
The final publication is available at Springer via https://doi.org/10.1007/s10586-
013-0325-0

2 Juan J. Durillo, Radu Prodan

Noname manuscript No.
(will be inserted by the editor)

Multi-Objective Workflow Scheduling

in Amazon EC2

Juan J. Durillo · Radu Prodan

the date of receipt and acceptance should be inserted later

Abstract Nowadays, scientists and companies are confronted with multiple
competing goals such as makespan in high-performance computing and eco-
nomic cost in Clouds that have to be simultaneously optimised. Multi-objective
scheduling of scientific applications in these systems is therefore receiving in-
creasing research attention. Most existing approaches typically aggregate all
objectives in a single function, defined a-priori without any knowledge about
the problem being solved, which negatively impacts the quality of the solutions.
In contrast, Pareto-based approaches having as outcome a set of (nearly) op-
timal solutions that represent a tradeoff among the different objectives, have
been scarcely studied. In this paper, we analyse MOHEFT, a Pareto-based
list scheduling heuristic that provides the user with a set of tradeoff optimal
solutions from which the one that better suits the user requirements can be
manually selected. We demonstrate the potential of our method for multi-
objective workflow scheduling on the commercial Amazon EC2 Cloud. We
compare the quality of the MOHEFT tradeoff solutions with two state-of-the-
art approaches using different synthetic and real-world workflows: the classical
HEFT algorithm for single-objective scheduling and the SPEA2* genetic algo-
rithm used in multi-objective optimisation problems. The results demonstrate
that our approach is able to compute solutions of higher quality than SPEA2*.
In addition, we show that MOHEFT is more suitable than SPEA2* for work-
flow scheduling in the context of commercial Clouds, since the genetic-based
approach is unable of dealing with some of the constraints imposed by these
systems.

Keywords Workflow scheduling · Cloud · Multi-objective optimisation ·
List-based heuristics

Multi-Objective Workflow Scheduling in Amazon EC2 3

1 Introduction

Many scientists and researches are moving today towards Cloud computing for
achieving high performance computing (HPC). The Cloud paradigm brings a
new operational model in which resources are managed by specialised data
centres and rented on-demand and only for the period they need to be used.
Cost-wise, this new model is becoming very attractive for companies and in-
stitutions because it frees them from permanent hardware overprovisining,
maintenance, and depreciation costs.

In previous e-science research [21], many scientists and researches have
found in scientific workflows, from now on simply referred to as workflows, an
attractive model of building large scale applications for heterogeneous wide-
area parallel and distributed computing systems such as Grids. Typically, a
scientific workflow application [19] consists of several (legacy) programs (re-
ferred from now on as tasks or activities) in the form of a dependency graph,
where the input of some of these programs may depend on the output of the
others. Once the application is composed as a workflow, its performance de-
pends on how the individual tasks are mapped (scheduled) on to the available
parallel and distributed resources. Traditionally in the HPC field, finding an
optimal schedule of the tasks minimising the makespan or completion time of
the whole workflow is the main objective. This represents a major challenge,
since the problem of scheduling a set of different tasks onto a set of het-
erogeneous resources belongs to the class of NP-complete problems [23], and
therefore, no polynomial algorithm for computing the optimal solution exists.
As a consequence, many heuristics and meta-heuristics [4] for approximating
a solution to this problem have been proposed [14,22].

In the context of Cloud computing, the computed mapping must addi-
tionally optimise the economic cost incurred by renting resources. Today,
most commercial Clouds offer heterogeneous types of resources at different
prices and with different performance. For example, in Amazon EC2 (http:
//aws.amazon.com/ec2/pricing/) a user can choose among different types of
instances, where the fastest resource is about eight times more expensive than
the slowest one1. In these circumstances, the workflow scheduling problem has
to be formulated as a multi-objective optimisation problem (MOP) which aims
at optimising at least two conflicting criteria: makespan and economic cost of
workflow’s execution. The main characteristic of MOPs is that no single solu-
tion exists that is optimal with respect to all objectives, but a set of tradeoff
solutions known as Pareto front [6]. Solutions within this set cannot be further
improved in any of the considered objectives without causing the degradation
of at least another objective. Most related work [12,13,2] simplifies workflow
scheduling optimising several competing objectives to a single-objective prob-
lem by aggregating all the objectives in one analytical function. The main
drawback of these approaches is that the aggregation of the different objec-
tives is made a priori, with any knowledge about the workflow, infrastructure,

1 These prices only refer to the Standard On-Demand Instances (September 2013)

4 Juan J. Durillo, Radu Prodan

and in general about the problem being solved. Therefore, the computed so-
lution may not properly capture the user preferences. On the other hand, few
approaches computing the tradeoff solutions have been proposed. Their main
advantage over the aggregative ones is that the user is provided with a set
of optimal solutions from which the one that better suits the requirement or
preferences can be manually selected.

To address this gap, we introduce in this paper a new multi-objective work-
flow scheduling method called Multi-Objective Heterogeneous Earliest Fin-
ish Time (MOHEFT) as an extension to the well-known HEFT [22] mono-
objective workflow scheduling algorithm. Our proposal is a new heuristic-based
method that computes a set of tradeoff solutions with a small additional over-
head compared to the traditional single objective methods. In doing this, MO-
HEFT builds several intermediate workflow schedules in parallel in each step
instead of a single one. To ensure the quality of the tradeoff solutions, MO-
HEFT uses dominance relationships and a metric called crowding distance to
guarantee their diversity. MOHEFT is generic in the number and type of ob-
jectives, applied in this paper for optimising the makespan and economic cost
of running workflow applications in an Amazon-based commercial Cloud.

Although early results [8] demonstrated that MOHEFT can deliver good
results, these experiments were conducted on synthetic simulated resources
and workflows instead of real-world ones. Moreover, they assumed that the
number and type of resources were known beforehand which may be true in
distributed systems in general, but not necessarily in Clouds. While in the-
ory a Cloud user can access an infinite pool of resources, in practice most
providers restrict this number to a maximum of N instances that can be si-
multaneously acquired. For example, in Amazon this maximum number is lim-
ited to N = 20 and could be enlarged through offline communication. Within
this maximum number N , the user flexibly can choose between the different
types of instances offered by the Cloud provider (e.g. m1.small, m1.large,
m1.xlarge, c1.medium, c1.xlarge for Amazon EC2) with different perfor-
mance and prices. The question which instances should compose the set of
maximum size N for running the workflow becomes critical and has no sin-
gle answer, since different combinations produce different tradeoff schedules.
Moreover, the set of N instances does not need to be invariant during the
whole workflow execution. For example, it may occur that one type of in-
stance is particularly good at the beginning of the workflow execution, and
a different type of instance is mostly beneficial towards the end. These addi-
tional constraints imposed by commercial Cloud systems require modifications
to the proposed algorithms originally designed for heterogeneous distributed
computing systems. Additionally, we also aim at highlighting the potential of
the Pareto front as a tool for decision support, analysing how the user can
exploit this information for improving the workflow schedule.

The contributions of this paper can be summarised as follows:

– We introduce a new Pareto-based multi-objective workflow scheduling algo-
rithm for heterogeneous distributed computing systems called MOHEFT;

Multi-Objective Workflow Scheduling in Amazon EC2 5

– We extend MOHEFT for dealing with commercial Cloud computing sys-
tems offering a limited amount of instances and a flexible combination of
instance types;

– We compare the results of MOHEFT with two state-of-the-art algorithms
adapted to the new scenario of commercial Clouds in the context of the
Amazon EC2:
– HEFT [22], a state-of-the-art workflow scheduling algorithm; our goal

is to ensure that our method computes makespan solutions of the same
quality or superior;

– SPEA2* [25], a genetic metaheuristic for computing tradeoff solutions
in the multi-objective optimisation theory.

– We analyse the tradeoff solutions computed by MOHEFT for different
synthetic and real-world workflow applications.

– We analyse the impact of using a different number of resources on the
computed tradeoff solutions.

The paper is organised as follows. The next section describes the related
work, followed by a brief description of Amazon EC2 in Section 3. Section 4
defines the abstract workflow, resource, and problem definition underneath
our approach. Section 5 gives a short background on multi-criteria optimisa-
tion required for a better understanding. In Section 6, we present our multi-
objective workflow scheduling algorithm, adapted to the case of commercial
Clouds. SPEA2*, and the modifications applied for dealing with the Cloud
case are described in Section 7. We present in Section 8 the experimental
setup for evaluating our technique on several synthetic and real-world work-
flows on Amazon EC2 (Section 9). Finally, we summarise the conclusions and
the future work in Section 10.

2 Related Work

Many existing approaches to multi-objective workflow scheduling reduce the
problem to mono-objective optimisation and compute a single solution only.
These approaches differ in the considered objectives and how they are com-
bined into a single one. Moreover, all works assume a heterogeneous comput-
ing system when the number and type of each resource in known beforehand.
In contrast, we address a different constraint raised by existing commercial
Clouds that offer a limited number of resources that can be flexibly instanti-
ated by the offered instance types.

For example, [2,12,13] combine reliability (in terms of resource failures)
and makespan using a weight vector aimed at expressing the user preferences
over these two criteria. The main disadvantage of this method is that the
computed solution depends on the selected weights, which is usually decided
a-priori and without any information about the problem being solved. As only
one solution is computed by this kind of approaches, it may not be satisfactory
for the solved problem if the weights do not capture the user preferences in
an accurate way. In addition, all objective functions have to be normalised to

6 Juan J. Durillo, Radu Prodan

the same interval to properly capture the user preferences, which requires the
optimal solutions be known for each objective.

Other approaches are based on sorting and constraining the different crite-
ria. The idea is to optimise for different objectives in a sequential fashion. Once
an objective has been optimised and no further improvements are possible, the
next objective in the list is considered. The optimisation of this new objective
is carried out so that none of the imposed constrains over the previous criteria
are violated. An example such as approach was proposed in [17] for optimising
makespan and economic cost in utility Grids. The main weakness of this kind
of approaches is that the number of objectives is limited to a few. Further-
more, the order in which the objectives are optimised requires some sort of
preferential information, which may be difficult to derive. These drawbacks are
overcome in [10], where a constraint-based list heuristic is proposed. This ap-
proach is targeted to optimise makespan, economic cost, energy consumption,
and reliability and seeks for an optimal schedule by minimizing the distance
to an ideal point and maximizing the distance to the constraints. A common
problem to all these approaches is, however, that reasonable a-priori values for
the constraints are often unknown until the first schedule is computed.

To the best of our knowledge, most of the approaches computing the whole
Pareto front are based on the use of genetic algorithms. In [25], several state-of-
the-art multi-objective genetic algorithms are analysed. The results show that
these algorithms are able to compute high quality solutions, but require a high
computation time. To overcome this drawback, the authors show that initialis-
ing these algorithms with high quality solutions for each criterion significantly
reduces the time required to compute the set of tradeoff solutions. The com-
putation of these initial solutions is performed using list-based heuristics such
as HEFT for makespan, or customised versions of it for the other criteria.
A bi-objective genetic algorithm is described [15]. This proposal optimises for
makespan and energy consumption in Cloud systems. In [26], an enhanced ver-
sion of the clasical multi-objective genetic algorithm, NSGA-II, is presented.
This proposal includes the use of Quality of Service (QoS) constraints and is
targeted to optimize five different QoS parameters. Multi-objective workflow
scheduling attending to QoS parameters was also addressed with a differential
evolution algorithm in [20]. Another version of NSGA-II, called R-NSGA-II,
is proposed in [11] for optimising makespan, economic cost, and reliability.
The main problem of R-NSGA-II is that it requires the user to specify a refer-
ence point, which may not be easy to derive before the optimisation is done.
NSGA-II is in addition used for optimising makespan, cost, and reliability
under budget constraints in [18].

In [5], a multi-objective list-based heuristic was proposed and applied to
optimising makespan and reliability. In every iteration of the algorithm, a new
set X of solutions is computed. As this set can get quite large, the number of
solutions in every iteration is pruned in order to avoid an exhaustive search.
This pruning is performed using the hypervolume metric indicating the quality
of a set of tradeoff solutions (see Section 5). One problem with this approach is
that the hypervolume is computationally expensive and exponential with the

Multi-Objective Workflow Scheduling in Amazon EC2 7

number of objectives. Another drawback is that the hypervolume needs to be
computed several times in every iteration, thus hiding the main computational
advantage of list-based heuristic methods.

The technique we propose in this paper is a Pareto-based multi-objective
list scheduling heuristic that extends HEFT for computing a set of tradeoff
solutions. The method assures that at least one tradeoff solution is as good
as the one computed by HEFT in terms of makespan. In contrast to [5], we
employ a metric called crowding distance [7] of polynomial complexity with
the number of solutions and the number of objectives to avoid the exhaustive
search and the computationally expensive hypervolume method for pruning
the set of tradeoff solutions. To the best of our knowledge, this is the first
multi-objective optimisation proposal that extends a list-based heuristic for
workflow scheduling in a Cloud computing environment.

3 Amazon EC2 Cloud

Amazon Elastic Computing Cloud (EC2) is an Infrastructure as a Service
(IaaS) environment that opens Amazon’s large computing infrastructure to its
users. The term elastic references the fact that users can expand or shrink their
infrastructure by acquiring/releasing resources or instances. In the following,
we use the terms resource and instance interchangeably.

Currently, Amazon EC2 offers its users three type of instances:

– Reserved Instances, which allow users make a long-term reservation of sev-
eral machines;

– On-Demand Instances, which allow users pay only for the resources they
need and for the time required. Amazon EC2 charges its users per every
hour of computation;

– Spot Instances, which allow users bid for unused Amazon EC2 capacity. In
this mode, users specify the maximum price they are willing to pay for a
resource. If this price is higher than the current spot price, which depends
on the demand for resources, the user acquires the instance. If the spot
price gets higher than the user bid, the instance is reclaimed by Amazon.

Reserved instances are only offered for periods between one and three years
and therefore, can be considered in some sense as machines owned by the
user. In this case, there is little or simply no room for optimising for cost. On
the other hand, spot instances are an interesting mechanism for lowering the
computing cost of many applications, but there is no guarantee of acquiring an
instance if the bid is insufficient. Spot instances introduce therefore reliability
as a third optimisation criterion, defined as the probability of acquiring the
set of instances for the desired duration. In this paper, we focus only on on-
demand instances, leaving the analysis of spot instances for future work.

Amazon EC2 offers fourteen different types of on-demand instances with
different performance and price. The company describes the performance of
these machines in terms of an abstract unit called Elastic Compute Unit

8 Juan J. Durillo, Radu Prodan

Table 1: Performance and price of various Amazon EC2 instances.

Instance Mean performance [GFLOPS] Price [$/h] GFLOPS/$
m1.small 2.0 0.1 19.6
m1.large 7.1 0.4 17.9
m1.xlarge 11.4 0.8 14.2
c1.medium 3.9 0.2 19.6
c1.xlarge 50.0 0.8 62.5

(ECU), equivalent with a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.
In [1], Iosup et al. evaluated the Amazon EC2 resources for scientific comput-
ing and reported the average performance in millions of floating point opera-
tions per second (GFLOPs) of five different instance types thorough extensive
benchmark experimentation. Table 1 summarises the average performance,
the price per hour of computation, and the ratio GFLOPs per invested dollar
of these resources. In this work, we will evaluate our multi-criteria workflow
scheduling method on these five instance types.

4 Model

This section formally describes the workflow, resource, and problem definition
underneath our approach.

4.1 Workflow Model

We model a workflow application as a directed acyclic graph: W = (A,D)
consisting of n tasks (also referred in the remaining of this paper as activities)
A =

⋃n

i=1 {Ai}, interconnected through control flow and data flow dependen-
cies; D = {(Ai, Aj ,Dataij) | (Ai, Aj) ∈ A×A}, where Dataij represents the
size of the data which needs to be transferred from activity Ai to activity Aj .
We use pred(Ai) = {Ak| (Ak, Ai,Dataki) ∈ D} to denote the predecessor set
of activity Ai, (i.e. activities to be completed before starting Ai). Finally, we
assume that the computational workload of every activity Ai is known and is
given by the number of machine instructions required to be executed.

4.2 Resource Model

We assume that our hardware platform consists of a set of m heterogeneous
resources R = ∪m

j=1Rj , which can be of any type as provided by Amazon EC2
(e.g. m1.small, m1.medium, m1.large, m1.xlarge, c1.medium, c1.xlarge).
For a given resource Rj of a certain type, we know its average performance
measured in GFLOPs. In our workflow model we assume that an activity
that is executed in any of these resource can benefit from a parallel execution
using all the virtual cores exposed by the instance, achieving the performance

Multi-Objective Workflow Scheduling in Amazon EC2 9

indicated in the last column of Table 1. The use of any of these resources is
charged per every hour of computation following the Amazon prices indicated
in the third column of that table. The final price is based not only on the
resources’ usage, but also in the data stored and transferred among different
instances which depends on four components:

1. price per hours of resource’s usage PERi
;

2. price per MB of data storage PSRi
;

3. price per MB of data received PIRi
;

4. price per MB of data sent PORi
.

The prices of these components depend on the Cloud provider. Currently,
Amazon EC2 does not charge for internal data transfers among EC2 instances
which do not require a public IP address, i.e. which do not require to be pub-
licly reachable from Internet. Amazon EC2 also does not charge for incoming
data from Internet to EC2 instances. In the case of outgoing data, the first
GB transferred each month is free, and up to 10TB of information can be
transferred at a relative low price of 0.120$ per GB. For the data storage, the
price charged by Amazon EC2 is 0.10$ per stored GB.

Finally, commercial Clouds such as Amazon EC2 introduce new constraints
that must be included in the resource model. While in theory a user can
access an infinite pool of resources, in practice most providers restrict this
number to a maximum of N instances that can be simultaneously acquired.
For example, in case of Amazon this maximum number is limited to 20 and
can be enlarged through offline communication. Within this maximum number
N , the user can flexibly choose between the different types of instances with
different performance and prices. The question which instances to compose
the set of maximum size N for running the workflow becomes critical and
has no single answer since different systems of maximum size N will produce
different tradeoff schedules. Moreover, the set of N instances does not have to
be invariant during the whole workflow execution. For example, it may occur
that one type of instance is particularly good at the beginning of the workflow
execution, and a different type of instance the most beneficial at the end.

4.3 Problem Definition

Our problem consists in scheduling the execution of the workflow tasks on
the Amazon resources such that the makespan and the economic costs are
minimised. In the rest of this paper, we will use sched(Ai) to denote the
resource on which the task Ai is scheduled to be executed. We describe in the
following how the two objectives of interest are computed.

4.3.1 Makespan

For computing the workflow makespan, it is first necessary to define the ex-
ecution time t(Ai,Rj) of an activity Ai on a resource Rj = sched (Ai) as the

10 Juan J. Durillo, Radu Prodan

sum of the time required for transferring the biggest input data from any
Ap ∈ pred (Ap) and the time required to complete Ai in Rj :

t(Ai,Rj) = max
Ap∈pred(Ai)

{

Datapi

bpj

}

+
workload (Ai)

sj
, (1)

where Datapi is the size of the data to be transferred between Ap and Ai,
bpj is the bandwidth of one TCP stream between the resource where task Ap

was executed and the resource Rj , workload(Ai) the length of the task Ai

in machine instructions, and sj the speed of the resource Rj in number of
machine instructions per second. Next, we can compute the completion time
TAi

of activity Ai considering the execution time of itself and its predecessors:

TAi
=

{

t(Ai,sched(Ai)), pred (Ai) = ∅;
max

Ap∈pred(Ai)

{

TAp
+ t(Ai,sched(Ai))

}

, pred (Ai) 6= ∅. (2)

The workflow makespan is finally defined as the maximum completion time of
all the activities in the workflow:

TW = max
i∈[1,n]

{

T(Ai,sched(Ai))

}

. (3)

4.3.2 Economic Cost

The economic cost depends on two terms: the computation cost C(comp) and
the cost of data transfer and storage C(data).

We define C
(data)
(Ai,Rj)

as the cost of the data transfers In(Ai) and Out (Ai)

and storage Data (Ai) resulting from executing activity Ai on resource Rj :

C
(data)
(Ai,Rj)

= Data (Ai) · t(Ai,Rj) · PSRi
+ In(Ai) · PIRi

+Out (Ai) · PORi
, (4)

In defining the cost C
(comp)
Rj

of using a resource Rj , we assume that for

each task Ai executed on Rj we record two timestamps: t
(start)
Ai

when the

activity starts and t
(end)
Ai

when the activity finishes its execution. The value

t
(end)
Ai

can be computed as t
(start)
Ai

+ t(Ai,Rj) + maxAi∈pred(Ap)

{

Dataip

bjp

}

. We

therefore consider that the times for transferring the input In (Ai) and the

output data Out (Ai) are included in the interval between t
(start)
Ai

and t
(end)
Ai

.
In other words, these time stamps indicate the period of time on which the
resource Rj needs to be active due to the execution of the activity Ai.

Let us consider now the set of all p activities scheduled on resource Rj

denoted as {J1, . . . , Jp}, where p < n and sched (Ji) = Rj , i ∈ [1, p], sorted

based on their start timestamp: t
(start)
J1

< . . . < t
(start)
Jp

. Based on this ordering,

we cluster these activities in q ≤ p different groups G
(j)
k , 1 ≤ k ≤ q, so that

all activities in one group are executed consecutively without releasing the
resource. After the activity with the largest start timestamp in the group
completes, the resource is released.

Multi-Objective Workflow Scheduling in Amazon EC2 11

We construct the first group G
(j)
1 = {J1, . . . , Jr} , r ≤ p, based on the

following three rules:

1. The first activity J1 belongs to the first group: J1 ∈ G
(j)
1 ;

2. Every activity Ji ∈ G
(j)
1 , 2 ≤ i ≤ r completes before the resource is re-

leased. This means that Ji starts when the resource is still leased because
of the execution of Ji−1:

t
(start)
Ji

< t
(start)
J1

+

⌈

t
(end)
Ji−1

− t
(start)
J1

3600

⌉

· 3600. (5)

We divide the total time in seconds of using a resource by 3600 in order
to convert it to hours, and use the ceiling operator to round this value to
complete hours of computation. Obviously, the resource will be rented for
as many hours as required for finishing all the activities within this group.

3. The next activity (not part of the previous group) Jr+1 6∈ G
(j)
1 , r + 1 ≤

p starts in an instant of time tstartJr+1
when the resource has been already

released, i.e., task Jr has finished its execution, the last rented period of
one hour for executing Jr has expired, and the resource Rj was not needed
in the period of time elapsed between tendJr

and tstartJr+1
. Mathematically, it

can be expressed as:

t
(start)
J1

+

⌈

t
(end)
Jr

− t
(start)
J1

3600

⌉

· 3600 < t
(start)
Jr+1

. (6)

Successive groups are built until the last activity Jp has been assigned to

one group. The second group G
(j)
2 is constructed in the same way starting

from the task Jr+1 instead of J1. The same strategy is used for the rest of the

groups. Once all the groups have been created, we define the cost C
(comp)
Rj

of
using the resource Rj as the number hours required for executing all groups
multiplied by the cost per hour:

C
(comp)
Rj

= PERj
·

q
∑

k=1

∑

Ai∈G
(k)
Rj

t(Ai,Rj)

3600

. (7)

We compute the economic cost of executing the entire workflow W =
(A,D) as the computation cost on all m resources plus the cost for transferring
and storing the data:

CW =

m
∑

j=1

C
(comp)
Rj

+
∑

(Ai,Aj ,Dataij)∈D

C
(data)
(Ai,Rj)

. (8)

12 Juan J. Durillo, Radu Prodan

Fig. 1: Comparison of multi-objective tradeoff solutions.

5 Multi-Objective Optimisation Background

In this section, we introduce a few concepts from the multi-objective optimisa-
tion theory for a better understanding of this work. We assume without loss of
generality that minimisation is the goal for all objectives, as any maximisation
problem can be defined in terms of a minimisation too.

A general multi-objective optimisation problem can be formally defined as
follows: find all the solutions x which minimise the vector function f(x) =
[f1(x), f2(x), . . . , fo(x)], where o represents the number of objectives to be op-
timised (two in our case, makespan and cost). Every solution x in our problem
consists of two vectors: a vector of n components (x1, . . . , xn), being n the
number of activities in the workflow (n = |A|) and xi = sched (Ai) the re-
source where the activity Ai ∈ A will be executed; and a permutation p of size
n representing the order in which those activities will execute.

As it is not possible to find a solution that minimises both makespan
and economic cost simultaneously, we introduce the concept of dominance. A
solution y dominates a solution z, if the makespan and economic cost of y are
smaller than those of z. Conversely, two solutions are said to be non-dominated
whenever none of them dominates the other (i.e. one is better in makespan and
the other is better in cost). In Fig. 1 (left) for example, the solution labelled
a dominates the one labelled b because it has better makespan and economic
cost. Similarly, a dominates c. Meanwhile, a and d are non-dominated because
a is better in makespan, but d is better in economic cost. The set of optimal
non-dominated solutions is called Pareto front (the trend line containing the
a, d, and e solutions) and represents a set of tradeoff solutions among the
different objectives. Every solution in this set represents a different mapping
of the workflow tasks with different makespans and costs.

Multi-Objective Workflow Scheduling in Amazon EC2 13

A Pareto front can be seen as a tool for decision support and preference
discovery. Its shape can provide insight to researches or scientists (from now
decision makers), allowing them in many cases to explore the possible space
of non-dominated solutions with certain properties, and possibly revealing re-
gions of particular interest which cannot be seen until the Pareto front is com-
puted and visualised. This way, the users do not have to set their preferences
before finding a solution, instead the preferences are discovered afterwards.
Nevertheless, not all Pareto fronts are valid. A good Pareto front is one which
provides accuracy (solutions close the optimal ones) and diversity (uniformly
cover all the possible ranges of optimal solutions). A way of measuring the
quality of a set of tradeoff solutions is the hypervolume. Given a set of tradeoff
solutions X, the hypervolume HV (X) measures the area enclosed between the
points in X and a reference point W (see Fig. 1), usually selected as the max-
imum objective value (e.g. highest makespan and economic cost). Therefore,
the better and the more diverse the points contained in X are, the higher
HV (X). In Fig. 1, the set containing the solid round points is better than
the set containing the solutions presented by squared shapes; therefore, the
hypervolume of the set containing all the solid round points is higher than the
set containing the solutions presented by squared shapes.

6 MOHEFT: Multi-Objective Heterogeneous Earliest Finish Time

Algorithm

In this section we describe the MOHEFT algorithm as an extension to the
HEFT list-based scheduling algorithm for optimising workflow makespan. For
a better understanding, we start by describing HEFT and extend it after-
wards for dealing with multiple objectives. After presenting both techniques,
we describe how they can be extended for commercial Clouds.

6.1 HEFT: Heterogeneous Earliest Finish Time Algorithm

The Heterogeneous Earliest Finish Time Algorithm (HEFT) is a popular list-
based heuristic scheduling algorithm for optimising the makespan [22] in work-
flow applications, described in pseudo-code in Algorithm 1. The method con-
sists of two phases: ranking and mapping. In the ranking phase (line 2), the
order in which the activities are being mapped is computed using the B-rank
metric (distance of the activity to the end of the workflow). The idea of this
ranking is to execute before those tasks having more dependent tasks than
others. Further details about how to sort the tasks can be found in [22]. Once
the execution order is determined, the second phase consists in assigning each
task to the resources (lines 4–14) following the order computed in the first
phase. For each task (line 4) and for each resource (line 6), the completion
time of that task on that resource is computed (line 7). Finally, the task is
mapped onto the resource where it is finished earlier (line 13). After all tasks
have been mapped, the workflow schedule is returned (line 15).

14 Juan J. Durillo, Radu Prodan

Algorithm 1 HEFT algorithm.

Require: W = (A,D), A =
⋃n

i=1 Ai ⊲ Workflow application
Require: R =

⋃m
j=1 Rj ⊲ Set of resources

Ensure: schedW = {(Ai, sched (Ai)) |∀Ai ∈ A} ⊲ Workflow schedule
1: function HEFT(W ,R)
2: Rank ← B-rank(A) ⊲ Order the tasks according to B-rank
3: schedW ← ∅ ⊲ Initialize workflow schedule with empty set
4: for i← 1, n do ⊲ Iterate over the ranked tasks
5: Tmin ←∞
6: for j ← 1,m do ⊲ Iterate over all resources

7: TRanki
← max

Ap∈pred(Ranki)

{

TAp + t(Ranki,Rj)

}

⊲ Compute completion of Ranki

8: if TRanki
< Tmin then ⊲ Save the minimum completion time

9: Tmin ← TRanki
10: Rmin ← Rj

11: end if

12: end for

13: schedW ← schedW ∪ (Ranki, Rmin) ⊲ Schedule the task
14: end for

15: return schedW

16: end function

6.2 MOHEFT: Multi-Objective Heterogeneous Earliest Finish Time
Algorithm

As described in the previous section, HEFT builds a solution by iteratively
mapping the workflow tasks onto resources. That mapping is aimed at min-
imising the completion time of every single task, so in every iteration only the
resource which minimises this goal is considered. When multiple objectives
are considered, the goal is to compute a set of tradeoff solutions. To this end,
we must allow the creation of several solutions at the same time instead of
building a single solution. Additionally, instead of mapping every task onto
the resource where it is finished earlier, we should allow mapping of tasks also
to resources that provide a tradeoff between the considered objectives.

The MOHEFT algorithm extends HEFT with these ideas, as depicted in
pseudocode in Algorithm 2. The only additional input parameter of MOHEFT
is the size of the set of tradeoff solutions K. Similar to HEFT, our new method
ranks first the tasks using the B-rank metric (line 2). However, instead of
creating an empty solution as in HEFT, it creates a set S of K empty solutions
(lines 3–5). Afterwards, the mapping phase of MOHEFT begins (lines 6–16).
MOHEFT iterates first over the list of tasks (line 6) sorted by the execution
order. The idea is to extend every solution in S by mapping the next task
to be executed onto all m possible resources and store them in a temporal
set S′ which is initially empty (line 7). For creating these new solutions, we
iterate over the set of resources (line 8) and the set S (line 9), and add the
new extended intermediate schedules to the new set S′ (line 11). This strategy
results in an exhaustive search if we do not include any restrictions. Therefore,
we save only the best K tradeoffs solutions from the temporary set S′ to the
set S (lines 14–15). We consider that a solution belongs to the best tradeoff if
it is not dominated by any other solution and if it contributes to the diversity
of the set. For this last criterion, we employ the crowding distance defined

Multi-Objective Workflow Scheduling in Amazon EC2 15

Algorithm 2 MOHEFT algorithm.

Require: W = (A,D), A =
⋃n

i=1 Ai ⊲ Workflow application
Require: R =

⋃m
j=1 Rj ⊲ Set of resources

Require: K ⊲ Number of tradeoff schedules
Ensure: S =

⋃K
i=1 schedW , schedW = {(Ai, sched (Ai)) |∀Ai ∈ A}⊲ Set of K tradeoff schedules

1: function MOHEFT(W ,R,K)
2: Rank ← B-rank(A) ⊲ Order the tasks according to B-rank
3: for k ← 1, K do ⊲ Create K empty workflow schedules
4: Sk ← ∅
5: end for

6: for i← 1, n do ⊲ Iterate over the ranked tasks
7: S′ ← ∅
8: for j ← 1,m do ⊲ Iterate over all resources
9: for k ← 1, K do ⊲ Iterate over all tradeoff schedules
10: s← Sk ∪ (Ranki, Rj) ⊲ Extend all intermediate schedules
11: S′ ← S′ ∪ {s} ⊲ Add new mapping to all intermediate schedules
12: end for

13: end for

14: S′ ← sortCrowdDist(S′, K) ⊲ Sort according to crowding distance
15: S ← First(S′, K) ⊲ Choose K schedules with highest crowding distance
16: end for

17: return S
18: end function

in [7] and graphically depicted in Fig. 1, which gives a measure of the area
surrounding a solution where no other tradeoff solution is placed. Our criterion
is to prefer solutions with a higher crowding distance, since this means that the
set represents a wider area of different tradeoff solutions. After assigning all
the tasks (line 17), the algorithm returns the set of K best tradeoff solutions.

6.3 Cloud-aware Extensions

The HEFT algorithm was originally intended for workflow scheduling in het-
erogeneous computing systems in which the number and type of resources are
known beforehand. MOHEFT works in the same way, requiring the number
and type of each resource before its execution. In this section, we extend these
two algorithms to deal with the new resource model encountered in commercial
such as Amazon EC2 which constrain the total amount of resources to a cer-
tain number, and leave their type of resources to be flexibly chosen depending
on demand (see Section 4.2).

To deal with this new scenario, we extended HEFT and MOHEFT to
consider the input number of resources as m = N · I, where I is the number
of instance types offered by the provider. By doing so, we ensure that all
combinations of resources of maximum size N are possible. Additionally, we
must extend the algorithms to discard any non-valid schedule that use more
than N simultaneous resources by setting the corresponding objective value
for makespan and cost to infinite.

Algorithm 3 contains the pseudocode of the Cloud-aware HEFT algorithm.
The only difference to the original HEFT is in lines 7–11. While the original
version always computed the makespan of every new partial schedule, the
Cloud-aware version checks if the partial schedule requires more than N re-

16 Juan J. Durillo, Radu Prodan

Algorithm 3 Cloud-aware HEFT algorithm.

Require: W = (A,D), A =
⋃n

i=1 Ai ⊲ Workflow application
Require: N ⊲ Maximum simultaneous instances
Require: I ⊲ Number of different instance types
Require: R =

⋃m
j=1 Rj ⊲ Set of resources, where m = N · I

Ensure: schedW = {(Ai, sched (Ai)) |∀Ai ∈ A} ⊲ Workflow schedule
1: function HEFT(W ,R)
2: Rank ← B-rank(A) ⊲ Order the tasks according to B-rank
3: schedW ← ∅ ⊲ Initialize workflow schedule with empty set
4: for i← 1, n do ⊲ Iterate over the ranked tasks
5: Tmin ←∞
6: for j ← 1,m do ⊲ Iterate over all resources
7: if countResources(schedW ,m) ≤ N then ⊲ Less than N instances used

8: TRanki
← max

Ap∈pred(Ranki)

{

TAp + t(Ranki,Rj)

}

⊲ Compute completion of Ranki

9: else

10: TRanki
←∞ ⊲ Mark schedule as non-valid

11: end if

12: if TRanki
< Tmin then ⊲ Save the minimum completion time

13: Tmin ← TRanki
14: Rmin ← Rj

15: end if

16: end for

17: schedW ← schedW ∪ (Ranki, Rmin) ⊲ Schedule the task
18: end for

19: return schedW

20: end function

sources (line 7). If not, its makespan is computed as in HEFT (line 8), otherwise
the makespan of that solution is set to infinite (line 10). This way, non-valid
schedules will never verify the condition in line 12 and will be discarded in
favour of the ones requiring less than N simultaneous instances.

The pseudocode of the Cloud-aware version of MOHEFT is described in
Algorithm 4. The only difference to the original version is in lines 11–14. As in
the Cloud-aware HEFT, the constraint on the number of resources is checked in
line 11. If the constraint is not violated, the makespan and cost are computed
as before, otherwise they are set to infinite. This will cause the algorithm to
discard that solutions later on in line 18, producing only tradeoff solutions
which consider at most N instances simultaneously.

6.4 MOHEFT Complexity

Given a set of n activities and m resources, the computational complexity
of HEFT is O(n · m). MOHEFT only introduces two main differences with
respect to HEFT: the creation of several solutions in each iteration of the
algorithm, and the possibility of considering resources providing a tradeoff so-
lution. These two modifications only require an additional loop in MOHEFT
(see Algorithm 2, lines 9−11). Considering that the set of tradeoff solutions is
K, the extra loop in MOHEFT performs only K iterations, rendering a com-
plexity of O(n ·m ·K). Usually, the number of tradeoff solutions is a constant
much lower than n and m. For example, a workflow can be composed of thou-
sands of tasks and the set of tradeoff solutions can be accurately represented

Multi-Objective Workflow Scheduling in Amazon EC2 17

Algorithm 4 Cloud-aware MOHEFT algorithm.

Require: W = (A,D), A =
⋃n

i=1 Ai ⊲ Workflow application
Require: N ⊲ Maximum simultaneous instances
Require: I ⊲ Number of different instance types
Require: R =

⋃m
j=1 Rj ⊲ Set of resources, where m = N · I

Require: K ⊲ Number of tradeoff solutions
Ensure: S =

⋃K
i=1 schedW , schedW = {(Ai, sched (Ai)) |∀Ai ∈ A}⊲ Set of K tradeoff schedules

1: function MOHEFT(W ,R,K)
2: Rank ← B-rank(A) ⊲ Order the tasks according to B-rank
3: for k ← 1, K do ⊲ Create K empty workflow schedules
4: Sk ← ∅
5: end for

6: for i← 1, n do ⊲ Iterate over the ranked tasks
7: S′ ← ∅
8: for j ← 1,m do ⊲ Iterate over all resources
9: for k ← 1, K do ⊲ Iterate over all tradeoff schedules
10: s← Sk ∪ (Ranki, Rj) ⊲ Extend all intermediate schedules
11: if countResources(schedW ,m) > N then ⊲ More than N instances used
12: Ts ←∞ ⊲ Mark schedule as non-valid
13: Cs ←∞
14: end if

15: S′ ← S′ ∪ {s} ⊲ Add new mapping to all intermediate schedules
16: end for

17: end for

18: S′ ← sortCrowdDist(S′, K) ⊲ Sort according to crowding distance
19: S ← First(S′, K) ⊲ Choose K schedules with highest crowding distance
20: end for

21: return S
22: end function

with tens of solutions. Thus, the complexity can be approximated as almost
O(n ·m), as in HEFT. In the case of the Cloud extensions, the only difference
is on the number of resources; this way, the complexity stays the same as in
the original algorithms.

7 The SPEA2* Algorithm

In this section we introduce SPEA2*, the multi-objective workflow scheduler
algorithm MOHEFT and HEFT are compared with in this work.

SPEA2* [25] is a version of SPEA2, a genetic algorithm proposed in [27].
SPEA2* was shown to outperform NSGA-II and PAES for multi-objective
workflow scheduling in [25]. This algorithm works with a population (set)
P of candidate solutions which are iteratively recombined with the aim of
evolving them towards the optima. The pseudo-code of SPEA2* is presented
in Algorithm 5.

The algorithm requires the same input parameters as the cloud version
of MOHEFT (see Section 6.3). The number K of desired tradeoff solutions
is used by SPEA2* as the population size. At the beginning, the method is
initialised with a nearly-optimal solution in terms of makespan (computed
using the cloud version of HEFT) and in terms of economic cost (computed
with a heuristic aimed at optimising cost) in lines 1 and 2. The rest of the
population, up to K solutions, is filled with randomly generated schedules
(lines 3 to 5). After that, the main loop of the algorithm is run until a

18 Juan J. Durillo, Radu Prodan

Algorithm 5 Pseudocode of SPEA2.

Require: W = (A,D), A =
⋃n

i=1 Ai ⊲ Workflow application
Require: N ⊲ Maximum simultaneous instances
Require: I ⊲ Number of different instance types
Require: R =

⋃m
j=1 Rj ⊲ Set of resources, where m = N · I

Require: K ⊲ Number of tradeoff solutions
1: P ← heft(W,N,I,R)
2: P ← P ;∪ heftc(W,N,I,R) ⊲ heftc is a list-heuristic for optimising cost. See [25]
3: while |P | < K do

4: P ← P∪ generateRandomSchedule() ⊲ Includes a random scheduler in the population
P

5: end while

6: while not terminationCondition() do

7: parents ← binaryTournament(P)
8: P ′ ← crossover(parents)
9: mutate(P ′)
10: evaluate(P ′)
11: evaluateConstraints(P ′)
12: R ← P ∪ P ′

13: P ← truncate(R,K)
14: end while return P

termination condition is met (lines 6 to 14). Here, we consider as termination
condition to execute this loop for a maximum of 1000 iterations (ten times
more than the iterations done in [25]).

The work carried out within the main loop is the same as in the original
SPEA2 evolutionary algorithm. Firstly, a set of good solutions are selected
from P for generating new solutions (line 7); this set is usually referred in
the context of evolutionary algorithms as parents. Immediately after, the solu-
tions within the parents set are recombined using a stochastic recombination
operator (line 8), which depends on how the solutions to the problem are
codified. In this work, each schedule is codified with two strings: the task-
assignment string, which indicates on which resource is executed each tasks;
and, the scheduling-order string, which indicates the order in which tasks are
executed. As recombination operator we use a two-points crossover, which
combines parts of the tasks-assignment strings of two parents. Further details
about the codification and operator are included in [25] and have been omit-
ted here for brevity. As a result of applying recombination to the parents, a
new set of solutions P ′ is generated. All the solutions in this set are later on
modified by means of another operator, called mutation (line 9); the goal of
this operator is to promote the exploration of a wider area of the search space.
In particular, SPEA2* uses two types of mutation operators: reordering mu-
tation, and replacing mutation; the former is aimed at changing the execution
order of the tasks and the latter to re-allocate tasks into different resources
(see [25]). The schedules in P ′ are then evaluated in order to compute their
makespan and cost (line 10). Once evaluated, P ′ and P are merged (line 12),
and the best K schedules out of P ′ ∪P become the population P for the next
iteration of the loop 13. This selection is called in SPEA2 truncation and the
idea is to prioritize non-dominated schedules and schedules that increase the
diversity of the Pareto set (see [27] for additional details).

Multi-Objective Workflow Scheduling in Amazon EC2 19

We slightly modified SPEA2* in order to deal with the limitation imposed
by commercial Clouds on the maximum number of simultaneous resources.
As with HEFT and MOHEFT, we consider that the set of resources consists
of m = N · I instances (20 · 5 in our particular example). We enhanced the
algorithm with a mechanism for dealing with constrains, similar to the one pro-
posed in [7]. This mechanism always compares first two solutions on the basis
of their constraint violation. Solutions which do not violate the constraint are
preferred to solutions which violate it (i.e. schedules using 20 or less instances
simultaneously are preferred to schedules using more than 20 instances). If
both solutions violate the constraint, the one violating it in a lesser extent is
preferred (i.e. a solution using 23 machines simultaneously is preferred to a
schedule that uses 30). Solutions which do not violate the constraint or violate
it to the same extent are compared using the Pareto dominance relationship
described in Section 5. In Algorithm 5, constraints are computed in line 11.
By using this mechanism, only the solutions which less violate the constraints
survive to the next generation. It is worth mentioning that a scheme as the one
used by MOHEFT is not possible for SPEA2*. Evolutionary algorithms work
with a population of fixed size (in our case K). Discarding solutions which
violate the constraints would mean that the population may decrease in size,
thus breaking the evolutionary cycle of the algorithm.

We implemented SPEA2* using the jMetal framework [9]. In our experi-
ments, we used K = 10. The recombination operator is applied with a prob-
ability of 0.9 and the mutation with 0.5. This configuration is the same one
used in the original paper where SPEA2* is described.

According to [27], SPEA2 has a complexity of at least O(2K2log2K).
SPEA2* requires to execute HEFT in the first place in order to compute a
good solution in terms of makespan. As HEFT has the same complexity as
MOHEFT (see Section 6.4), we can affirm that SPEA2* has at least the same
complexity as MOHEFT in the best case.

8 Experimental Setup

We describe in this section the experiments carried out for validating the
Cloud-aware MOHEFT algorithm. First, we summarise the comparison crite-
ria for assessing the quality of our approach. Finally, we describe the different
types of workflows and the Amazon EC2 infrastructure considered in the ex-
periments.

8.1 Evaluation Metrics

We consider three criteria for comparing the quality of solutions computed by
MOHEFT, HEFT and SPEA2*. First, we consider the shortest makespan of
the schedules computed by the three analysed techniques. Second, we focus on
the economic aspect of the schedules, analysing the cheapest solution reported

20 Juan J. Durillo, Radu Prodan

by each technique. The idea of these two indicators is to assess the behaviour
of the different approaches optimising each individual criterion. Finally, we
consider the hypervolume indicator described in Section 5 for assessing the
quality of computed tradeoff solutions.

We also analyse the tradeoff solutions computed by MOHEFT and SPEA2*
for different workflow types. The idea is to study the balance between the
two conflicting objectives, makespan and cost, and how much can be gained
in one objective by deteriorating the other. For this analysis we rely on a
graphical representation of the solutions computed by the two algorithms. The
presented graphs start with the most makespan-efficient schedule and continue
along the Pareto-front towards the cheapest solution. Therefore, although we
compute the tradeoff between cost and makespan, for the sake of highlighting
the potential of the obtained results, we will plot the cost savings versus the
makespan deterioration, as percentages relative to the most makespan-efficient
solution, computed by HEFT.

Finally, we pay attention at the number and the type of instances selected
by the different scheduling solutions computed by the three approaches.

It is worth mentioning that MOHEFT and HEFT are non-stochastic algo-
rithms, and thus, the same solution is computed in different runs. This claim
is not valid for SPEA2*, which may compute different fronts in different runs
of the algorithm. In order to avoid our conclusions be biased by any hazard
effect of this stochastic behaviour, we run SPEA2* for five times and always
consider the run producing the front with the largest hypervolume.

8.2 Workflow Applications

We consider in our evaluation two kinds of workflows: synthetic with different
types of artificially-generated properties, and real-world coming from our real-
world collaborations with domain scientists in the Austrian Grid.

8.2.1 Synthetic Workflows

We generated three types of synthetic workflows using a random workflow
generator as the one described in [24] (see Fig. 2a and Fig. 2b). Our interest is
to analyse how the number of independent activities influences the scheduling
results. Therefore, the defined types are intended to cover a wide spectrum of
workflow structures from this point of view:

– Type-1 where the number of tasks that can be executed in parallel ranges
between one and two;

– Type-2 where the number of tasks that can be executed in parallel is high,
and the workflow is balanced (same number of tasks in every level);

– Type-3 where the number of tasks that can be executed in parallel is high,
but the workflow is unbalanced (different number of tasks in every level).

Multi-Objective Workflow Scheduling in Amazon EC2 21

���������

�	
	��	��	�	��		��������������	�

(a) Synthetic workflow (bal-
anced).

���������

�	
	��	��	�	��		��������������	�

(b) Synthetic workflow (un-
balanced).

(c) WIEN2k.

getScenes
getFrames

povray
. . .

frame.png

povray

frame.png

povray
. . .

frame.png

povray

frame.png

png2yuv streaming

ffmpeg

Archive Archive

Time

Aggregation

(d) POV-Ray.

Fig. 2: Evaluated workflows applications.

We generated the length of every task and the data produced using a Gaus-
sian distribution. For every type, we considered 100 different instances having
between 100 and 1000 different tasks.

8.2.2 Real-world Workflow Applications

Alongside the synthetic workflows, we consider two real-world applications for
validating our work: WIEN2k and POV-Ray.

WIEN2k [3] is a material science workflow for performing electronic struc-
ture calculations of solids using density functional theory based on the full-

22 Juan J. Durillo, Radu Prodan

potential (linearized) augmented plane-wave ((L)APW) and local orbital (lo)
method. WIEN2k is a workflow of Type-2 consisting of two parallel sections
with sequential synchronisation activities in between (see Fig. 2c).

Persistence Of Vision Raytracer (POV-Ray) [16] is a free tool for creating
three-dimensional graphics, which is known to be a time consuming process
used not only by hobbyists and artists, but also in biochemistry research,
medicine, architecture and mathematical visualisation. We modelled a POV-
Ray rendering scenario as a Type-2 workflow depicted in Fig. 2d, where the
description of a movie can be separated in several scenes, each scene being
composed of several frames which can be rendered as parallel activities. Finally,
all frames are merged into a mpeg movie.

8.3 Resource Infrastructure

We consider that the user has access to the default maximum number of N =
20 Amazon instances which can be of any of the five types summarised in
Table 1 (i.e. I = 5 and m = N · I = 20 · 5 = 100). We assume that no
public IP addresses are required for running the experiments on the Amazon
EC2 infrastructure. Additionally, the output data transfers from Amazon to
the outside Internet are constant, take place only at the end of the workflow
execution and thus, do not influence the scheduling results. In this situation,
we assume in our experiments that the prices for data sent and received are
zero: PIRi

= 0 and PORi
= 0.

9 Evaluation

We present in this section the evaluation results for the synthetic workflow first,
then for the real-world ones. Finally, we analyse how the solutions computed by
the algorithms change when the constraint of simultaneously using 20 resources
is relaxed.

9.1 Synthetic Workflows

We analyse in this section the results for the three types of synthetic workflows.

9.1.1 Type-1 Workflows

We start by analysing the results for the three comparison metrics, makespan,
economic cost, and hypervolume, summarised in Fig. 3.

First, Fig. 3a shows that MOHEFT outperformed SPEA2 in terms of hy-
pervolume for all evaluated instances. We did not include HEFT in this com-
parison because it only delivers a single solution with the optimal makespan.
It is remarkable that, for this workflow type, MOHEFT always computed solu-
tions with the same hypervolume value, meaning that the shape of the optimal

Multi-Objective Workflow Scheduling in Amazon EC2 23

� �

��� ����
�

���

���

���

���

���

���

	
��� ��
���

������������������� ��!��"��#��$�%�&

	
'
(
�
��
�
%�
�
�
�)
*
%�
�

(a) Hypervolume.

� �

��� ����
�

�

�

�

�

�

�

�

	

�� ������
����

�������������� ����!��"��#��$��%�&�'

�
(
%
�
!
)
(
"
��
"
��

�"
�
��
!

(b) Makespan.

� �

��� ����
�

���

���

���

���

���

���

��	

��

���

��� ����� �����

������������ !"! !�#�!$� %��&��'�(�)

*
�

#
 �
!$

�+

(c) Economic cost.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 4 7 10 13 16 19 22 25

C
os

t

Makespan

Tradeoff Makespan vs Entailed Economical Cost
 (% relative to the solution with shortest makespan)

MOHEFT
SPEA2

(d) Tradeoff analysis cost vs makespan.

Fig. 3: Evaluation results for synthetic workflows of Type-1.

set of tradeoff solutions in this case does not vary with the workflow size. In
terms of makespan (see Fig. 3b), all the three methods computed the same
solution, which confirms that the performance of MOHEFT does not degrade
compared to HEFT. In case of SPEA2*, the results are not surprising since the
algorithm is initialised with the solution computed by HEFT. Both MOHEFT
and SPEA2 computed the same cheapest schedule illustrated in Fig. 3c, which
considers the cheapest instance (m1.small) for the entire workflow. This fact
is a consequence of the low degree of parallelism of this workflow. The solution
computed by HEFT is always the most expensive one.

24 Juan J. Durillo, Radu Prodan

Fig. 3d shows an example of tradeoff solutions computed by MOHEFT
and SPEA2*. The higher quality of the solutions computed by MOHEFT can
be easily visualised in this chart. In particular, we observe that our method
computed a schedule which halves the price of the solution with the optimal
makespan by only introducing a 7% of time overhead. In case of SPEA2*,
a solution with the same cost would have required an increase of 25% in
makespan. These results highlight the importance of the Pareto front as a
decision support tool, since computing a single schedule at a time would have
hidden this information.

9.1.2 Type-2 Workflows

The hypervolume, shortest makespan and cheapest schedule computed for this
workflow type are summarised in Fig. 4.

In terms of the quality of the set of tradeoff solutions, MOHEFT has again
outperformed SPEA2* for all workflow sizes, as indicated by the hypervolume
indicator in Fig. 4a. In this case, different workflow sizes result in Pareto
fronts with different hypervolumes, meaning that the shape of the Pareto front
for this problem depends on the number of tasks that can be executed in
parallel. If we focus on the makespan (see Fig. 4b), it is worth mentioning
that MOHEFT and SPEA2* were able in some cases to compute solutions with
better makespans than HEFT. The explanation for this behaviour is that, due
to its greedy nature, HEFT easily converges towards a local optimum, situation
which is overcome by MOHEFT and SPEA2* due to a larger exploration of the
search space. In terms of economic cost (see Fig. 4c), MOHEFT and SPEA2*
computed the same solution which is a lot cheaper than the solution with the
best makespan.

Fig. 4e shows a comparison of the tradeoff solutions computed by MO-
HEFT and SPEA2*. The differences between both algorithms are even more
noticeable than for workflows of Type-1. In this case, MOHEFT computed
a schedule which reduced the cost by 30% incurring only a 1.4% increase
in makespan. Computing a solution of similar price for SPEA2* would have
required increasing the makespan by more than 450%. This huge difference
between our approach and SPEA2* clearly points out the potential of MO-
HEFT for multi-objective workflow scheduling in terms of the quality of the
computed solutions.

For this workflow type, many solutions computed by SPEA2* required
more than 20 resources, thus invalidating its adoption for workflow schedul-
ing in the context of commercial Clouds with limitations on the maximum
number of instances that can be simultaneously rented. In particular, 66% of
the computed schedules required more than the 20 resource limit imposed by
Amazon EC2 (see Fig. 4e). This behaviour does not appear in the solutions
computed by MOHEFT or HEFT, which always provided schedules with at
most 20 resources.

Multi-Objective Workflow Scheduling in Amazon EC2 25

� �

��� ����
�

���

���

���

���

�

���

�	
�� ������

���������������������� ��!��"��#�$�%

&
'
�
��
�
$�
�
�
�(
)
$�
�

(a) Hypervolume.

� �

��� ����
�

���

���

���

���

���

���

��	

��

���

�

��� ����� �����

������������ !"! !�#�!$� %��&��'�(�)

�
*

'
�

#
+

*
$

�!
$

��
!$

�
 �

#

(b) Makespan.

� �

��� ����
�

�

�

�

�

��

��

��

��

��

��	
 ����� ����	

������������������������ ��!��"�#�$

%
�
�
��
��
�&

(c) Economic cost.

� �

����

����

���	
�����������
���
����
��	����
����
���
�������
��	�������

������
����������
�

!�
����������������
�

(d) SPEA2* solutions with more
than 20 instances.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 60.1 119.2 178.3 237.4 296.5 355.6 414.7 473.8

C
os

t

Makespan

Tradeoff Makespan vs Entailed Economical Cost
 (% relative to the solution with shortest makespan)

MOHEFT
SPEA2

(e) Tradeoff analysis cost vs makespan.

Fig. 4: Evaluation results for synthetic workflows of Type-2.

9.1.3 Type-3 Workflows

The results for this workflow type, summarised in Fig. 5, confirm the findings
of the previous two types in terms of the hypervolume, makespan and cost.

The hypervolume of the tradeoff sets for this workflow type (see Fig. 5a)
shows that MOHEFT outperforms SPEA2* also in this case. As in the pre-
vious case, the hypervolume reflects a different shape of the Pareto front for
workflows with different number of activities. This fact validates the hypothe-
sis that the shape of the tradeoff solutions depends on the number of activities

26 Juan J. Durillo, Radu Prodan

� �

��� ����
�

���

���

���

���

���

���

��	

��

���

�

����� ������

������������ !"! !�#�!$� %��&��'�(�)

�
*
+

�
�"

�
(�

�
�

�,
-

(�
�

(a) Hypervolume.

� �

��� ����
�

�

�

�

�

��

��

��

��

��	
 ����� ����	

������������������������ ��!��"�#�$

�
%
"
�
�
&
%
�
��
�
��
��
�
��
�

(b) Makespan.

� �

��� ����
�

�

�

�

�

�

�

�	
� �	��� ���	
�

���������������������� ��!��"��#�$�%

&
�
�
��
�
�'

(c) Economic cost.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 6.078 11.156 16.234 21.312 26.39 31.468 36.546 41.624

C
os

t

Makespan

Tradeoff Makespan vs Entailed Economical Cost
 (% relative to the solution with shortest makespan)

MOHEFT
SPEA2

(d) Tradeoff analysis cost vs makespan.

Fig. 5: Evaluation results for synthetic workflows of Type-3.

of the workflow that can be executed in parallel. All three techniques computed
the schedule which minimises the makespan, confirming again the suitability
of this method for workflow scheduling if the user is only interested in optimis-
ing this goal. Similar to the previous case, MOHEFT and SPEA2* computed
the best solutions in terms of economic cost. The difference between HEFT
and the other two methods tends to increase with the number of activities
composing the workflow.

An example of the tradeoff solutions computed by MOHEFT and SPEA2*
is shown in Fig. 5d. For this type of workflow, MOHEFT was able to compute
solutions halving the maximum price with only 1% increase in makespan,

Multi-Objective Workflow Scheduling in Amazon EC2 27

while SPEA2* required at least a 40% of extra time for a solution of the same
cost. These results point out once more the better suitability of MOHEFT
for multi-objective workflow scheduling on the Amazon EC2 Cloud. In this
case, the three techniques always computed schedules meeting the restriction
of using at most 20 on-demand instances.

9.2 Real-World Workflows

In this section we complete our evaluation by applying our method on two
real-world workflows: WIEN2k and POV-Ray. In both cases, the number of
tasks ranges between 100 and 1000.

9.2.1 WIEN2k

The results for the WIEN2k workflow are depicted in Fig. 6.

First, Fig. 6a shows that, similar as for the synthetic workflows, MOHEFT
always outperformed SPEA2* in terms of the hypervolume. Moreover, the
difference in this metric is even higher than in any of the previously evaluated
cases. One possible explanation for this behaviour is related to the higher
difficulty of solving this workflow application. Our hypothesis is that SPEA2*
got stuck in some areas of the search space, thus requiring a prohibitively
large number of evaluations for increasing the quality of the computed results.
The results for makespan and economic cost displayed in Fig. 6b and 6c verify
the results obtained for the synthetic workflows. In terms of makespan, all
three algorithms performed equally well and computed the solution with the
lowest makespan. In terms of economic cost, MOHEFT and SPEA2* always
computed the solution with the lowest cost, while HEFT delivered solutions
three to six times more expensive.

An example comparing the tradeoff solutions delivered by MOHEFT and
SPEA2* is illustrated in Fig. 6e. The results are similar to the ones obtained for
the Type-2 workflows, where huge economic savings are obtained by MOHEFT
with only a small increase in makespan. In this case, SPEA2* requires a huge
loss in performance for obtaining similar cost results. For example, MOHEFT
computed a solution which halves the price of the schedule with the shortest
makespan and experienced only a 5% of time deterioration. Meanwhile, a 1% of
cost saving in SPEA2* would have required an increase of 250% in makespan.
In 23.3% of the cases, SPEA2* computed schedules requiring more than 20
resources, while all solutions computed by MOHEFT met this constraint.

Analysing the solutions computed by MOHEFT, we observe in Fig. 6d that
the mostly preferred instance was c1.large offering the highest performance
per $ ratio (see Table 1). This instance was selected for scheduling a task in
40% of the cases. The second most preferred machine is m1.small. Although
the performance per $ of this instance is similar to c1.medium, MOHEFT
preferred it as the cheapest instance. The instances with the poorest ratio,

28 Juan J. Durillo, Radu Prodan

� �

��� ����
�

���

���

���

���

���

���

��	

��

���

�

����� �����
������������ !"! !�#�!$� %��&��'�(�)

�
*
+

�
�"

�
(�

�
�

�,
-

(�
�

(a) Hypervolume.

� �

��� ����
�

�

�

�

�

�

�

�

	

�� ������
����

�������������� ����!��"��#��$��%�&�'

�
(
%
�
!
)
(
"
��
"
��

�"
�
��
!

(b) Makespan.

� �

��� ����
�

�

�

�

�

��

��

��

��

��

��	
 ����� ��	
��

������������������������ ��!��"�#�$

%
�
�
��
��
�&

(c) Economic cost.

� �

��

�

��

��

���	�
��������	������������������

���
���

�������

��������

���
����

���������

(d) Used instances.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 32.609 64.218 95.827 127.436 159.045 190.654 222.263 253.872

C
os

t

Makespan

Tradeoff Makespan vs Entailed Economical Cost
 (% relative to the solution with shortest makespan)

MOHEFT
SPEA2

(e) Tradeoff analysis cost vs makespan.

Fig. 6: Evaluation results for the WIEN2k workflow.

m1.large and c1.medium, were barely considered by MOHEFT and do not
even appear in the graph (1% percent and 0%, respectively).

9.2.2 POV-Ray

The results for the POV-Ray workflow summarised in Fig. 7 are similar to the
WIEN2k experiment.

Fig. 7a shows the hypervolume of the sets of tradeoff solutions. Also in this
case MOHEFT outperformed SPEA2* for all the evaluated workflow sizes. For
this application, the higher the number of tasks in the workflow is, the harder

Multi-Objective Workflow Scheduling in Amazon EC2 29

� �

��� ����
�

���

���

���

���

���

���

��	

��

���

�

����� ������

������������ !"! !�#�!$� %��&��'�(�)

�
*
+

�
�"

�
(�

�
�

�,
-

(�
�

(a) Hypervolume.

� �

��� ����
�

���

���

���

���

���

���

�	
� �	��� ���	
�

���������������������� ��!��"��#�$�%

�
&
#
�
�
'
&

��

��
�
�
��
�

(b) Makespan.

� �

��� ����
�

�

�

�

�

��

��

��

��

��

��	
 ����� ����	

������������������������ ��!��"�#�$

%
�
�
��
��
�&

(c) Economic cost.

� �

��

�
�

��

���	�
��������	������������������

���
���

�������

��������

���
����

���������

(d) Used instances.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 1.478 1.956 2.434 2.912 3.39 3.868 4.346 4.824

C
os

t

Makespan

Tradeoff Makespan vs Entailed Economical Cost
 (% relative to the solution with shortest makespan)

MOHEFT
SPEA2

(e) Tradeoff analysis cost vs makespan.

Fig. 7: Evaluation results for the POV-Ray workflow.

is for MOHEFT to compute a set of tradeoff solutions with high quality. This
result can be visualized in the hypervolume that decreases with the number
of tasks. This behavior is not that obvious for SPEA2*, however, the quality
of the computed fronts are of poorer quality than the ones of MOHEFT, as
reflected by the low values of the indicator. As in the previous experiments, all
the algorithms computed the same solution with the shortest makespan (see
Fig. 7b), while MOHEFT and SPEA2* computed the same cheapest schedule
too (see Fig. 7c).

An example of the tradeoff solutions computed by MOHEFT and SPEA2*
for this application is shown in Fig. 7e. We observe a small difference in

30 Juan J. Durillo, Radu Prodan

makespan of only 4.8% between the cheapest and more expensive solutions.
In this case, while MOHEFT found a solution halving the price for the sake of
only 3% increase in makespan, SPEA2* required a 4.7% increase. Nevertheless,
the small difference between both techniques has carefully interpreted, since
in 40% of the cases SPEA2* has been unable to produce a workflow schedule
using 20 or less resources.

Finally, we observe in Fig. 7d that MOHEFT mainly considered two in-
stances with the best performance per $ ratio: m1.small and c1.xlarge,
while the other types of instances were selected only in a marginal number
of schedules. Similar to WIEN2k, the m1.xlarge instance was not considered
again in any schedule, which demonstrates its unsuitability for running our
computational-intensive scientific workflows.

9.3 Analysis of the Impact of the Number of Resources

In this section we analyse the implications of relaxing the constraint of simul-
taneously using a maximum of N = 20 resources. Our idea is to study whether
or not the algorithms scale with the number of resources and how these extra
resources affect the computed tradeoff solutions. In this experiment we focused
on the instance of the WIEN2k workflow with the largest number of activities
evaluated in Section 9.2.1.

Figures 8 and 9 summarise the obtained results when the limitation on the
number of simultaneous resources is set to 20, 50, and 100. More specifically,
Fig. 8 shows how the shortest computed makespan is affected by considering
these number of resources. It is worth mentioning that in this case the three
algorithms always compute the same solution with the shortest makespan.
We see in this figure that the evaluated algorithms scale with the number of
resources, computing schedules with shorter makespan as long as the number
of resources increases. In all the cases, these computed schedules make use of
the maximum allowed number of resources.

Fig. 9 shows the Pareto fronts computed by MOHEFT and SPEA2*. The
idea of this figure is to show how the different tradeoff solutions are affected
by having different number of resources. As HEFT only computes the solution
with the shortest makespan, we do not consider it in this comparison. In the
case of MOHEFT (Fig. 9a) the computed Pareto fronts are similar in all the
cases and the only differences appear regarding to the solutions optimizing
makespan; in these cases, having a higher number of resources implies more
expensive but shorter schedules (left part of the showed fronts). In the case
of schedules minimising the financial cost, the computed solutions are not
affected by having the possibility of using simultaneously a higher number of
resources. The tradeoff solutions computed by SPEA2* are plotted in Fig. 9b.
It is possible to see that the solutions computed by SPEA2* are still dominated
by the solutions computed by MOHEFT. Increasing the number of resources
means for SPEA2* to compute always shorter but more expensive schedules.
A deeper analysis of the compute solutions reveals that some of the schedules

Multi-Objective Workflow Scheduling in Amazon EC2 31

Fig. 8: Shortest makespan computed with different constraints in the number
of resources.

� �

�� �� ���
�

�

�

�

�

�

�

�

	

������������������������

���� ! ��! "����#��$$�%�&�����!�'��

�
�
�
�
�
�
�
�
�(
�
�
'
�
)

� �

� ��� ���� ���� ���� ����
�

��

��

��

��

��

��

��

	�

�

�� !"#������$���!�%��

&�"����������!�%���'��� &�"����������!�%���'���� &�"����������!�%���'���

��(��)���*��%�+

�
��
�
�
%
��
,�
-
�
�
��
*.
+

(a) MOHEFT

� �

� ��� ���� ���� ���� ����
�

��

��

��

��

��

��

��

	�

�

��� !"������#��� �$��

%�!���������� �$���&��� %�!���������� �$���&���� %�!���������� �$���&���

'�(��)���*��$�+

�
��
�
�
$
��
,�
-
�
�
��
*.
+

(b) SPEA2*

Fig. 9: Evaluation of the Pareto fronts computed with different constraints on
the number of resources.

computed by SPEA2* still violate the constraint regarding to the maximum
number of allowed simultaneous resources; however, the number of schedules
doing so decreases as long as the constraint is relaxed.

10 Conclusions and Future Work

In this paper we proposed and analysed a truly multi-objective workflow sched-
uler for commercial IaaS Clouds such as Amazon EC2. Our new method called
MOHEFT extends a well-known list scheduling heuristic to provide scientists
with a set of optimal solutions offering different tradeoffs between makespan
and economic cost for workflow executions. We extended the method to deal
with the realistic constraints imposed today by commercial Clouds that re-
strict the total number of resources that can be simultaneously acquired, but
keep their type flexible depending on the temporal needs.

We showed the potential of the Pareto front as a tool for decision support
in selecting the most appropriate tradeoff solutions. In particular, the visuali-

32 Juan J. Durillo, Radu Prodan

sation of the Pareto front for some workflow types revealed that one can obtain
solutions with a marginal 5% makespan increase by investing half of the money
in renting Cloud instances. We validated and compared MOHEFT with HEFT,
the most popular workflow scheduling algorithm, and SPEA2*, an extension
of the state-of-the-art multi-objective optimisation algorithm SPEA2, using a
combination of synthetic and real-world workflows. In all experiments, MO-
HEFT computed schedules with the same makespan as the HEFT but with
better economic cost. MOHEFT also outperformed SPEA2* in terms of hy-
pervolume used as an indicator of the quality of the set of tradeoff solutions.
A visual analysis of the tradeoff solutions revealed that SPEA2* computed in
many cases solutions involving a higher economic cost than MOHEFT for the
same makespan. Finally, our experiments revealed that MOHEFT was able to
meet the constraints imposed by current commercial Clouds in terms of the
maximum amount of instances, while SPEA2* failed on this issue.

In future work we intend to evaluate MOHEFT for other objective func-
tions such as security issues, reliability of spot instances or energy consump-
tion. We will consider increasing the number of objectives to three and more,
and extend the resource model to comprise federated Cloud infrastructures
with different limitations on the number of resources that can be simultane-
ously rented.

References

1. Alexandru, I., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., Epema, D.:
Performance analysis of cloud computing services for many-tasks scientific computing.
IEEE Transactions onf Parallel and Distributed Systems pp. 1–16 (2010)

2. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristics for distributed em-
bedded systems under reliability and real-time constraints. In: International Conference
on Dependable Systems and Networks, DSN’04. IEEE, Firenze, Italy (2003)

3. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: Wien2k: An augmented
plane wave plus local orbitals program for calculating crystal properties. Tech. rep.,
Institute of Physical and Theoretical Chemistry, TU Vienna (2001)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and c on-
ceptual comparison. ACM Computing Surveys 35(3), 268 – 308 (2003)

5. Canon, L.C., Emmanuel: Mo-greedy: an extended beam-search approach for solving a
multi-criteria scheduling problem on heterogeneous machines. International Heterogene-
ity in Computing (2011)

6. Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary algorithms for solv-
ing multi-objective problems. Springer (2007)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)

8. Durillo, J., Fard, H., Prodan, R.: Moheft: A multi-objective lilst-based method for work-
flow scheduling. In: 4th IEEE International Conference on Cloud Computing Technology
and Science (2012)

9. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimization.
Advances in Engineering Software 42, 760–771 (2011)

10. Fard, H., Prodan, R., Barrionuevo, J., Fahringer, T.: A multi-objective approach for
workflow scheduling in heterogeneous environments. In: Cluster, Cloud and Grid Com-
puting (CCGrid), 2012 12th IEEE/ACM International Symposium on, pp. 300–309
(2012). DOI 10.1109/CCGrid.2012.114

11. Garg, R., Singh, A.K.: Reference point based multi-objective optimization to workflow
grid scheduling. Int. J. Appl. Evol. Comput. 3(1), 80–99 (2012)

Multi-Objective Workflow Scheduling in Amazon EC2 33

12. Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility grids: time
and cost trade-off management. In: Proceedings of the Thirty-Second Australasian Con-
ference on Computer Science - Volume 91, ACSC ’09, pp. 151–160. Australian Computer
Society, Inc., Darlinghurst, Australia, Australia (2009)

13. Hakem, M., Butelle, F.: Reliability and scheduling on systems subject to failures. In:
Proceedings of the 2007 International Conference on Parallel Processing, ICPP ’07, pp.
38–. IEEE Computer Society, Washington, DC, USA (2007)

14. Ilavarsan, E., Thambidurai, P.: Low complexity performance effective task scheduling
algorithm for heterogeneous computing environments. Journal of Computer Science
3(2), 94–103 (2007)

15. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., albi, E.G.T., A.Y.Zomaya, Tuyttens,
D.: A parallel bi-objective hybrid metaheuristic for energy-aware s cheduling for cloud
computing systems. Journal of Parallel and Distributed Computing (71), 1497–1508
(2011)

16. Plachetka, T.: POVRAY – Persistence of Vision Parallel Raytracer. In: Proceedings of
Computer Graphics International ’98, pp. 123–129 (1998)

17. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with
budget constraints. In: in Integrated Research in Grid Computing, S. Gorlatch and M.
Danelutto, Eds.: CoreGrid series. Springer-Verlag (2007)

18. Singh, D., Garg, R.: A robust multi-objective optimization to workflow scheduling for
dynamic grid. In: Proceedings of the International Conference on Advances in Com-
puting and Artificial Intelligence, ACAI ’11, pp. 183–188. ACM, New York, NY, USA
(2011)

19. Singh, M.P., Vouk, M.A.: Scientific Workflows: Scientific Computing Meets Transac-
tional Workflows (1996)

20. Talukder, A.K.M.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution for
scheduling workflow applications on global grids. Evolution 21(13), 1742–1756 (2009)

21. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific
Workflows for Grids. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

22. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. Parallel and Distributed Systems, IEEE Trans-
actions on 13(3), 260 –274 (2002)

23. Ullman, J.: Np-complete scheduling problems. Journal of Computer and System sciences
10(3), 384–393 (1975)

24. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid com-
puting. In: F. Xhafa, A. Abraham (eds.) Metaheuristics for Scheduling in Distributed
Computing Environments, pp. 109–153. Springer Berlin (2008)

25. Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on grids.
In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,
GRID ’07, pp. 10–17. IEEE Computer Society, Washington, DC, USA (2007)

26. Zeng, J.t., Xia, J.w., Li, J.z., Li, M.h.: Multi-objective optimal grid workflow scheduling
with qos constraints. In: B. Cao, T.F. Li, C.Y. Zhang (eds.) Fuzzy Information and
Engineering Volume 2, Advances in Intelligent and Soft Computing, vol. 62, pp. 839–
847. Springer Berlin Heidelberg (2009)

27. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary
algorithm. Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

