic heuristic.

interesting to see this fact confirmed on real-world test cases
as well. Our experiments indicate that FSEGA 2019 would
be the algorithm that is most applicable to this domain.
Unfortunately, however, we are not aware of any publication
that describes this algorithm, so it is unclear why exactly it
outperforms the others.

Furthermore, it is striking to see how poorly the agent
named SAGA performs compared to the others. Again, we
are not aware of any publications that describe it, so we
can only guess why. One reason may be that it is not able
to handle single-issue domains. After all, many negotiation
algorithms that were developed for ANAC exploit the fact
that the utility functions are linear over the various ‘issues’
of the domain to make better estimations of the opponent’s
utility values. This is not possible, however, in our single-
issue test cases.

7.7 Limitations of our approach

One can identify three main limitations to our approach.
The first, is that the number of solutions, the quality of
the solutions, and the run time all display high variance
among the various test cases. This means that it is difficult to
predict how well the algorithm will perform on any unseen
problem instances. A second limitation, is that the solutions
found by our algorithm are of lower quality than the solution
found by the single-objective search. This is because our
heuristics sometimes prune the search space too strongly,
and therefore discard good solutions. Finally, another main
limitation is that there are a number of real-world constraints
that our algorithm is not taking into account. For example, it
currently does not take into account that truck drivers need
to take a break once in a while. Also, it does not take into
account that trucks may need to be loaded and unloaded in a
last-in-first-out order, which may restrict the order in which
customers can be visited. Solving these shortcomings is left
as future work.

8 Conclusions and future work

We have presented a heuristic algorithm for a problem
that, to the best of our knowledge, has never been studied
before. Namely, a collaborative VRP without any form of
trusted central system and in which the agents do not know
each others’ cost functions, but are able to estimate them.
The goal is, for one agent, to find a large set of potential
exchanges of orders, which can then be used as the input for
a negotiation algorithm. These solutions should ideally be
Pareto-optimal and individually rational.

We have compared our approach with a single-objective
approach and conclude that the two approaches are roughly

16936

Multi-objective vehicle routing with automated negotiation

equally fast. The single-objective approach returns a solu-
tion of higher quality, but has the disadvantage that it only
yields one single solution. Our approach, on the other hand,
yields hundreds of alternatives, which allows the two par-
ties to negotiate about which one they will choose. We
therefore argue that the best approach would actually be a
combination of these two approaches. One could use the
single-objective approach to find and propose a single high-
quality solution, and then use our order package approach to
find many alternative solutions that can be proposed in case
the high-quality solution does not get accepted.

One important remark that should be made, is that it
was argued in [42] that horizontal collaboration between
logistics companies is typically more effective if those
companies have complementary characteristics. In our test
cases, however, this was not the case. Our two industrial
partners are actually very similar, since they produce similar
products, have similar size, and serve similar customers.
This suggests that our algorithm could obtain even better
results if it were applied to a more suitable combination of
companies.

As explained above, there are still a number of real-world
constraints that our algorithm does not take into account,
such as the necessity for drivers to take breaks, and the order
in which the pallets need to be loaded and unloaded. We
leave it as future work to solve this. Furthermore, we would
like to explore the possibility of applying our approach to
ridesharing services such as Uber. After all, ridesharing can
be seen as a kind of co-loading, but with the orders replaced
by humans. Ridesharing has mainly been studied as a single-
objective problem [43], but we think instead it might be
useful to view each driver or customer as a separate agent
that tries to optimize its own individual preferences.

As a final note, we would like to argue for what we
call the BOASE model for automated negotiation. In the
traditional literature it is argued that negotiation algorithms
typically consist of three components: a Bidding strategy,
an Opponent Modeling strategy, and an Acceptance strategy.
This idea is known as the BOA model [44]. However, we
argue that there are two more important components that are
missing from this model, namely Search and Evaluation,
which have received much less attention in the literature.
The Evaluation component would be the algorithm that,
given any potential deal ω, calculates its utility value ui(ω)

for agent ai . In the traditional literature one mainly focused
on domains with linear utility functions, so this calculation
was trivial, but in our case it amounts to solving a VRP. The
Search component would be the algorithm that determines
which of the potential deals should be evaluated by the
Evaluation component. This is important when the number
of such potential proposals in the offer space is astronomical
(as in our case), so one cannot possibly evaluate them
all. Search algorithms have received some attention in the

automated negotiations literature, for example in the ANAC
2014 competition [31], but they still remain relatively little
explored.

Author Contributions

– Dave de Jonge: Conceptualization, Methodology, Software, For-
mal analysis, Investigation, Writing - Original Draft, Visualiza-
tion.

– Filippo Bistaffa: Conceptualization, Software, Formal analysis,
Writing - Review & Editing.

– Jordi Levy: Conceptualization, Formal analysis, Writing - Review
& Editing, Supervision.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work was supported by
project LOGISTAR funded by the E.U. Horizon 2020 Research and
Innovation Programme (Grant Agreement 769142), by project CI-
SUSTAIN funded by the Spanish Ministry of Science and Innovation
(PID2019-104156GB-I00), and by a Juan de la Cierva research grant
from the Spanish Ministry of Science and Innovation (IJC2018-
036443-I).

Availability of Data and Material The Li & Lim Data set that we used
for our experiments is freely available from: https://www.sintef.no/
projectweb/top/pdptw/li-lim-benchmark/

On the other hand, the real-world data set is that we used is
not available, since it consists of highly sensitive strategic data from
real-world companies.

The Genius negotiation domains that we created from the output
of our algorithm can be downloaded from: https://www.iiia.csic.es/∼
davedejonge/homepage/downloads

Code Availability Our code will not be made publicly available,
because we may use it to build a commercial application.

Declarations

Conflicts of Interests The authors have no conflicts of interest to
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ferrell W, Ellis K, Kaminsky P, Rainwater C (2020) Horizontal
collaboration: opportunities for improved logistics planning. Int
J Prod Res 58(14):4267–4284. https://doi.org/10.1080/00207543.
2019.1651457

16937

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.iiia.csic.es/~davedejonge/homepage/downloads
https://www.iiia.csic.es/~davedejonge/homepage/downloads
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/00207543.2019.1651457
https://doi.org/10.1080/00207543.2019.1651457

D. de Jonge et al.

2. de Jonge D, Bistaffa F, Levy J (2021) A heuristic algorithm
for multi-agent vehicle routing with automated negotiation. In:
Proceedings of the 20th international conference on autonomous
agents and multiagent systems (AAMAS 2021). International
Foundation for Autonomous Agents and Multiagent Systems

3. Dantzig GB, Ramser JH (1959) The truck dispatching problem.
Manag Sci 6(1):80–91

4. Clarke G, Wright JW (1964) Scheduling of vehicles from a central
depot to a number of delivery points. Oper Res 12(4):568–581

5. Desrochers M, Lenstra JK, Savelsbergh MWP (1990) A classifi-
cation scheme for vehicle routing and scheduling problems. Eur J
Oper Res 46(3):322–332

6. Toth P, Vigo D (2002) The vehicle routing problem, SIAM
monographs on discrete mathematics and applications, vol 9.
SIAM. https://doi.org/10.1137/1.9780898718515

7. Braekers K, Ramaekers K, Van Nieuwenhuyse I (2016) The
vehicle routing problem: state of the art classification and review.
Comput Ind Eng 99:300–313. https://doi.org/10.1016/j.cie.2015.
12.007

8. Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian
A (2017) New benchmark instances for the capacitated vehicle
routing problem. Eur J Oper Res 257(3):845–858. https://doi.org/
10.1016/j.ejor.2016.08.012, https://www.sciencedirect.com/
science/article/pii/S0377221716306270

9. Savelsbergh MWP, Sol M (1995) The general pickup and delivery
problem. Transp Sci 29(1):17–29

10. Dumas Y, Desrosiers J, Soumis F (1991) The pickup and delivery
problem with time windows. Eur J Oper Res 54(1):7–22

11. Dixit A, Mishra A, Shukla A (2019) Vehicle routing problem with
time windows using meta-heuristic algorithms: a survey. In: Yadav
N, Yadav A, Bansal JC, Deep K, Kim JH (eds) harmony search
and nature inspired optimization algorithms. Springer Singapore,
Singapore, pp 539–546

12. Gansterer M, Hartl RF (2018) Collaborative vehicle routing: a
survey. Eur J Oper Res 268(1):1–12

13. Wang X, Kopfer H (2014) Collaborative transportation planning
of less-than-truckload freight. OR Spectrum 36(2):357–380

14. Wang X, Kopfer H (2015) Rolling horizon planning for a dynamic
collaborative routing problem with full-truckload pickup and
delivery requests. Flex Serv Manuf J 27(4):509–533

15. Wang X, Kopfer H, Gendreau M (2014) Operational transportation
planning of freight forwarding companies in horizontal coalitions.
Eur J Oper Res 237(3):1133–1141

16. Dahl S, Derigs U (2011) Cooperative planning in express
carrier networks - an empirical study on the effectiveness of
a real-time decision support system. Decis Support Syst 51(3):
620–626. https://doi.org/10.1016/j.dss.2011.02.018, http://www.
sciencedirect.com/science/article/pii/S0167923611000947

17. Jozefowiez N, Semet F, Talbi E-G (2008) Multi-objective vehicle
routing problems. Eur J Oper Res 189(2):293–309

18. Ombuki BM, Ross B, Hanshar F (2006) Multi-objective genetic
algorithms for vehicle routing problem with time windows. Appl
Intell 24(1):17–30. https://doi.org/10.1007/s10489-006-6926-z

19. van der Putten S, Robu V, La Poutré H, Jorritsma A, Gal M
(2006) Automating supply chain negotiations using autonomous
agents: A case study in transportation logistics. In: Proceedings
of the fifth international joint conference on autonomous agents
and multiagent systems, AAMAS ’06. ACM, New York, pp 1506–
1513. https://doi.org/10.1145/1160633.1160926

20. Robu V, Noot H, La Poutré H, van Schijndel W-J (April 2011)
A multi-agent platform for auction-based allocation of loads
in transportation logistics. Expert Syst Appl 38(4):3483–3491.
https://doi.org/10.1016/j.eswa.2010.08.136

21. de Jonge D, Sierra C (2012) Automated negotiation for
package delivery. In: Self-Adaptive and Self-Organizing Systems

Workshops (SASOW), 2012 IEEE sixth international conference
on, pp 83–88

22. de Jonge D, Sierra C (2015) NB3: a multilateral negoti-
ation algorithm for large, non-linear agreement spaces with
limited time. Auton Agent Multi-Agent Syst 29(5):896–942.
https://doi.org/10.1007/s10458-014-9271-3

23. Faratin P, Sierra C, Jennings NR (1998) Negotiation decision
functions for autonomous agents. Robot Auton Syst 24(3-4):159–
182. https://doi.org/10.1016/S0921-8890(98)00029-3, http://
www.sciencedirect.com/science/article/pii/S0921889098000293,
Multi-Agent Rationality

24. Rosenschein JS, Zlotkin G (1994) Rules of encounter. The MIT
Press, Cambridge

25. Baarslag T, Hindriks KV, Jonker CM, Kraus S, Lin R (2012)
The first automated negotiating agents competition (ANAC 2010).
In: new trends in agent-based complex automated negotiations,
studies in computational intelligence, vol 383. Springer, pp 113–
135. https://doi.org/10.1007/978-3-642-24696-8 7

26. Fujita K, Aydogan R, Baarslag T, Ito T, Jonker CM (2014) The
fifth automated negotiating agents competition (ANAC 2014). In:
Recent advances in agent-based complex automated negotiation
[revised and extended papers from the 7th international work-
shop on Agent-based Complex Automated Negotiation, ACAN
2014, Paris, France, May 2014], studies in computational intel-
ligence, vol 638. Springer, pp 211–224. https://doi.org/10.1007/
978-3-319-30307-9 13

27. Fujita K, Aydoğan R, Baarslag T, Hindriks K, Ito T, Jonker C
(2017) The sixth automated negotiating agents competition (anac
2015). In: Modern approaches to agent-based complex automated
negotiation. Springer, pp 139–151

28. Aydoğan R, Baarslag T, Fujita K, Mell J, Gratch J, de Jonge
D, Mohammad Y, Nakadai S, Morinaga S, Osawa H, Aranha C,
Jonker CM (2020) Challenges and main results of the automated
negotiating agents competition (anac) 2019. In: Bassiliades N,
Chalkiadakis G, de Jonge D (eds) multi-agent systems and
agreement technologies. Springer International Publishing, Cham,
pp 366–381

29. Mell J, Gratch J, Baarslag T, Aydogan R, Jonker CM (2018)
Results of the first annual human-agent league of the automated
negotiating agents competition. In: Proceedings of the 18th
international conference on Intelligent Virtual Agents, IVA 2018,
Sydney, NSW, Australia, November 05-08, 2018. ACM, pp 23–
28. https://doi.org/10.1145/3267851.3267907

30. de Jonge D, Baarslag T, Aydoğan R, Jonker C, Fujita K, Ito T
(2019) The challenge of negotiation in the game of diplomacy.
In: Lujak M (ed) agreement technologies, 6th international
conference, AT 2018, Bergen, Norway, December 6-7, 2018,
revised selected papers, lecture notes in computer science,
vol 11327. Springer International Publishing, Cham, pp 100–114

31. Baarslag T, Aydoğan R, Hindriks KV, Fuijita K, Ito T, Jonker
CM (2015) The automated negotiating agents competition, 2010-
2015. AI Mag 36(4):115–118. http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2609

32. de Jonge D, Zhang D (2020) Strategic negotiations for
extensive-form games. Auton Agent Multi-Agent Syst 34(1).
https://doi.org/10.1007/s10458-019-09424-y

33. de Jonge D, Sierra C (2017) D-Brane: a diplomacy playing agent
for automated negotiations research. Appl Intell 47(1):158–177.
https://doi.org/10.1007/s10489-017-0919-y

34. Ito T, Klein M, Hattori H (2008) A multi-issue negotiation
protocol among agents with nonlinear utility functions. Multiagent
Grid Syst 4:67–83. http://dl.acm.org/citation.cfm?id=1378675.
1378678

35. de Jonge D, Sierra C (2016) GANGSTER: an automated
negotiator applying genetic algorithms. In: Fukuta N, Ito T, Zhang

16938

https://doi.org/10.1137/1.9780898718515
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.ejor.2016.08.012
https://doi.org/10.1016/j.ejor.2016.08.012
https://www.sciencedirect.com/science/article/pii/S0377221716306270
https://www.sciencedirect.com/science/article/pii/S0377221716306270
https://doi.org/10.1016/j.dss.2011.02.018
http://www.sciencedirect.com/science/article/pii/S0167923611000947
http://www.sciencedirect.com/science/article/pii/S0167923611000947
https://doi.org/10.1007/s10489-006-6926-z
https://doi.org/10.1145/1160633.1160926
https://doi.org/10.1016/j.eswa.2010.08.136
https://doi.org/10.1007/s10458-014-9271-3
https://doi.org/10.1016/S0921-8890(98)00029-3
http://www.sciencedirect.com/science/article/pii/S0921889098000293
http://www.sciencedirect.com/science/article/pii/S0921889098000293
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-319-30307-9_13
https://doi.org/10.1007/978-3-319-30307-9_13
https://doi.org/10.1145/3267851.3267907
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2609
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2609
https://doi.org/10.1007/s10458-019-09424-y
https://doi.org/10.1007/s10489-017-0919-y
http://dl.acm.org/citation.cfm?id=1378675.1378678
http://dl.acm.org/citation.cfm?id=1378675.1378678

Multi-objective vehicle routing with automated negotiation

M, Fujita K, Robu V (eds) recent advances in agent-based complex
automated negotiation, studies in computational intelligence.
Springer International Publishing, pp 225–234. http://www.iiia.
csic.es/davedejonge/homepage/files/articles/Gangster.pdf

36. Li H, Lim A (2003) A metaheuristic for the pickup and delivery
problem with time windows. Int J Artif Intell Tools 12(02):173–
186

37. Perron L, Furnon V (2019) Google or-tools v7.4. https://
developers.google.com/optimization/

38. Marinescu R, Dechter R (2009) AND/OR branch-and-bound
search for combinatorial optimization in graphical mod-
els. Artif Intell 173(16-17):1457–1491. https://doi.org/10.1016/j.
artint.2009.07.003

39. Liu Q, Li X, Liu H, Guo Z (2020) Multi-objective meta-
heuristics for discrete optimization problems: a review of the
state-of-the-art. Appl Soft Comput 93:106382. https://doi.org/10.
1016/j.asoc.2020.106382, https://www.sciencedirect.com/
science/article/pii/S1568494620303227

40. Lin R, Kraus S, Baarslag T, Tykhonov D, Hindriks K, Jonker
CM (2014) Genius: An integrated environment for supporting the
design of generic automated negotiators. Comput Intell 30(1):48–
70. https://doi.org/10.1111/j.1467-8640.2012.00463.x

41. Aydogan R, Fujita K, Baarslag T, Jonker CM, Ito T (2019) ANAC
2018: Repeated multilateral negotiation league. In: Ohsawa

Y, Yada K, Ito T, Takama Y, Sato-Shimokawara E, Abe A,
Mori J, Matsumura N (eds) advances in artificial intelligence -
selected papers from the annual conference of Japanese Society
of Artificial Intelligence (JSAI 2019), Niigata, Japan, 4-7 June
2019, Advances in Intelligent Systems and Computing, vol 1128.
Springer, pp 77–89. https://doi.org/10.1007/978-3-030-39878-1 8

42. Palhazi Cuervo D, Vanovermeire C, Sörensen K (2016) Deter-
mining collaborative profits in coalitions formed by two partners
with varying characteristics. Transp Res Part C: Emerging Tech-
nol 70:171–184. https://doi.org/10.1016/j.trc.2015.12.011, https://
www.sciencedirect.com/science/article/pii/S0968090X15004271

43. Farinelli A, Bicego M, Bistaffa F, Ramchurn SD (2017)
A hierarchical clustering approach to large-scale near-optimal
coalition formation with quality guarantees. Eng Appl Artif Intell
59:170–185. https://doi.org/10.1016/j.engappai.2016.12.018

44. Baarslag T, Hindriks K, Hendrikx M, Dirkzwager A, Jonker C
(2014) Decoupling negotiating agents to explore the space of
negotiation strategies. In: Marsa-Maestre I, Lopez-Carmona MA,
Ito T, Zhang M, Bai Q, Fujita K (eds) Novel Insights in Agent-
based Complex Automated Negotiation. Springer Japan, Tokyo,
pp 61–83

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

16939

http://www.iiia.csic.es/ davedejonge/homepage/files/articles/Gangster.pdf
http://www.iiia.csic.es/ davedejonge/homepage/files/articles/Gangster.pdf
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1016/j.artint.2009.07.003
https://doi.org/10.1016/j.artint.2009.07.003
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1016/j.asoc.2020.106382
https://www.sciencedirect.com/science/article/pii/S1568494620303227
https://www.sciencedirect.com/science/article/pii/S1568494620303227
https://doi.org/10.1111/j.1467-8640.2012.00463.x
https://doi.org/10.1007/978-3-030-39878-1_8
https://doi.org/10.1016/j.trc.2015.12.011
https://www.sciencedirect.com/science/article/pii/S0968090X15004271
https://www.sciencedirect.com/science/article/pii/S0968090X15004271
https://doi.org/10.1016/j.engappai.2016.12.018

	Multi-objective vehicle routing with automated negotiation
	Abstract
	Introduction
	Related work
	Vehicle routing problems
	Collaborative vehicle routing problems
	Multi-objective vehicle routing problems
	Vehicle routing problems with negotiation

	Automated negotiation
	Applying automated negotiations to co-loading and backhauling

	Definitions
	Jobs and schedules
	Cost functions
	Assignments
	Time- and capacity- constraints

	Order package heuristics
	Step 1: find compatible order-vehicle pairs
	Step 2: determine all order packages
	Step 3: generate one-to-one exchanges
	Step 4: combine one-to-one exchanges into full exchanges
	Discussion

	Multi-objective and/or search
	Ordinary and/or search
	Our multi-objective variant of and/or search
	Multi-objective and/or search applied to our case

	Experiments
	The Li & Lim data set
	Real-world test cases
	Performance measures
	Results
	Negotiations
	Analysis of results
	Limitations of our approach

	Conclusions and future work
	Declarations
	References

