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ABSTRACT Cloud Computing provides an effective platform for executing large-scale and complex

workflow applications with a pay-as-you-go model. Nevertheless, various challenges, especially its optimal

scheduling for multiple conflicting objectives, are yet to be addressed properly. The existing multi-objective

workflow scheduling approaches are still limited in many ways, e.g., encoding is restricted by prior experts’

knowledge when handling a dynamic real-time problem, which strongly influences the performance of

scheduling. In this paper, we apply a deep-Q-network model in a multi-agent reinforcement learning

setting to guide the scheduling of multi-workflows over infrastructure-as-a-service clouds. To optimize

multi-workflow completion time and user’s cost, we consider aMarkov gamemodel, which takes the number

of workflow applications and heterogeneous virtual machines as state input and the maximum completion

time and cost as rewards. The game model is capable of seeking for correlated equilibrium between

make-span and cost criteria without prior experts’ knowledge and converges to the correlated equilibrium

policy in a dynamic real-time environment. To validate our proposed approach, we conduct extensive case

studies based on multiple well-known scientific workflow templates and Amazon EC2 cloud. The experi-

mental results clearly suggest that our proposed approach outperforms traditional ones, e.g., non-dominated

sorting genetic algorithm-II, multi-objective particle swarm optimization, and game-theoretic-based greedy

algorithms, in terms of optimality of scheduling plans generated.

INDEX TERMS Multi-objective workflow scheduling, deep-Q-network (DQN), multi-agent reinforcement

learning (MARL), infrastructure-as-a-service (IaaS) cloud, quality-of-service (QoS).

LIST OF ABBREVIATIONS

IaaS Infrastructure-as-a-service

QoS Quality-of-Service

DAG Directed-Acyclic-Graph

DQN Deep Q-network

MARL Multi-agent Reinforcement Learning

NSGA-II Non-dominated Sorting Genetic Algorithm-II

MOPSO Multi-objective Particle Swarm Optimization
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LIST OF SYMBOLS

N The number of workflows

K The number of bags of tasks

nk The number of tasks in the k th bag of tasks

nk,i The ith task of nk
M The number of Amazon EC2 instances

Vj The jth virtual machine of Amazon EC2 instances

pj The unit price of instance type Vj
stk,i,j The start time of nk,i executed by Vj
rtk,i,j The running time of nk,i executed by Vj
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FT (Vj, nk,i) The finish time of Vj when nk,i is executed

xk,i,j A Boolean variable indicating whether Vj is

selected for ni,k ; 0, otherwise

I The players or agents of game

S The state space of the Markov game

A,A The action spaces, mixed actions of game

R The rewards of players

P The transition probability of the game

at The action profile at date-t

ati The action of player-i of the game at date-t

at−i The action of the other players of the game at

date-t

st The state of the game at date-t

Ri The rewards of player-i

π The stationary policy

πst The distribution policy with state s at date-t

π t The distribution policy at date-t

δt The discount factor at date-t

f The selection mechanism

I. INTRODUCTION

Cloud Computing is emerging as a high performance com-

puting environment with a large-scale, heterogeneous col-

lection of autonomous systems and flexible computational

architecture [1], [2]. It provides the tools and technologies

to build data or computational intensive parallel applications

with much more affordable prices compared to traditional

parallel computing techniques. Hence, there has been an

increasingly growth in the number of active research work

in cloud computing such as scheduling, placement, energy

management, privacy and policy, security [3]–[6], etc.

Workflow scheduling in cloud environment has recently

drawn enormous attention thanks to its wide application in

both scientific and economic areas [7]–[12]. A workflow

is usually formulized as a Directed-Acyclic-Graph (DAG)

with several n tasks that satisfy the precedent constraints.

Scheduling workflows in clouds is referred to as matching

tasks onto m supporting computational resources, i.e., virtual

machines (VMs) created on IaaS clouds. For multi-objective

scheduling, objectives can sometimes be conflicting. E.g.,

for execution time minimization, fast VMs are more prefer-

able than slow ones. However, fast VMs are usually more

expensive and thus execution time minimization may con-

tradict the cost reduction objective. It is widely acknowl-

edged as well that to schedule multi-task workflow on

distributed platforms is an NP-hard problem. It is there-

fore extremely time-consuming to yield optimal schedules

through traversal-based algorithms. Fortunately, heuristic and

meta-heuristic algorithms with polynomial complexity are

able to produce approximate or near optimal solutions of

schedules at the cost of acceptable optimality loss [13].

Good examples of such algorithms are multi-objective par-

ticle swarm optimization (MOPSO) [14] and non-dominated

sorting genetic algorithm-II (NSGA-II) [15]. Although these

algorithms provide satisfactory solutions, they require a lot

of prior experts’ knowledge and human intervention, usually

in terms of encoding schemes. It is noticed by various

contributions [16]–[19] as well that game-theoretic mod-

els and approaches are highly capable of dealing with the

cloud-based workflow scheduling problems.

Recently, as novel machine learning algorithms are becom-

ing increasingly versatile and powerful, considerable research

efforts are paid to using reinforcement learning (RL) and

Q-learning-based algorithms [20]–[23] in finding near-

optimal workflow scheduling solutions. Nevertheless, most

existing contributions focused on single-objective work-

flow scheduling with service-of-level (SLA) agreement

constraints. Although there exist various multi-agent rein-

forcement learning (MARL) models and methods for

multi-robot control, decentralized network routing, dis-

tributed load-balancing, electronic auctions, and traffic con-

trol problems, MARL-based workflow scheduling methods

are still non-existent.

Based on above observations, in this work, we for-

mulate the scheduling problem into a discrete-events and

multi-criteria-interaction Markov game model and propose

a multi-agent Deep-Q-network (DQN) algorithm with rein-

forcement learning for multi-objective workflow scheduling

aiming at optimizing both workflow completion time and

cost. The DQN agents are trained in a multi-agent rein-

forcement learning (MARL) environment and fed with data

from legacy system such as heuristics in neural networks.

We consider each DQN agent observes all the other agents’

actions and rewards and selects its own joint distribution

action along with environment updates. The resulting work-

flow scheduling plans are generated through a self-learning

and self-optimizing manner. Our proposed approach are fea-

tured by the following strengths: 1) Agents can be trained

for workflows with varying types of process models and het-

erogeneous VMs with varying resource configurations; and

2) The destination scheduling plans can be obtained without

human intervention or prior expert’s knowledge. We conduct

extensive case studies with multiple scientific workflow tem-

plates over simulation tests using real-world third-party IaaS

cloud data. The experimental results clearly suggest that our

proposed approach outperforms traditional ones in terms of

both make-span and cost optimization.

II. RELATED WORK

It is widely known that to schedule multi-task workflow

on distributed platforms is an NP-hard problem. It is there-

fore extremely time-consuming to yield optimal schedules

through traversal-based algorithms. Fortunately, heuristic

and meta-heuristic strategies with polynomial complex-

ity are capable of producing approximate or near optimal

solutions at the cost of acceptable optimality loss. E.g.,

Kaur et al. [24] proposed a multi-objective bacteria foraging

optimization algorithm (MOBFOA) by modifying the origi-

nal BFOA and considering Pareto-optimal fronts. They aimed

at minimizing flow-time, make-span, and resource-usage

cost. Zhang et al. [25] presented a bi-objective genetic
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algorithm (BOGA) capable of optimizing both energy sav-

ings and workflow reliability and obtaining near-optimal

Pareto fronts. Casas et al. [26] presented an enhanced genetic

Algorithm with Efficient Tune-In (GA-ETI) for scientific

applications in cloud systems. It is capable of optimizing both

workflow make-span and cost. Verma et al. [27] presented

a non-dominated-sorting-based Hybrid Particle-Swarm-

Optimization (HPSO) algorithm for workflow scheduling,

which is capable of optimizing both execution time and

cost. Zhou et al. [28] proposed a fuzzy dominance sort

based heterogeneous earliest-finish-time (FDHEFT) algo-

rithm capable of minimizing both cost and make-span

of workflows deployed on IaaS clouds. However, these

approaches are significantly restricted by prior expert’s

knowledge from static global point of view, which cannot

appropriately describe the dynamic process of workflow

scheduling.

Recently, game-theoretic and Reinforcement learning (RL)

models and methodologies are widely applied to the

multi-constraint process scheduling problems [29]–[35]. It is

believed the equilibrium concept in game theories and

multi-agent training methods are highly potent in dealing

with multi-constraint and multi-objective optimization prob-

lems. E.g., Duan et al. [18] proposed a sequential cooper-

ative game algorithm for cost and make-span optimization

while fulfilling storage constraints for large-scale work-

flow scheduling. Cui et al. [22] provided a reinforcement-

learning-based approach for multi-workflow scheduling with

multiple priorities submitted at different times in cloud

environment. Iranpour et al. [17] proposed a distributed

load-balancing and admission-control algorithm based on

a fuzzy game-theoretic model for large-scale SaaS clouds.

Wu et al. [20] proposed an improved Q-learning algo-

rithm with weighted fitness value function for optimiza-

tion of completion time and load balancing in cloud

environment.

III. SYSTEM MODEL

A scientific workflow is represented by a Directed Acyclic

Graph (DAG) W = (T ,E), where T = {t1, t2, . . . , tn}. is a

set of n tasks {t1, t2, . . . , tn}., E is a set of precedence depen-

dencies. Each task ti represents an individual application with

a certain task running time rti on an instance. A precedence

dependency eij = (ti, tj) indicates that tj starts only after ti is

accomplished and the data from ti are received. The source

and destination of a dependency eij are called the parent

and the child task, respectively. The workflow starts and

concludes by the entry and exit tasks, respectively. A dummy

entry/exit task with zero execution time can be added as a sole

entry/exit one if the original workflow has multiple entry/exit

ones rather than a single one.

In this work, we consider IaaS clouds as the supporting

platforms of multiple workflows. IaaS clouds offer numer-

ous heterogeneous virtual machines with varying resource

and pricing configurations for executing workflows tasks.

The optimization problem can be formulated as follows,

Minf1 = makespan = max{FT (Vj, nk,i) ∗ xk,i,j} (1)

Minf2 = cost =

M∑

k=1

FT (Vj, nk,i) ∗ xk,i,j ∗ pj (2)

subject to,

i ∈ [1, nk ], j ∈ [1,M ], k ∈ [1,K ] (3)

FT (Vj, nk,i) = stk,i,j + rtk,i,j, FT (Vj, nk,i) ≥ 0 (4)

where f1, f2 illustrate the two quantitative objectives, i.e., the

make-span and user’s cost, respectively. And pj is the unit

price of each virtual machine Vj. The boolean indicator xk,i,j
equals 1 when task nk,i is allocated to virtual machine Vj;

otherwise xk,i,j = 0. FT (Vj, nk,i) is the finish time when Vj
mapping task nk,i, in terms of start time stk,i,j and runtime

rtk,i,j.

To solve the above formulation, we consider a self-adaptive

DQN-based MARL framework shown as Figure 1, which is

capable of generating real-time workflow scheduling plans.

The two optimization objectives are abstracted as two DQN

agents, which are trained through self-adaptive process built

upon a stochastic Markov game. The environment is modeled

as a set of states and actions can be performed to control the

workflow scheduling system’s state.

FIGURE 1. Overview of DQN-based MARL framework for workflow
scheduling.

IV. METHODS: APPLICATION OF MARL TO

WORKFLOW SCHEDULING

A. WORKFLOW SCHDEULING AS MARKOV GAME

Markov games can been seen as an extension of Markov

Decision Processes (MDPs) to the multi-agent case, in which

joint actions πst are the result of multiple agents choosing

an [36].

Definition 1:A(finite, discounted)Markov game is a tuple

Ŵδ = (i ∈ I , S,A,R,P) in which [37],

• I is a finite set of players or agents.

• S is a finite set of states.
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• A =
∏

i∈I ,s∈S Ai(s), where Ai(s) is player i’s finite set

of pure actions at state s; we define A(s) ≡
∏

i∈I Ais

and A−i =
∏

j 6=i Aj(s), so that A(s) = A−i(s) × Ai(s);

we write a = (a−i, ai) ∈ A(s) to distinguish player i,

with ai ∈ Ai(s) and a−i ∈ A−i(s); we also define A =⋃
s∈S

⋃
a∈A(s){(s, a)}, the set of state-action pairs.

• P is a system of transition probabilities, i.e., for all s ∈ S,

a ∈ A(s), P[s′|s, a] ≥ 0 and
∑

s′∈S P[s
′|s, a] = 1; we

interpret P[s′|s, a] as the probability that next state is s′

given that the current state is s and the current action

profile is a.

• R : A → [α, β]I , where Ri(s, a) ∈ [α, β] is player i’s

reward at state s and at action profile a ∈ A(s).

• δ ∈ [0, 1] is a discounted factor.

We consider the workflow scheduling process to be a

Markov game with scheduling goals, i.e., make-span and

cost, as two agents. It is assumed that each agent observes

each other’s actions and rewards. Then they select the joint

distribution πst , i.e., the combination of choices of all agents.

Each agent further decides an action ati and the resulting

pure action profile at = (at1, . . . , a
t
I ) is performed. Based

on the current state and the action profile, each agent earns

reward Ri(s
t , at ) and the system evolves to state st+1 with

the transition probability P[st+1|st , at ]. The above process is

repeated at time t + 1. A state of the space S is characterized

by the currently available VMs and immediately succeeding

tasks of those which are mapped to destination VMs for

execution in the previous state. The action space A consists

of the mapping probability of certain task being mapped into

a certain VM. The reward R : A → R
n are derived from

(1) and (2).

Note that the performance of scheduling is directly

influenced by the reward mechanisms along with the

interactions among agents. There may exist multiple equi-

libria with multiple values. In order to resolve this prob-

lem, we introduce an utilitarian selection mechanism f =

maxπs∈1(A(s))

∑
j∈I Qj(s, a), which donates maximize the

sum of all agents’ rewards in each state. Usually, the equi-

librium policies in a Markov game are solutions of problem

with stable results. Instead of Nash equilibrium, we consider

a correlated equilibrium with increased generality. It allows

for dependencies among agents’ strategies, that is a joint

distribution over actions from which no agent is motivated to

deviate unilaterally. The solutions of the workflow schedul-

ing problem are thus correlated equilibria, where agents are

allowed to select actions according to a stationary policy

π ∈
∏

s∈S 1(A(s)).

Definition 2: Given a Markov game, a stationary policy π

is a correlated equilibrium if for all agent i ∈ I , for all s ∈ S,

for all ai, a
′
−i ∈ Ai(s),

∑

a−i∈A−i(s)

πs(a−i, ai)Q
π
i (s, (a−i, ai))

≥
∑

a−i∈A−i(s)

πs(a−i, ai)Q
π
i (s, (a−i, a

′
i)) (5)

Algorithm 1 DQN-Based MARL Method

Input: game Ŵ, selection mechanism f

Output: Q-values Q, stationary policy π∗, reward r

1 Initialize replay memory D, action-value function Q

with random weights θ ;

2 Initialize state s, action profile a;

3 observe initial state S;

4 while not at max_episode do

5 if with probability ε then

6 select a random action a;

7 else

8 select a ∈ f ;

9 carry out action a;

10 observe reward r and new state s′;

11 store experience < s, a, r, s′ > in replay memory D;

12 sample random transitions < ss, aa, rr, ss′ > from

replay memory D;

13 calculate target for each minibatch transition;

14 if ss′ is terminal state then

15 tt = rr ;

16 else

17 tt = rr + δ maxa′Q(ss′, aa′);

18 train the Q-network using (tt − Q(ss, aa))2 as loss;

19 s = s′

20 return Q-values Q, action profile a, reward r

That is, in state s, when it is recommended that agent i play

ai, it prefers to play ai, because the expected utility of ai is

greater than or equal to the expected utility of a′
i, for all a

′
i.

B. DQN-BASED MARL IN WORKFLOW SCHEDULING

DQN [38] is a popular method in reinforcement learning.

It learns the action-value function Q∗ corresponding to the

optimal policy by minimizing the loss,

L(θ ) = Es,a,r,s′ [(Q
∗(s, a|θ ) − y)2] (6)

y = r + δmaxa′Q∗(s′, a′) (7)

where y is a target Q function whose parameters are period-

ically updated with the most recent θ , which helps stabilize

learning. Another crucial component of stabilizing DQN is

the use of an experience replay buffer D containing tuples

(s, a, r, s′). The agent determines its actions by using a neural

network and mixing the output of the neural network with

random actions to sample its training set. Usually, the agent

trains the neural network in such a way that it predicts the

cumulative, weighted rewards for all actions.

The optimal policy of a DQN-based agent not only inter-

acts directly with the workflow environment, but also with the

policies of the other agents as well. The iterative algorithm for

computing global equilibrium policies based on local updates

Q-values, policy at each state. Generally, Q-values are given

at time t for all i ∈ I , for all s ∈ S, and for all a ∈ A(s), namely

Qti (s, a). To achieve a correlated equilibrium, each DQN

VOLUME 7, 2019 39977
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FIGURE 2. The convergence of DQN-based MARL framework.

agent learns about the correlated equilibrium strategy π t ,

where π t+1
s ∈ f (Qt+1(s)), the DQN-based MARL algorithm

is developed in Algorithm 1. Along with suitable reward

mechanisms designed, the convergence of the DQN-based

algorithm in multi-agent settings can be guaranteed. For the

make-span agent, the reward mechanism is designed as,

R1 = [
ETk,i,j(a) − (makespan′ − makespan)

ETk,i,j(a)
]3 (8)

similarly, the cost reward is designed as,

R2 = [
worest − ETk,i,j(a) ∗ pj

worest − best
]3 (9)

TABLE 1. Units for price of Amazon EC2 instances.

where (8) indicates a lower increase of make-span is more

preferable. Similarly, (9) indicates that a lower increase of

cost is more preferable. Figure 2 demonstrates the conver-

gence of our proposed approach with respect to make-span

and cost.

V. EXPERIMENTS, RESULTS AND DISCUSSION

For the model validation purpose, we conduct extensive case

studies based on multiple well-known scientific workflow

templates shown in Figure 3 and real-world third-party com-

mercial clouds, i.e., the Amazon EC2 shown in Table 1.

We consider different types of tasks, namely AES, LZMA,

JPEG, Canny and Lua workloads that simulate task execution

scenarios, are performed by the workflow templates shown

in Figure 3. As shown in Table 2 from Geekbench [39],

the performances of tasks are varying based on the type

of supporting VMs from Amazon EC2. For the compari-

son reason, we consider MOPSO [14], NSGA-II [15] and

FIGURE 3. Overview of five workflow templates. (a) CyberShake, (b) Epigenomics, (c) Inspiral, (d) Montage, and (e) Sipht.
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FIGURE 4. Illustration of workflow scheduling with 138 tasks over NSGA-II, MOPSO, GTBGA and DQN-based MARL algorithms. (a) GTBGA; (b) NSGA-II;
(c) MOPSO and (d) DQN-based MARL algorithm.

TABLE 2. Units for multi-core performance scores of instances.

game-theoretic based greedy algorithm(GTBGA) [19] as the

baseline algorithms.

Figure 4 illustrates the scheduling results with relatively

small number of total tasks of five workflows, in terms of

Gantt charts, of different algorithms. It can be seen that our

proposed algorithm outperforms baseline algorithms in terms

of make-span. Intuitively, the advantage of our algorithm

is achieved due to the fact that our algorithm leaves less

inter-task dwelling time and squeezes to more exploit the

underlying parallelism provisioned by the EC2 platforms.

In contrast, baseline algorithms tend to follow the topological

constraint of workflows first and hesitate to fully exploit the

potential parallelism.

Figure 5 shows the resulting comparison of make-span

and cost achieved by different algorithms based on the

scheduling plans shown in Figure 4. When taking into

account both make-span and cost metrics, the performance

of MOPSO algorithm apparently outweighs that of GTBGA

and NSGA-II. Although MOPSO algorithm is cheaper than

our proposed algorithm, our proposed algorithm clearly beats

baseline ones in terms of make-span, and our algorithm is

much cheaper than the GTBGA and only 2.899%, 4.303%

more expensive than NSGA-II and MOPSO, respectively

when task size is 138. According to Figure 6, we can clearly

see that there is little difference between the baseline ones and

our proposed method in terms of total cost for each kind of

task size.
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FIGURE 5. Illustration of comparisons of baseline algorithms and DQN-based MARL method with four different task sizes. (a) 138; (b) 252; (c) 358 and
(d) 497.

FIGURE 6. Comparisons of baseline algorithms and DQN-based MARL
method with four different task sizes.

VI. CONCLUSION

This paper targets at the problem of multi-objective work-

flow scheduling in the heterogeneous IaaS cloud environ-

ment. We model the multi-objective workflow scheduling

as a stochastic Markov game and develop a decentralized

DQN-based MARL framework that is capable of obtain-

ing correlated equilibrium solutions of workflow scheduling.

The proposed DQN-based MARL framework is featured by

the combination the traditional DQN algorithm for reinforce-

ment learning and the novel model of cooperative and corre-

lated equilibrium. We conduct extensive case studies based

on Amazon EC2 and multiple scientific workflow templates

and show that our proposed method outperforms the baseline

algorithms such as NSGA-II, MOPSO and GTBGA.

As future work, we plan to consider more QoS met-

rics, such as reliability, security, load-balancing, etc. and

introduce corresponding algorithms for on-the-fly scheduling

for cross-organizational workflows. our proposed method

relies on knowledge of QoS data of all tasks and candidate

cloud servers. However, in practice it would be too expen-

sive and time-consuming to collect such data at run-time.

We thus intend to introduce large-scale-sparse-matrices-

analysis models [40], [41] for QoS prediction when historical

QoS data is insufficient.
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