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Abstract

Background: The human gut microbiome plays a critical role in the carcinogenesis of colorectal cancer (CRC).

However, a comprehensive analysis of the interaction between the host and microbiome is still lacking.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: e.giannoulatou@victorchang.edu.au; ljli@zju.edu.cn
3Computational Genomics Laboratory, Victor Chang Cardiac Research

Institute, Sydney, Australia
1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,

The First Affiliated Hospital, School of Medicine, Zhejiang University,

Hangzhou, China

Full list of author information is available at the end of the article

Wang et al. BMC Microbiology 2020, 20(Suppl 1):83

https://doi.org/10.1186/s12866-020-01762-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-020-01762-2&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:e.giannoulatou@victorchang.edu.au
mailto:ljli@zju.edu.cn


(Continued from previous page)

Results: We found correlations between the change in abundance of microbial taxa, butyrate-related colonic

metabolites, and methylation-associated host gene expression in colonic tumour mucosa tissues compared with

the adjacent normal mucosa tissues. The increase of genus Fusobacterium abundance was correlated with a

decrease in the level of 4-hydroxybutyric acid (4-HB) and expression of immune-related peptidase inhibitor 16

(PI16), Fc Receptor Like A (FCRLA) and Lymphocyte Specific Protein 1 (LSP1). The decrease in the abundance of

another potentially 4-HB-associated genus, Prevotella 2, was also found to be correlated with the down-regulated

expression of metallothionein 1 M (MT1M). Additionally, the increase of glutamic acid-related family

Halomonadaceae was correlated with the decreased expression of reelin (RELN). The decreased abundance of genus

Paeniclostridium and genus Enterococcus were correlated with increased lactic acid level, and were also linked to the

expression change of Phospholipase C Beta 1 (PLCB1) and Immunoglobulin Superfamily Member 9 (IGSF9)

respectively. Interestingly, 4-HB, glutamic acid and lactic acid are all butyrate precursors, which may modify gene

expression by epigenetic regulation such as DNA methylation.

Conclusions: Our study identified associations between previously reported CRC-related microbial taxa, butyrate-

related metabolites and DNA methylation-associated gene expression in tumour and normal colonic mucosa tissues

from CRC patients, which uncovered a possible mechanism of the role of microbiome in the carcinogenesis of CRC.

In addition, these findings offer insight into potential new biomarkers, therapeutic and/or prevention strategies for

CRC.
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Background
Colorectal cancer (CRC) is the third most commonly di-

agnosed cancer and second leading cause of cancer

death in both men and women globally, leading to an es-

timated 551,269 annual deaths worldwide [1]. Diet plays

an important role in the initiation, promotion and pro-

gression of colon carcinogenesis [2]. Epidemiological

surveys indicate that approximately 80% of CRC cases in

Western countries are due to dietary factors [3].

The human intestine harbours a complex microbial

community comprising more than 1014 microorganisms;

it carries greater than 150 times the number of genes in

the human genome [4]. Diet has been shown to have a

dominant impact on the structure and composition of

the gut microbiome, microbial generated metabolites

and host metabolism [5, 6]. Many studies have demon-

strated the effect of the gut microbiome on the patho-

genesis of CRC, revealing potential pathogenic bacteria

such as Fusobacterium as well as beneficial bacteria such

as Lactobacillales [6–8].

Nevertheless, dietary factors have also been shown to

induce epigenetic changes. The most extensively studied

epigenetic mechanism is DNA methylation, which in-

volves the transfer of methyl group to the cytosine of a

CpG dinucleotide and is responsible for regulating the

expression of genes related with critical pathological

processes [9]. Carcinogenic gene silencing may occur

due to aberrant gene-specific hypermethylation at the

CpG rich region (CpG island) which is located in the

promotors of the genes and interfere with transcription

factor binding [10, 11].

One possible mechanism underlying the effects of diet

and microbiome on CRC development is a potential

interaction between the microbiome and the host,

whereby the colonic metabolome is impacted, leading to

a subsequent alteration in host epigenetic activity and

host gene expression [12, 13]. Research on selected as-

pects of the microbiome, metabolome, host epigenome

and host transcriptome have been carried out in human,

animal and cell models [14]. For instance, the interaction

between the microbiome and metabolome has been ex-

tensively studied, revealing various epigenome-

modulation-related metabolites such as butyrate and fol-

ate [15, 16]. In addition, the contribution of commensal

bacteria to epigenetic control in the host large intestine

has been demonstrated by comparing conventional and

germ-free mice [17]. Associations between the micro-

biome and differentially methylated genes have also been

investigated in patients with ulcerative colitis [18]. The

interplay between the microbiome, host transcripts re-

lated to adhesion molecules and fatty acid biosynthesis

was strongly supported in one study of inflammatory

bowel disease [19].

Despite the mounting evidence of a potential host-

microbiome interaction, a comprehensive human study

integrating all the aforementioned omics is still lacking.

Thus, in this pilot study, we generated and analysed four

types of omic data: the microbiome (16S rRNA sequen-

cing; 36 pairs), the metabolome (untargeted GC/MS; 17

pairs), the host transcriptome (RNA-seq; 4 pairs) and

the host epigenome (Infinium HumanMethylation850

BeadChip array; 4 pairs), as measured from paired

tumour and adjacent normal colonic mucosa tissues
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samples obtained from CRC patients (details of the study

design in Additional file 1: Figure S1).

Results
Comparison of microbial composition between tumour

and adjacent normal tissues

Non-metric multidimensional scaling (NMDS) analysis

based on the unweighted UniFrac distance on oper-

ational taxonomic units (OTUs) revealed that the micro-

bial community composition of the cancerous tissues

could be clearly distinguished from the non-cancerous

tissues, which was confirmed by analysis of similarities

(Anosim) (p-value = 0.002; Fig. 1a).

The microbial population structure differed between

tumour and healthy tissues at multiple levels (Fig. 1b-d).

At the phylum level, lower abundance of Bacteroidetes,

Firmicutes and Actinobacteria, and higher abundance of

Proteobacteria and Fusobacteria, was observed in

tumour tissues (p-value > 0.05). At the family level, there

was an under-representation of Bacteroidaceae, Lachnos-

piraceae and Ruminococcaceae and predominance of

Fusobacteriaceae in tumour tissues (p-value > 0.05). At

the genus level, the most distinctive genera were Fuso-

bacterium, Bacteroides and Faecalibacterium, with Fuso-

bacterium higher in tumour tissues and the other two

lower in tumour tissues (p-value > 0.05).

To further characterise the bacterial genera driving the

difference between the paired samples, the paired zero-

inflated Gaussian (ZIG) mixture model was used [20].

As shown in Fig. 2, 15 taxa were identified to be the

most relevant to the differences between tumour and

normal tissues (Additional file 2: Table. S1). We found

that taxa in family Halomonadaceae, genus Halomonas,

genus Shewanella, genus Fusobacterium, genus Fretibac-

terium, genus Peptostreptococcus and genus Klebsiella

were highly enriched in cancer tissues (p-value< 0.05,

Fig. 1 Microbial composition comparison between tumour tissues and paired normal tissues in CRC patients a. NMDS plot of microbiota based

on unweighted UniFrac metric on OTUs. Each point represents one sample with colour indicating tumour tissues (red) and adjacent normal

tissues (blue). b-d. Distribution of the top 10 most abundant taxa in the samples at phylum (b), family (c) and genus (d) level
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Fig. 2a; details in Additional file 2: Table. S1), while

genus Paeniclostridium, species Bacteroides eggerthii,

genus Lactobacillus, genus Prevotella 2, Enterococcus,

species Clostridium perfringens and genus Veillonella

were less abundant in cancer tissues (p-value < 0.05, Fig.

2b; Additional file 2: Table. S1).

Taken together, these results reveal the different mi-

crobial environments between the cancerous and normal

colon mucosa.

Microbiota associated with CRC-related colonic

metabolites

Seventeen pairs of samples were retained for colonic me-

tabolome analysis, fifteen of which had matched micro-

biome data. In total, 309 metabolites were detected and

quantified using the untargeted gas chromatography-

mass spectrometry (GC-MS) approach. The score plot

from orthogonal partial least squares discriminant ana-

lysis (OPLS-DA) revealed differences in metabolic fea-

tures between the tissues (R2Y = 0.937; Q2 = 0.658;

Fig. 3a). The reliability of the model was confirmed by

seven-fold cross-validation and 200 response permuta-

tion tests on Fig. 3b, which has showed that all permu-

tated values were lower than the original value. It

indicated that the original classification model predicted

the class better than the other newly calculated OPLS-

DA models with randomly assigned class labels (Q2
inter =

− 0.377; Fig. 3b).

Differential abundant metabolites were further identi-

fied based on Variable Influence on Projection (VIP)

from the OPLS-DA model (threshold > 1) and signifi-

cance level of 0.05 in the two-tailed paired t test. As

shown in Fig. 3c, eight metabolites were selected, includ-

ing lactic acid, 4-hydroxybutyric acid (4-HB), glutamic

acid, taurine, lyxose, tetracosane, oxalic acid and D-

talose. The heatmap revealed that the levels of 4-HB,

lyxose, oxalic acid and D-talose were lower in tumour

tissues compared to the paired normal tissues. On the

other hand, the concentrations of lactic acid, glutamic

acid, taurine and tetracosane were elevated in tumour

tissues.

Pearson correlation analysis between changes in the

level of the differentially abundant metabolites and the

microbial genera in cancer and healthy tissues revealed

several significant associations. The elevated abundance

of genus Fusobacterium was significantly correlated with

the decreased 4-HB level (r = 0.722, p-value = 0.002, de-

gree of freedom(df) = 13; Table 1; details in Add-

itional file 3: Figure S2). On the other hand, decrease in

abundance of genus Prevotella 2 was correlated with the

declined level of 4-HB in tumour tissues in comparison

with matched normal tissues (r = − 0.593, p-value =0.02,

df = 13; Table 1). In addition, the increase of family

Fig. 2 Boxplots of the differences in the mucosal microbiome between tumour tissues (red) and normal tissues (blue). Y axis: Relative counts

normalized and log transformed by the default method in metagenomeSeq package. X axis: names of the significantly differentially abundant

microbial taxa
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Halomonadaceae abundance exhibited a significant cor-

relation with the increase in glutamic acid level between

the tissues (r = 0.541, p-value = 0.037, df = 13; Table 1).

The increase of lactic acid concentration in cancer tis-

sues was also found to be significantly associated with

the decrease in both genus Paeniclostridium level (r = −

0.537, p-value = 0.039, df = 13; Table 1) and genus En-

terococcus level (r = − 0.527, p-value = 0.044, df = 13;

Table 1).

Colonic metabolite-correlated microbial taxa associated

with DNA methylation-related differential gene

expression

In total, four tumour and normal tissue pairs were se-

lected for transcriptome analysis using RNA-seq. After

pre-processing and filtering, 15,832 gene transcripts

were included in downstream analysis. Multi-

dimensional scaling (MDS) was performed to visualise

the differences in gene expression levels between cancer

tissues and matched healthy tissues (Fig. 4a). After gen-

eralized linear model (GLM)-based paired differential

comparison, 261 transcripts were found to be down-

regulated in cancer tissues while 333 were found to be

Fig. 3 Comparison of the mucosal metabolome between tumour

tissues and normal tissues in CRC patients a. OPLS-DA scores plot of

metabolome between tissue samples. Each point represents one

sample with colour indicating tumour tissues (red) and adjacent

normal tissues (blue). b. OPLS-DA model validation based on seven-

fold cross-validation and 200 permutation tests. Y axis: the R2 (green;

goodness of fit) and Q2 (blue; predictability) of the all newly

calculated and the original OPLS-DA models. X axis: correlation

between the original Y observation and the permuted Y

observation. R2inter and Q2
inter are the intercept of the linear

regression of R2 and Q2 from random models against those from

original model. The negative Q2
inter indicated the validity of the

model. c. Heatmap visualizing the significantly differentially

abundant metabolites between tumour (red) and normal tissues

(blue) based on hierarchical clustering analysis. The rows

demonstrate the metabolites and the columns display samples

Table 1 Significant correlation of differentially abundant

microbial taxa and metabolites (n = 15)

Microbial taxa Metabolites r valuea p-value

Genus Fusobacterium
(increased in tumour)

4-HB
(decreased in tumour)

0.722 0.002

Genus Prevotella 2
(decreased in tumour)

4-HB
(decreased in tumour)

−0.593 0.020

Family Halomonadaceae
(increased in tumour)

glutamic acid
(increased in tumour)

0.541 0.037

Genus Paeniclostridium
(decreased in tumour)

lactic acid
(increased in tumour)

−0.537 0.039

Genus Enterococcus
(decreased in tumour)

lactic acid
(increased in tumour)

−0.527 0.044

aFor the calculation of the correlations, the signed relative change of microbe

abundance and metabolite level between paired tumour and normal tissues

were used
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significantly up-regulated in tumour tissues (fold change

(FC) > 2, p-value< 0.05; Fig. 4b).

We then evaluated the methylation profile of four

tumour and normal tissues pairs at the 594 differentially

expressed genes, including all the probes that cover the

promoters and gene body of these genes. After quality

control, 14,108 probes were selected for subsequent ana-

lysis. As shown in Fig. 4c, the methylation patterns of

these differentially expressed genes are clearly distinctive

between the tumour and normal tissues. Of the 111 dif-

ferentially methylated probes, 68 were highly methylated

in cancer tissues (p-value< 0.05; Additional file 4: Table.

S2). Due to the reported relationship of DNA hyperme-

thylation located in gene promotor and gene transcrip-

tion repression, genes with the opposite trend of DNA

methylation at the promoter region and the

Fig. 4 Comparison of the mucosal transcriptome and DNA methylation profile between tumour tissues and normal tissues a. MDS plot of

transcriptome between tissue samples. Each point represents one sample with colour indicating tumour tissues (red) and adjacent normal tissues

(blue), shape indicating the patient. b. Volcano plot of the significant differences in the mucosal transcriptome between paired samples. The x-

axis shows the gene expression log2FC between paired samples; the y-axis represents minus log10(FDR-adjusted p-value) calculated from GLM.

Genes with more than two fold change in expression level are coloured in red (upregulated in tumour tissues) and green (downregulated in

tumour tissues). c. MDS plot of DNA methylation for differentially expressed genes between paired tissue samples. Each point represents one

sample with colour indicating tumour tissues (red) and adjacent normal tissues (blue), shape indicating the patient. d. Heatmap visualizing the

DNA methylation related differentially expressed genes between tumour (red) and normal tissues (blue) based on hierarchical clustering analysis.

The rows demonstrate the genes and the columns display samples
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corresponding gene expression level were considered as

DNA methylation-related differentially expressed genes.

This included sixteen genes: CHP2, EPHB1, FCRLA,

FOLR2, FREM2, GAD1, GNG2, GPNMB, GRIN2D,

IGSF9, LSP1, MT1M, PI16, PLCB1, RELN and SCG2

(Fig. 4d).

We further validated our hypothesis of a possible

microbiome and host transcriptome interaction by ana-

lysing the correlation between the two profiles. The mi-

crobial taxa that were associated with the colonic

metabolome were included. As a result, the increase in

genus Fusobacterium abundance was found to be signifi-

cantly associated with the down-regulated expression of

PI16 (r = − 0.993, p-value = 0.008, df = 2; Table 2) and

also significantly associated with the decreased expres-

sion of FCRLA (r = 0.956, p-value = 0.044, df = 2; Table 2)

and LSP1 (r = 0.954, p-value = 0.046, df = 2; Table 2) in

cancer tissues in comparison with the healthy tissues.

The decrease in the abundance of genus Prevotella 2

was significantly associated with the decreased expres-

sion of MT1M in cancer tissues (r = − 0.999, p-value =

0.001, df = 2; Table 2); the positive abundance change of

family Halomonadaceae was significantly associated with

the reduction in the expression level of RELN (r = 0.957,

p-value = 0.043, df = 2; Table 2). Nevertheless, the re-

duced abundance of genus Paeniclostridium and genus

Enterococcus in cancer tissues also exhibited significant

associations with the expression difference of PLCB1

(r = 0.995, p-value = 0.01, df = 2; Table 2) and IGSF9, re-

spectively (r = − 0.997, p-value = 0.003, df = 2; Table 2).

Discussion
In our present study, we comprehensively investigated

the host-microbiome interaction in CRC by assessing

multi-omics, including the mucosal microbiome,

mucosal metabolome, host transcriptome and host DNA

methylation profile.

We replicated several differentially abundant microor-

ganisms as reported in previous CRC-related studies. At

the genus level, potential pathogenic microorganisms

such as genus Fusobacterium were found to be signifi-

cantly enriched in tumour tissues compared with normal

tissues in our samples. The genus Fusobacterium is a

well-known potential pathogenic gut microorganism and

enrichment of this genus has been reported to be associ-

ated with CRC in several studies [21–23]. The over-

representation of genus Halomonas and genus Shewa-

nella has also been revealed in tumour-associated micro-

biota in patients with rectal and distal colon cancers

[24]. In addition, genus Peptostreptococcus has been

shown to be associated with CRC in several studies [8,

25, 26]. Similarly, genus Klebsiella has been implicated

in the progression of CRC [6, 27]. On the other hand,

genus Lactobacillus and genus Enterococcus, were over-

represented in healthy tissues in the current study,

which have been long regarded as anti-inflammation and

anti-tumorigenic probiotics [28, 29]. A recent study also

reported that genus Lactobacillus was able to counter-

balance the dysbiosis induced by CRC in human and

mice [26, 30]. In an animal study, genus Enterococcus

was shown to inhibit chemically-induced CRC [31].

The microbiota and its metabolic products have been

reported to affect the health status of the host, especially

in colon tissues [32]. In line with other metabolome

studies in CRC, several metabolites were found to be sig-

nificantly differentially abundant in cancer mucosal tis-

sues in contrast to adjacent healthy tissues. Interestingly,

the top three most distinguished differences between

colon tissues in our study were lactic acid, 4-

hydroxybutyric acid and glutamic acid. The elevation of

Table 2 Significant correlation of colonic metabolite-correlated microbial taxa and DNA methylation-related differential gene

expression (n = 4)

Microbial taxa Genes Coding protein r valuea p-value

Genus Fusobacterium
(increased in tumour)

PI16
(decreased in tumour)

Peptidase inhibitor 16 −0.993 0.008

FCRLA
(decreased in tumour)

Fc Receptor Like A 0.956 0.044

LSP1
(decreased in tumour)

Lymphocyte Specific Protein 1 0.954 0.046

Genus Prevotella 2
(increased in tumour)

MT1M
(decreased in tumour)

Metallothionein −0.999 0.001

Family Halomonadaceae
(increased in tumour)

RELN
(decreased in tumour)

Reelin 0.957 0.043

Genus Paeniclostridium
(decreased in tumour)

PLCB1
(increased in tumour)

Phospholipase C beta 1 0.995 0.010

Genus Enterococcus
(decreased in tumour)

IGSF9
(decreased in tumour)

Immunoglobulin Superfamily Member 9 −0.997 0.003

aFor the calculation of the correlations, the signed relative change of microbe abundance and gene expression level between paired tumour and normal tissues

were used
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lactic acid and glutamic acid in cancer tissues has been

shown in multiple cohort studies of the CRC mucosa

metabolome [33]. Additionally, taurine was found to be

high in tumour tissues. Taurine is a sulphur amino acid,

and studies have concluded that it is pro-inflammatory

and genotoxic [34]. Oxalic acid has also been reported

to be decreased in CRC samples [35]. Though tetraco-

sane has been reported to be cytotoxic and potentially

apoptotic, a high level of tetracosane in CRC tumour tis-

sues has not yet been reported and warrants further

study [36]. D-talose, which was found to be more abun-

dant in normal tissues, is a rare sugar with possible anti-

tumour application in the pharmaceutical industry [37,

38].

The key findings in our study were the associations be-

tween changes in microbial taxa, butyrate-related colonic

metabolites, and DNA methylation-associated host gene

expression between tumour and paired normal colon tis-

sues. We identified a significant association between the

increase of the pro-oncogenic genus Fusobacterium and

decrease of 4-HB between the tissues. As a hydroxylated

derivative of butyrate, 4-HB is involved in one of the

four pathways of butyrate synthesis (the 4-

aminobutyrate pathway) [39]. Although genus Fusobac-

terium, especially F. nucleatum, has been linked to colo-

rectal tumorigenesis, the mechanism remains unclear

[21–23]. Our finding suggests that, under tumour condi-

tions, genus Fusobacterium might promote inflammatory

response and carcinogenesis by interfering with butyrate

synthesis in the tumour tissues. Butyrate is a short-chain

fatty acid and has been revealed in several previous stud-

ies to be a potential anti-carcinogenic and anti-

inflammatory metabolite [40, 41].

Butyrate is produced by the microbial fermentation of

undigested polysaccharides that reach the colon [42]. In

addition, butyrate also plays a crucial role in influencing

gene expression in host colonic cells via epigenetic regu-

lation [43, 44]. In human cells, there is evidence that bu-

tyrate has a direct effect on DNA methylation by

regulating key enzymes, including methylcytosine dioxy-

genase (TET) and DNA methyltransferase 1 (DNMT1)

[45, 46]. Butyrate has also been shown to modify DNA

methylation and inhibit Wnt signalling in human gastric

cancer cells, a pathway also known to be activated in

CRC [47]. The potential association between Fusobacter-

ium and DNA methylation-related carcinogenesis has

been supported by a previous study [18]. It has also been

demonstrated that Fusobacterium is enriched in CRC

tissues, especially those with the methylation phenotype

[22]. Butyrate may mediate the effect of Fusobacterium

on host DNA methylation modifications.

In our study, the change in abundance of genus Fuso-

bacterium was also correlated with DNA methylation-

related expression differences in genes PI16, FCRLA and

LSP1 in colon tissues. PI16 is a peptidase inhibitor; con-

sistent with our findings, other studies have detected de-

creased expression of PI16 in colon cancer [48]. FCRLA

is an unusual member of the lymphocyte receptor family

and is associated with multiple Ig isotypes, including

IgM, IgG and IgA [49, 50]. As a B cell-specific protein,

FCRLA may play a crucial role in the mucosal immune

response [51]. Down-regulation of LSP1 has been shown

in several cancers and its over-expression is associated

with cell apoptosis [52, 53].

Additionally, butyrate might also play a role in the ef-

fect of genus Prevotella 2 on CRC. The decrease of

genus Prevotella 2 abundance and 4-HB concentration

in tumour tissues showed a significant correlation. In

terms of the correlation between genus Prevotella 2 and

4-HB, more detailed genomic analysis of its strains is

warranted to identify the metabolic pathway. The change

of genus Prevotella 2 abundance was also associated with

the reduced expression of MT1M in cancer tissues com-

pared with healthy tissues. A member of the metallo-

thionein (MT) family, MT1M is a cysteine-rich metal-

binding protein that is induced by inflammation and

protects the cell against carcinogens [54].

Another observation in our study is the positive rela-

tionship between the increase of glutamic acid and mi-

crobial taxa in the potential pathogenic family

Halomonadaceae in cancer tissues compared with nor-

mal tissues. In the large intestine, glutamic acid is par-

tially originated from the digestion of alimentary and

endogenous proteins by the colonic microbes [55]. Glu-

tamic acid can also serve as butyrate precursor and at

least five various pathways have been reported to be re-

sponsible for the fermentation of glutamic to butyrate by

anaerobic bacteria [56]. Nonetheless, glutamic acid can

also be metabolized to α-ketoglutarate (α-KG), which is

co-factor of methylcytosine dioxygenase (TET) [57]. The

link between Halomonadaceae and glutamic acid identi-

fied in our finding suggests that taxa in this family might

involve in glutamic acid metabolism. Furthermore, the

elevation of the taxa in family Halomonadaceae also cor-

related with the decreased expression of Reelin (RELN)

in tumour tissues. The downregulation of Reelin has

been found to be related to cell migration ability,

tumour invasiveness and patients’ survival rates in sev-

eral cancers, including gastric, breast, pancreatic and

liver cancers [58–60]. Importantly, large CpG islands are

located at Reelin promoter sites and its transcriptional

silence has been shown to be strongly controlled by pro-

moter hypermethylation [61]. Our finding might offer

additional evidence of the mechanism of epigenetic

regulation of RELN in colon cancer.

We also reported a significant association between the

increase in lactic acid level and the decrease in abun-

dance of genus Paeniclostridium as well as genus
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Enterococcus in cancer tissues, in contrast with normal

tissues. This may in part be due to the excess lactic acid

produced by cancer cells as a result of the high con-

sumption of glucose in glycolysis, which is characteristic

of tumour metabolism; this is termed the Warburg Ef-

fect [62]. Nonetheless, due to the synergic metabolism of

lactate-producers such as genus Enterococcus and

lactate-utilizing bacteria in the colon, less lactate might

be disposed by lactate-utilizing bacteria in tumour tis-

sues [63]. Lactate fermented by lactate-utilizing bacteria

can be used to generate butyrate, which, as mentioned,

might influence gene expression by modifying DNA

methylation [64]. To explain the correlation between

genus Paeniclostridium and lactic acid, further func-

tional studies are required to explore their relationship.

Interestingly, the reduced level of genus Enterococcus in

tumour tissues was also found to be associated with the

down-regulated expression of IGSF9 (Immunoglobulin

Superfamily Member 9), which contributes to regulating

immune cell activation [65]. Moreover, the reduced

abundance of genus Paeniclostridium was related to the

increased expression of Phospholipase C beta 1 (PLCB1).

Phospholipase C (PLC) is critical for cell proliferation

and apoptosis in several cell systems [66, 67]. The

knockdown of PLCB1 is reported to initiate apoptosis,

leading to strong growth arrest [68].

One limitation of our study is the use of 16sRNA

sequencing technology; as such, we are unsure which

specific species might distinguish tumour and normal

tissues. However, the current shotgun metagenomic

method is infeasible for mucosal microbiome study

because of human DNA contamination [69]. Future

development of sequencing technology would be crit-

ical for the identification of CRC-related microbes.

Due to a relatively small sample size, the heterogen-

eity of CRC was also not investigated. However, our

main aim was to conduct a pilot study to investigate

the potential interaction between the host and micro-

biome from multiple “omics”. Future studies with lar-

ger sample sizes would help disentangle the

complicated host-microbiome relationship in different

stages and different types of CRC. Another issue is

the causality of the reported relationship. Further ani-

mal intervention studies are needed to validate the

correlation identified from our findings.

Apart from integrating multiple “omics”, another

strength of our study is that we measured the micro-

biome from the mucosa sampled from CRC patients.

The mucosal microbiome is different from the faecal

microbiome, which is only an estimate of the former.

The mucosal microbiome exhibits a more intimate and

direct interaction with the host colonic epithelium; thus,

it has a greater impact on the pathogenesis of disease

[70].

Conclusions
In conclusion, our study identified associations between

previously reported CRC-related microbial taxa,

butyrate-related metabolties and DNA methylation-

associated gene expression in tumour and paired normal

colonic mucosa tissues from CRC patients, which uncov-

ered a possible mechanism of the role of microbiome in

the carcinogenesis of CRC. In addition, these findings

offer insights into potential new biomarkers, therapeutic

and/or prevention strategies for CRC.

Methods
Patient recruitment and DNA/RNA isolation

A total of 36 pairs of tumour tissues and adjacent

healthy colon tissues were obtained from CRC patients

in the Department of Colorectal and Anal Surgery, First

Affiliated Hospital of Zhejiang University, China. Mu-

cosa tissues were collected during surgery from both the

tumour site and from an adjacent non-tumorous site

that was more than 5 cm away from the tumour. The

samples were flash-frozen in liquid nitrogen immediately

after colonic resection and were stored at − 80 °C. Pa-

tients with diabetes or infectious diseases, those under-

going radiotherapy or chemotherapy, and those who had

received antibiotics or probiotics within 4 weeks were

excluded from the study. The study was approved by the

Ethics Committee of the First Affiliated Hospital of the

Medical School of Zhejiang University. Written in-

formed consent was obtained from all subjects.

Total DNA and RNA were extracted from the tissue

samples using AllPrep DNA/RNA mini kit (Qiagen, Val-

encia, CA, USA) according to the manufacturer’s

instructions.

Mucosal microbiome analysis

After assessing DNA concentration and quality, PCR

amplification of the V3-V4 regions of the 16S rRNA

gene was performed. Then, the qualified amplicon li-

braries were sequenced on the Ion S5TM XL platform

(Thermo Scientific) following the manufacturer’s proto-

col. The sequencing reads were processed using QIIME

pipeline (v1.9.1) [71]. Quality filtering were performed

under specific conditions according to the Cutadapt

(Martin, 2011) [72]. Chimera sequences were identified

using the UCHIME algorithm and were removed. After

quality control and trimming, the reads were merged

and clustered into operational taxonomic units (OTUs)

using UPARSE software (v7.0.1001) with a 97% similarity

threshold [73]. Taxonomy was assigned to each OTU

cluster based on the representative reads using the RDP

classifier based on the SILVA Database version 123

(confidence threshold: 80%) [74]. OTUs present in less

than 25% of the total samples and with less than 3 reads

were excluded. Non-metric multidimensional scaling
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(NMDS) was performed to visualise between-sample di-

versity based on unweighted UniFrac distances on OTUs

using the vegan package with R software (v 2.15.3). Add-

itionally, Analysis of similarities (Anosim) was con-

ducted to statistically test the significance of the

separation between samples. The default cumulative

sum scaling (CSS) normalization procedure in metagen-

omeSeq R package and log transformation was used to

normalize microbiome data. The paired zero-inflated

Gaussian (ZIG) mixture model from the metagenomeSeq

R package was applied to identify statistically significant

and biologically relevant taxa in paired cancer and

healthy colon mucosa samples [20].

Mucosal metabolomics analysis

50mg of colon mucosa tissues was mixed with 800 μl

ice-cold methanol and homogenized. After centrifuga-

tion, the supernatant was transferred to a new Eppen-

dorf tube containing 20 μl of internal standard (1 mg/ml

heptadecanoic). The remainder was extracted with 800

ul ice-cold methanol/chloroform (3:1, v/v) and the

supernatant was then combined with the supernatant

from the previous step. Next, the samples were dried

under a nitrogen stream (Aosheng, Hangzhou, China).

The dried residue was added to 80 μl of 20 mg/ml meth-

oxylamine hydrochloride in anhydrous pyridine. The

mixture was incubated at 37 °C for 24 h after vortexing.

Then, the sample was mixed with 100 μl of N,O-bistri-

fluoroacetamide (BSTFA) [with 1% trimethylsilyl chlor-

ide (TMCS)] (Sigma-Aldrich, St. Louis, MO, USA) and

derivatised (70 °C for 2 h). Untargeted metabolomics

analysis was carried out by gas chromatography-mass

spectrometry (GC-MS) with an Agilent 7890A GC and

5975C inert mass selective detector (MSD) system (Agi-

lent Technologies, Santa Clara, CA, USA). The raw data

from GC-MS was transformed by ChemStation software

(version E.02.02.1431, Agilent, CA, USA) and pre-

treated by ChromaTOF software (version 4.34, LECO,

St. Joseph, MI, USA). The Fiehn database was referred

to for identification of the metabolites. The GC-MS

dataset was quantile normalized, auto-scaled and log

transformed using MetaboAnalyst 4.0 (www.metaboana-

lyst.ca/). Subsequently, principal component analysis

(PCA) and orthogonal partial least squares discriminant

analysis (OPLS-DA) was performed using SIMCA (Ume-

trics, Umeå Sweden) to measure the differences in me-

tabolites between the tissue samples. Model quality was

summarized by R2Y and Q2 parameters, which mea-

sures the goodness of fit and the predictive ability of the

model respectively (26). To measure the reliability of the

OPLS-DA model from overfitting, we performed seven-

fold cross-validation and 200 response permutation tests

which randomly permutated the group attributes (Y)

whereas the variables (X) remained same. Metabolites

were considered statistically significant if the Variable

Influence on Projection (VIP) value, a measure of the

relative influence on the model, was greater than 1 and

the p-value returned from the two-tailed Student’s t test

on normalized data was less than 0.05.

Host transcriptome analysis

The RNA sequencing library was prepared as previously

described [75] and sequenced on an Illumina Hiseq 2000

platform. After quality control, the paired-end clean reads

were mapped to the reference genome hg19 using Hisat2

(v2.0.5). FeatureCounts (v1.5.0-p3) was used to count the

number of reads mapped to genes [76]. Then, the gene ex-

pression value was quantified by the length of the gene

and total read counts of the gene as count per million

(CPM). The transcripts were subsequently filtered with

the cut-off of CPM> 0.5 in at least 4 libraries. The biocon-

ductor package edgeR was used to normalize and analyse

differential gene expression levels between paired cancer-

ous and non-cancerous tissues with a generalized linear

model (GLM) [77]. Multi-dimensional scaling (MDS) plot

was generated to visualize the difference between pairs of

RNA samples. The resulting p-values were corrected using

the Benjamini and Hochberg approach at False Discovery

Rate (FDR) of 5% [78]. Genes with an adjusted p-value<

0.05 and fold change (FC) > 2 were considered differen-

tially expressed between the groups.

Host methylation analysis

An EZ DNA Methylation Kit was used for bisulfite

modification of the genomic DNA. Then, DNA methyla-

tion analysis was performed using the Infinium Human-

Methylation850 BeadChip array (Illumina San Diego,

CA, USA), which covers more than 850,000 CpG sites

and 99% of the RefSeq genes. DNA methylation data

analysis was performed following a cross-package Bio-

conductor workflow [79]. Methylation levels were quan-

tified as beta value, which describes the proportion of

methylation at each CpG locus. After background sub-

traction and data normalization, probes that were lo-

cated at the region of the differentially expressed genes

were selected for subsequent analysis. Differential DNA

methylation between the groups was assessed by paired

linear model using the limma R package and the p-

values were adjusted for multiple testing using

Benjamini-Hochberg method at FDR of 5% [78]. The

probes with an adjusted p-value less than 0.05 were con-

sidered statistically significantly differentially methylated.

Interactions between omics

The correlations between change in the level of differen-

tially abundant microbes and metabolites were estimated

with Pearson correlation tests using the function cor.test

in R (version 3.5.2). Due to the interdependence between
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paired tumour and normal tissues, the signed relative

change of microbe abundance and metabolite concentra-

tion between paired tissues were used for the calculation

of the correlations. Correlations were considered statisti-

cally significant if the p-value was less than 0.05. The

same correlation tests were also conducted between the

levels of differentially abundant microbes and differen-

tially expressed genes that also exhibited opposite trend

of differential methylation at the promoter region. Me-

tabolites and methylation-related differentially expressed

genes that were associated with the same microbe were

reported.
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