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Abstract 

Ferroptosis is a newly recognized mechanism of regulated cell death. It was reported to be highly 
associated with immune therapy and chemotherapy. However, its mechanism of regulation in the tumor 
microenvironment (TME) and influence on oral squamous cell carcinoma (OSCC) therapy are unknown. 
We identified a ferroptosis-specific gene-expression signature, an FPscore, developed by a principal 
component analysis (PCA) algorithm to evaluate the ferroptosis regulation patterns of individual tumor. 
Multi-omics analysis of ferroptosis regulation patterns was conducted. Three distinct ferroptosis 
regulation subtypes, which linked to outcomes and the clinical relevance of each patient, were 
established. A high FPscore of patients with OSCC was associated with a favorable prognosis, a 
ferroptosis-related immune-activation phenotype, potential sensitivities to the chemotherapy and 
immunotherapy. Importantly, a high FPscore correlated with a low gene copy number burden and high 
immune checkpoint expressions. We validated the prognostic value of the FPscore using independent 
immunotherapy and pan-cancer cohorts. Comprehensive evaluation of individual tumors with distinct 
ferroptosis regulation patterns provides new mechanistic insights, which may be clinically relevant for the 
application of combination therapies in OSCC. 
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Introduction 

Cell death, which occurs in all organisms, is an 
important aspect of development. In particular, 
certain mechanisms of cell death depend on a specific 
molecular machinery, which may be 
pharmacologically or genetically controlled. 
Ferroptosis, discovered in 2012, is an iron-dependent, 
nonapoptotic mechanism of cell death, characterized 
by iron-dependence, and excess levels of reactive 
oxygen species and lipid peroxidation [1]. The cell 
morphology and function of ferroptosis clearly differs 

from those of necrosis, apoptosis, and autophagy [2, 
3]. Further, ferroptosis is closely associated with 
numerous diseases, such as cancers, neuropathies, as 
well as kidney injury [4]. 

Cancer cells require increased levels of iron and 
lipid metabolism compared with those of normal cells 
to promote development. Thus, cancer cells are more 
sensitive to ferroptosis [5, 6]. Further, inducers of 
ferroptosis, such as erastin and RLS3, show strong 
potential for suppressing the growth of colorectal 
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cancer, clear cell renal cell carcinoma, and melanoma 
[7, 8]. 

Head and neck squamous cell carcinoma 
(HNSCC) represent the sixth most common cancer 
worldwide with at least 350,000 deaths every year [9, 
10]. Oral squamous cell carcinoma (OSCC), the most 
frequently occurring subtype of HNSCC, is 
characterized by high morbidity and mortality [11]. 
Most patients with OSCC are diagnosed only when 
the disease is advanced. However, current treatments 
for OSCC, such as chemoradiotherapy and surgery, 
have not significantly improved the survival rate [11]. 

The increased recognition of the complexity and 
importance of the tumor microenvironment (TME) 
has inspired numerous investigations of the 
regulation of the TME in tumor metastasis [12, 13]. 
Moreover, evidence continues to indicate that the 
expression of ferroptosis regulators is highly 
associated with the immune response and the TME 
[14]. For example, immune checkpoint inhibitor (ICI) 
therapies have revolutionized the treatment of certain 
cancers [15, 16]. In 2016, the US Food and Drug 
Administration approved PD-L1 and PD-1 for 
treatment of HNSCC [17]. In 2021, PD-1 has been used 
as a first-line therapy for patients with advanced 
OSCC according to the NCCN guidelines (https:// 
www.nccn.org/home). 

Furthermore, ICI treatment enhances CD8+ T 
cell-mediated ferroptosis in melanoma and ovarian 
cancer [18]. Unfortunately, insufficient information is 
available that describes the overall characteristic 
infiltration of the TME mediated by interconnected 
functions of multiple regulators of ferroptosis, and 
some studies concentrate on one type of cell or some 
regulators [19-21]. Therefore, characterizing the role 
of ferroptosis in the cellular infiltration of the TME 
will enhance our understanding of the antitumor 
response of components of the TME and improve 
immunotherapy strategies. 

In this study, the first identification of ferroptosis 
regulation patterns and the characterization of the 
TME in patients with OSCC was accomplished using 
samples from the Gene-Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) database. This 
study identified three TME-relevant phenotypes as 
follows: immune-inflamed, immune-desert, and 
immune-excluded [22]. Moreover, we discovered that 
the immune-inflamed phenotype is a ferroptosis 
phenotype. 

Moreover, we developed the FPscore to 
comprehensively evaluate individual tumors with 
each of the above ferroptosis patterns. The findings 
reveal that the FPscore shows promise as a prognostic 
biomarker for patients undergoing chemotherapy and 
immunotherapy. Therefore, we believe that this 

information will provide new insights into the 
regulation of ferroptosis in association with the TME 
and serve as a platform for developing new strategies 
to implement optimal combination therapy of cancer. 

Materials and methods 

Data acquisition 

Data for patients with OSCC were downloaded 
from the GEO and TCGA, which included the original 
“CEL” files of seven GEO data (GSE41613, GSE42743, 
GSE9844, GSE30784, GSE74530, GSE78060, and 
GSE138206; n = 510) and the level 3 gene-expression 
data (counts) of the TCGA-HNSCC cohort. 
Background adjustment and quantile normalization 
were performed for GEO data using the “affy” 
package. We selected 292 samples with OSCC and 30 
normal control samples from TCGA-HNSCC data 
according to the previously described position of the 
tumor [23]. To establish TCGA-OSCC datasets, RNA 
sequencing, somatic mutation, and copy number 
aberrations data were downloaded from Genomic 
Data Commons (GDC, http://portal.gdc.cancer. 
gov/) and the Broad Institute (https://www. 
broadinstitute.org/). The original counts data were 
transformed into transcripts per kilobase million 
(TPM) values, because the TPM values were more 
similar to those of microarrays. Batch effects were 
corrected using the “Remove Batch Effects” algorithm 
to eliminate nonbiological technical biases for the 
seven datasets. The GEO + TCGA cohort represented 
the combination of TCGA-OSCC, GSE41613, and 
GSE42743 cohorts where every sample contained 
overall survival (OS) information. The accession 
numbers, platforms, and other details of datasets are 
summarized in Table S1. 

Consensus clustering of ferroptosis regulation 
patterns 

Ferroptosis regulators were downloaded from 
http://www.zhounan.org/ferrdb/. After matching 
with our datasets, we included 232 ferroptosis 
regulatory genes (Table S2). Based on these genes and 
the GEO + TCGA cohort, data were selected to 
perform unsupervised clustering analysis using the 
“ConsensusClusterPlus” R package. Further, this 
consensus clustering algorithm was used to identify 
the number of clusters, and the analysis included 1000 
iterations to ensure the stability of the classification 
[24]. 

Gene set variation analysis and functional 
analysis 

The “ClusterProfiler” R package was used for 
the analyses of the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
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databases. A false discovery rate (FDR) < 0.05 served 
as the cutoff to select the pathways that were 
significantly enriched. Non-parametric and 
unsupervised Gene Set Variation Analysis (GSVA) 
analysis was performed using the “GSVA” R package 
and gene sets of the MSigDB database of the Broad 
Institute. Single-sample gene set enrichment analysis 
(ssGSEA), including all TME and immune cell 
signatures, was conducted using the package “IOBR” 
[25]. The enrichment scores were calculated to 
represent the relative expression in each sample. 

Differentially expressed gene (DEG) analysis 
and development of the ferroptosis score 
(FPscore) 

To identify genes associated with ferroptosis 
patterns, DEGs among the ferroptosis clusters were 
determined using the limma R package. The 
significant criteria were selected using FDR < 0.01 and 
absolute fold-change (FC) > 2. To evaluate the 
classification value of the DEGs, dimension reduction 
was conducted using the Boruta algorithm [26] and 
the ferroptosis gene signature was determined. The 
unsupervised clustering method was performed 
using the TCGA-OSCC dataset. Patients were divided 
into different groups according to the clustering of 
ferroptosis gene signature for further analysis. 

PCA was then performed to determine the 
FPscore using principal components 1 and 2. This 
approach concentrated on the score of the set 
comprising the most significantly associated genes 
and involved scaling down the score of genes that did 
not track to other members of the set. The FPscore, 
which is described according to a GGI-like procedure 
[27], was calculated as follows: FPscore = ∑(PC1i–
PC2i). 

Evaluation of the FPscore of the TCGA cohort 

To evaluate the FPscore of TCGA-OSCC data, we 
first used Kaplan–Meier analysis to determine high 
and low FPscore subtype via the “survminer” R 
package. Next, HALLMARK gene set 
(h.all.v7.2.symbols) enrichment analysis (GSEA) was 
used to determine the biological signaling pathways 
associated with two groups using the “clusterProfiler” 
R package (P < 0.05, FDR < 0.25) [28]. To assess the 
importance of the association of the FPscore with 
patients’ clinical characteristics, univariate and 
multivariate analyses were performed to establish a 
Cox proportional hazard regression model. The tumor 
mutation burden (TMB) of OSCC was calculated 
using the total number of nonsynonymous mutations 
per megabase with the “maftool” R package [29]. The 
chi-square test was performed to evaluate the 
significance of differences of the numbers of mutated 

genes between FPscore subtypes. GISTIC 2.0 (https:// 
cloud.genepattern.org) was used determine copy 
number alterations to classify genes that were 
amplified or deleted [30]. The total number of each 
gene with an arm or focal region, which was deleted 
or amplified, was calculated as the burden of copy 
number loss or gain [31]. 

Prediction of the immunotherapeutic 
response and evaluation of drug sensitivity 

The immunophenoscore, tumor immune 
dysfunction and exclusion (TIDE) algorithm, and the 
subclass mapping (submap) algorithm were used to 
predict responses to ICI treatment as previously 
described [32-34]. To predict the chemotherapeutic 
responses of FPscore subtypes, the drug sensitivity 
data for cancer cell lines was obtained from the 
Cancer Therapeutics Response Protal (CTRP v2.0, 
https://portals.broadinstitute.org/ctrp) and the 
PRISM Repurposing dataset (PRISM, 
https://depmap.org/portal/prism/). The CTRP and 
PRISM databases contained 481 and 1448 compounds, 
respectively. We evaluated the most widely used 
drugs to treat OSCC (afatinib, aphidicolin, 
capecitabine, cisplatin, etoposide, fluorouracil, and 
paclitaxel) as well as the other four inducers of 
ferroptosis, which included RSL-3, erastin, ML162, 
and ML210. The lower area under the curve (AUC) of 
the dose-response curve indicated increased 
sensitivity to a chemotherapeutic drug [35]. 

Connectivity map analysis 

To further identify candidate compounds that 
target FPscore subtypes and to classify potentially 
beneficial therapeutics, connectivity map analysis 
(CMap, https://clue.io/) was conducted utilizing 
genes with the most significant fold-changes (up- and 
downregulated; absolute FC > 1.5, FDR < 0.05) [36]. 
Compounds with enrichment scores > 0.5 (P < 0.05) 
were designated potential agents for treating patients 
with OSCC. 

Influence of the ferroptosis patterns on 
immunotherapy and TCGA analyses of 
pan-cancer 

We analyzed five independent immunotherapy 
datasets, which included the melanoma cohort treated 
with pembrolizumab (anti-PD-1, GSE78220, n = 27) 
[37], advanced melanoma treated with nivolumab 
(anti-PD-1, GSE91061, n = 50) [38], melanoma treated 
with the immunotherapy TCGA-SKCM (n = 70) [39], 
melanoma treated with ipilimumab and nivolumab or 
pembrolizumab (anti-PD-1 and anti-CTLA4, Gide. El 
at cohort, n = 32) [40], and metastatic urothelial cancer 
treated with atezolizumab (anti-PD-L1, IMvigro210, n 
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= 298) [41]. Data were transformed from FPKM to 
TPM for further analysis. Survival analysis was 
performed to validate the prognostic value of the 
FPscore as applied to ICI treatment cohorts. Further, 
time-dependent receiver operating characteristic 
(ROC) curves were generated to evaluate the 
predictive significance of the FPscore. The pan-cancer 
data of 33 independent TCGA cancer cohorts 
comprising 9703 tumor samples were acquired using 
the UCSC Xena browser (http://xena.ucsc.edu/), and 
the correlations between FPscore and PD-L1, PD-1, 
CTLA-4, GPX4 in the pan-cancer cohort were 
evaluated. The prognostic value of the FPscore for 
predicting the OS was validated through univariate 
Cox regression analysis and displayed as a forest plot. 

Statistical analysis 

Data were analyzed using R software (version 
3.63). Comparisons of ≥ 2 groups were conducted 
using a parametric test (Student t-test or ANOVA test) 
or a nonparametric test (Wilcoxon rank-sum test or 
Kruskal-Wallis test). Post hoc tests were performed 
with Benjamini-Hochberg adjustment of P values 
after a Kruskal-Wallis test to compare each pair of 
groups using the R package “PMCMR”. Pearson 
correlation coefficients of the two groups were 
compared. Additionally, chi-square tests were used to 
analyze correlations between the ferroptosis gene 
clusters and OSCC clinicopathological characteristics. 
Survival analysis was performed using the Kaplan–
Meier method, and the significance of differences was 
evaluated using the log-rank test. Univariate and 
multivariate analyses were used to establish a Cox 
proportional hazard regression model and a 
nomogram model. We generated a time-dependent 
ROC curve to estimate the power of the nomogram 
model. The AUC was calculated using the R package 
“pROC”. Alluvial diagrams show the distribution of 
clusters. The data in nomograms included the 
standard error of the mean (SEM). P < 0.05 indicates a 
significant difference, and ns, *, **, and *** represent 
not significant (P ≥ 0.05) and significant at the levels P 
< 0.05, P ≤ 0.01, and P ≤ 0.001. 

Results 

The ferroptosis regulation patterns in OSCC 

According to the results of unsupervised cluster 
analysis, k = 3 was selected as the optimal ferroptosis 
cluster number, according to the expression levels of 
232 ferroptosis regulators (Figure S1A-E; Table S2). 
Using these data, we distinguished ferroptosis 
regulation patterns as ferroptosis cluster A, 
ferroptosis cluster B, and ferroptosis cluster C by PCA 
(Figure 1A). The circos plot shows the expression 
levels of genes encoding ferroptosis regulators in the 

clusters and the chromosomal positions of their 
corresponding genes (Figure 1B). Kaplan–Meier 
survival analysis showed that these ferroptosis 
regulation patterns significantly differed with 
patients’ survival (log-rank test, P = 0.009) (Figure 

1C). 
To identify the biological differences that 

potentially explain these differences in survival, we 
investigated immune-cell infiltration and the TME 
associated with ferroptosis regulation patterns. 
Among three ferroptosis clusters, all of their immune- 
cell populations and TME were significantly different. 
Further, the ferroptosis cluster C subtype, which was 
associated with the shortest survival, comprised of 
fewer immune cells; and the ferroptosis cluster A and 
B subtypes were mainly enriched in immune cells, 
such as B cells and CD8 T cells (Figure 1D; Table S3). 
But the populations of exhausted CD8 T cells, T cell 
exhaustion, and regulator T cells were significantly 
elevated in ferroptosis cluster A. The TME results 
showed marked enrichment of ferroptosis cluster A in 
TGF-β, the epithelial–mesenchymal transition (EMT), 
co-inhibition antigen-presenting cells (APC), 
co-inhibition T cells, and major histocompatibility 
complex (MHC) Class I. GSVA analysis revealed that 
ferroptosis cluster A was strongly associated with 
stromal activation, which included extracellular 
matrix receptor interaction, focal adhesion molecules, 
and cell adhesion molecules (Figure 1E; Table S4). 
Ferroptosis cluster B was associated with ferroptosis- 
related metabolism and immune response pathways 
(Figure 1E-F; Table S4). Moreover, ferroptosis cluster 
C was associated with DNA repair pathways (Figure 

S1F; Table S4). Together, these findings indicated that 
ferroptosis cluster B was associated with immune 
activation and ferroptosis-related activities. 
Ferroptosis cluster C showed more genomic 
instability and less immune activation than the other 
two clusters. In contrast, ferroptosis cluster A showed 
T cell suppression and activation of stromal cells. 

Identification of genes associated with 
ferroptosis regulatory subtypes 

To evaluate the transcriptome differences among 
ferroptosis regulation patterns, we conducted 
analyses of DEGs (Table S5) together with the Boruta 
algorithm to minimize dimensions of the ferroptosis 
gene signature to reduce noise or redundant genes 
and 245 DEGs were finally obtained as ferroptosis 
gene signatures (Table S6). We next analyzed the 
TCGA-OSCC cohort (292 patients with OSCC; Table 

S7) to better identify and recognize the biological and 
clinical variations between these patterns. The 
summaries of GO and KEGG analyses of the DEGs are 
shown in Figure 2A-B, and Table S8. DEGs were 
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significantly enriched in ferroptosis-related 
metabolism pathways, including fatty acid 

metabolism and the metabolism of xenobiotics by 
cytochrome P450 (FDR < 0.05). 

 

 
Figure 1. Ferroptosis regulation patterns and related biological process. (A) Principal component analysis of 463 (GSE41613, GSE42743, TCGA-OSCC) patients with 
OSCC. There were significant differences among the transcriptomes of three distinct ferroptosis regulation patterns. (B) Integration of circular plots of 463 patients with OSCC. 
Circular tracks from outside to inside: genome positions according to chromosomal position (black lines, cytobands), ferroptosis cluster A, B, or C in each track (red: Driver; 
blue: Suppressor; black: Marker). (C) Survival analyses of patients (n = 463) with these regulation patterns designated ferroptosis cluster A (n = 198), ferroptosis cluster B (n = 
194), and ferroptosis cluster C (n = 71). Kaplan–Meier analysis (log-rank p = 0.009) showed significant differences in OS among the three patterns. (D) The enrichment score of 
infiltrating immune cells associated with the three ferroptosis regulation patterns and the TME signatures of the three clusters. (E,F) GSVA enrichment analysis showing the 
different activation states of biological pathways associated with the ferroptosis regulation patterns. Ferroptosis cluster A vs. ferroptosis cluster B and ferroptosis cluster B vs. 
ferroptosis cluster C. Heat map: blue, activated pathways; red: inhibited pathways. The different cohorts served as sample annotations. P values were evaluated using the Student's 
t-test and Kruskal-Wallis test (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Figure 2. Identification of ferroptosis gene clusters and development of the FPscore. (A,B) Functional annotation of DEGs using GO and KEGG enrichment analysis. 
(C) Unsupervised clustering of ferroptosis regulation patterns-related DEGs was used to classify patients into different genomic subtypes in the TCGA-OSCC cohort 
(ferroptosis gene clusters A, B, and C). The gene clusters, ferroptosis clusters, and patients’ clinical characteristics were used as patients’ annotations. Blue, high expression of 
regulators; red, low expression (D) The survival of patients in the ferroptosis gene clusters were estimated using the Kaplan–Meier plotter (P = 0.032, log-rank test). (E) 
Correlations between ferroptosis gene clusters and patients’ clinicopathological characteristics. (F) The distributions of PD-L1, CTLA4, PD-1 expression among the ferroptosis 
gene clusters. (G) Correlation between FPscore and canonical ferroptosis-related genes. (H,I) Violin/boxplot showing the distributions of FPscore in ferroptosis clusters A, B, 
and C and ferroptosis gene clusters A, B, and C. P values were evaluated using the chi-square, Kruskal–Wallis tests as well with Pearson correlation analysis (*P < 0.05, **P < 0.01, 
***P < 0.001). 
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Unsupervised clustering was performed 
according to the expression of 245 DEGs. We 
identified three genomic clusters in the TCGA-OSCC 
cohort, namely ferroptosis gene clusters A, B, and C 
(Figure S2A-E). The heatmap illustrated significantly 
different transcriptome profiles of the 245 DEGs 
according to genomic cluster (Figure 2C). Further, 
Kaplan-Meier survival analysis revealed important 
prognostic variations in the TCGA-OSCC cohort 
associated with the three ferroptosis gene clusters as 
follows: The ferroptosis gene cluster B correlated with 
better prognosis, whereas ferroptosis gene clusters A 
and C were associated with worse outcomes (P = 
0.032) (Figure 2D). The chi-square test stratified 
patients into three discrete clusters with distinct 
ferroptosis gene signature and clinicopathological 
characteristics. The ferroptosis gene clusters were 
significantly associated with differences in the 
immune response according to the TIDE algorithms 
(P < 0.05). Furthermore, gene cluster B exhibited low 
tumor grades and mainly the basal molecular 
subtype, whereas gene clusters A and C showed 
diverse patterns (Figure 2E). 

Similarities between the landscape of infiltration 
of immune cells and TME signatures characteristic of 
the ferroptosis regulation patterns are shown in 
Figure S2F-G, and Table S3. Gene cluster B and C 
exhibited higher B cells and CD8 T cells than were 
exhibited by gene cluster A. T cell exhaustion and 
regulatory T cells were most enriched in gene cluster 
C. Patients with higher expression levels of PD-L1 as 
well as expression of immune activation-related 
genes, such as CD8A, CXCL10, and IFNG, were more 
abundant in gene cluster B than they were in clusters 
A and C (Figure 2F; Figure S2H; Table S3). These 
results were consistent with patients’ outcomes and 
the clinical relevance of different gene clusters, 
indicating that our classification was reasonable. 

Generation of the FPscore 

To apply the ferroptosis regulation patterns to 
each patient with OSCC according to these ferroptosis 
gene signatures, we developed the FPscore. The circle 
plot shows that the FPscore was significantly 
associated (P < 0.05) with canonical ferroptosis- 
related genes [42, 43] (Figure 2G; Table S9). Notably, 
ferroptosis cluster B and gene cluster B, which had the 
highest FPscore, were associated with better 
prognosis compared to other clusters (Figure 2H-I). 

FPscore is an independent prognostic factor in 
OSCC 

Further, the FPscore was significantly different 
between normal and tumor samples in all cohorts 
(seven GEO datasets and TCGA-OSCC cohort, n = 

832) and TCGA-OSCC cohorts (n = 322) (Figure 

3A-B). The prognostic value of the FPscore for 
predicting OS, progression-free interval (PFI), and the 
disease-specific survival (DSS) of the TCGA-OSCC 
cohort was evaluated (Figure 3C; Figure S3A-B). 
These results were confirmed by Kaplan–Meier 
analyses of the GEO + TCGA, GSE42743, and 
GSE41613 cohorts (Figure 3D; Figure S3C-D). Based 
on the OS results in TCCA-OSSC cohort, we divided 
the OSCC patients into high/low FPscore subtype 
and the association between ferroptosis-related 
clusters and status were displayed in Figure 3E. These 
results showed that the high FPscore subtype 
experienced significantly better outcomes compared 
with the low FPscore subtype. 

The FPscore, which was subsequently evaluated 
as a continuous variable in univariate and 
multivariate Cox regression models, was identified as 
an independent and stable prognostic factor of the 
TCGA-OSCC and GEO + TCGA cohorts (HR, 0.58; 
95% CI, 0.39-0.87; P = 0.008 and HR, 0.63; 95% CI, 
0.47-0.84; P = 0.002, respectively) (Figure 3F-G). 
Further, a nomogram that combined the FPscore with 
the tumor stage was created to provide clinicians with 
a predictive tool for estimating the 1-, 3-, and 5-year 
prognoses of patients with OSCC (Figure 3H). The 
calibration plot showed that the nomogram 
performed well in predicting OS (Figure 3I). The 
C-indices of our nomogram model used to predict OS 
of the TCGA-OSCC and GEO + TCGA cohorts were 
0.61 and 0.60, respectively. Further, the AUC values 
showed that the FPscore was superior to the TIDE 
score for predicting OS (Figure 3J-K). 

Characteristics of the FPscore of TCGA 
molecular subtypes and their clinical relevance 

When we investigated the relationship between 
the FPscore and clinical characteristics, we found that 
a high FPscore was significantly associated with low 
tumor grade, early tumor stage, wild-type TP53, T 
and N stage, and low mDNAsi and mRNAsi (P < 0.05) 
(Figure 4A-G; Table S3). Further, the distributions of 
FPscore were significantly different among the 
molecular subtypes (Figure 4H-J; Table S3). 

To further investigate the biological differences 
between FPscore subtypes, we performed GSEA 
analysis. The results showed that TP53 pathway, 
tumor necrosis factor alpha (TNF-alpha signaling, 
Kras signaling decreasing, and responses to 
interferon-gamma were activated in the high FPscore 
subtype. In contrast, the EMT, DNA repair pathway, 
hypoxia, and mTORC1 were activated in the low 
FPscore subtype (Figure 5A-B). Further, the 
ferroptosis level was significantly higher in the high 
FPscore subtype (P < 0.05) (Figure 5C). 
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Figure 3. Ferroptosis score is an independent prognostic factor in OSCC. (A) Violin/boxplot showing the distributions of FPscore between normal and tumor tissues 
of patients in cohorts: GSE9844, GSE30784, GSE41613, GSE42743, GSE74530, GSE78060, GSE138206, and TCGA-OSCC. (B) Violin/boxplot showing the distributions of 
FPscore between normal and tumor tissues of patients in TCGA-OSCC cohort. (C,D) Kaplan-Meier analysis of OS associated with high and low FPscore subtype in the 
TCGA-OSCC cohort (log-rank test, P = 0.006) and GEO + TCGA cohort (log-rank test, p = 0.002). (E) Alluvial diagram of ferroptosis clusters in groups of ferroptosis gene 
clusters, FPscore, and survival outcomes. (F,G) Forest plot showing univariate and multivariate Cox regression analyses of FPscore associated with age, gender, tumor stage, and 
TIDE score of two cohorts. (H) Nomogram developed using multivariate Cox regression analysis for predicting the OS of patients with OSCC. (I) Plots depict the calibration 
of the model in terms of agreement between predicted and observed OS rates. Model performance is shown, and the 45º slope represents perfect prediction. (J,K) AUCs 
associated with OS of the nomogram-based signatures, FPscore, and TIDE scores of the TCGA-OSCC cohort and GEO + TCGA. P values were tested using the Student's t-test, 
the Mann-Whitney test, and Kruskal-Wallis test (*P < 0.05, **P < 0.01, ***P < 0.001). 

 

A correlation matrix heat map showed that the 
FPscore was significantly and positively associated 
with the immune-activation signature, TMEscore, 
fatty acid biosynthesis, and arachidonic acid 
metabolism; although there were significant negative 
correlations with stroma, EMT, the m6A signature 
and glutathione metabolism (P < 0.05) (Figure 5D; 
Table S10). Together, these results support the 
conclusion that the FPscore achieved clinical 
prognostic value and that the TME was strongly 
associated with ferroptosis. Moreover, the FPscore 
accurately reflected the ferroptosis regulation patterns 
in patients with OSCC. 

Comparison of copy number aberrations and 
somatic mutations using the FPscore 

Changes of gene copy numbers are associated 
with ICI. We therefore determined the copy number 
aberrations between the FPscore subtypes. We found 
that the high FPscore subtype showed a significant 
lower focal-level gain/loss burden and a lower 
arm-level gain/loss burden compared with those of 
the low FPscore subtype (P < 0.05) (Figure 5E). The 
distributions of G-scores among all chromosomes of 
these subtypes (Figure 5F) showed difference in copy 
number aberrations. In contrast, there was no 
significant difference in TMB associated with the 
FPscore subtypes (P = 0.130) (Figure S4A). The 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

3484 

number of each somatic mutation type in FPscore 
subtypes was showed in Figure S4B. The oncoplot of 
somatic mutations showed the top 20 most frequently 
mutated genes (Figure S4C-D). The chi-square test 
revealed that the high FPscore subtype was associated 
with a significantly low TP53 mutation burden 
compared with the low FPscore subtype (Table S11). 
A lollipop plot showed similar results and provided 
details about the positions of the TP53 mutations 
between the FPscore subtypes (Figure 5G). 

Predicting responses to immune therapy and 
chemotherapy 

To determine whether the FPscore predicted the 
response of ICI treatment in OSCC, we evaluated the 
expression of immune checkpoint and immune- 
activation-related genes. There was a significant 
increase in the high FPscore subtypes including 
PD-L1, CTLA4, PD-1, IFNG, and MHC (P < 0.05) 
(Figure 6A). Next, we used the immunophenoscore 

scoring system and TIDE algorithm to evaluate the 
potential therapeutic effectiveness of immunotherapy. 
immunophenoscore was found significantly elevated 
in high FPscore subtype (P < 0.05) (Figure 6B). A 
greater propensity for immune evasion was 
demonstrated by the higher TIDE predictor score, 
indicating that patients may not benefit from ICI 
therapy. Interestingly, the high FPscore subtype had a 
significantly lower TIDE score compared with that of 
the low FPscore subtype (P < 0.05) (Figure 6C). We 
next investigated whether the higher FPscore subtype 
correlated with an objective response to ICI therapy 
though TIDE (P < 0.001) (Figure 6D). The submap 
result showed that the high FPscore subtype may 
respond to PD-1 treatment (P < 0.05) (Figure 6E). 
These results provided evidence that the ferroptosis 
regulation patterns play a key role in mediating the 
immune response in OSCC. 

 

 
Figure 4. Characteristics of the FPscore in OSCC molecular subtypes. (A-J) Boxplots showing the FPscore distributions according to grade, tumor stage, TP53 
mutation, and molecular subtype. P values were tested using the Student's t-test, Mann-Whitney test, and Kruskal-Wallis test (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Figure 5. The biological pathways and copy number burdens of FPscore subtypes. (A) GSEA enrichment plots showing the associations of the high FPscore subtype 
with interferon response, KRAS signaling down, P53 pathway, and TNF-alpha signaling. (B) GSEA enrichment plots showing the associations of the low FPscore subtype with 
active in DNA repair, E2F targets, EMT, G2M checkpoint, glycolysis, hypoxia, and mTORC1 signaling pathway. (C) Violin/boxplot showing the ferroptosis levels of the FPscore 
subtypes. (D) Correlations between the FPscore associated with the immune-activation signature, TME, and ferroptosis-related metabolism. A negative correlation is shown in 
blue and a positive correlation in red. (E) Distribution of focal and broad copy number aberrations between the FPscore subtypes. (F) Copy number profiles of the low and high 
FPscore subtype, with gains in red and losses in blue. Gene segments are ordered according to their chromosomal locations. (G) Lollipop plots of mutations in TP53, upper side 
(purple) represents the low FPscore subtype, lower side (brown) represent the high FPscore subtype. P values were tested using the Student's t-test, the Mann–Whitney test, and 
Pearson correlation analyses (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Figure 6. FPscore subtypes related to the response to immunotherapy and the response to chemotherapy. (A) Immune-checkpoint-relevant and 
immune-activation-relevant genes expressed in high and low FPscore subtype. (B,C) Violin/boxplot showing significant differences between FPscore subtypes associated with the 
immunophenoscore and TIDE scores. (D) Rates of clinical responses to immunotherapies in the high and low FPscore subtype in the TCGA-OSCC cohort according to TIDE 
scores. (E) Submap analysis indicated that the high FPscore subtype was more sensitive to anti-PD-1 treatment. (F) Boxplot of differential drug responses of 11 compounds 
associated with the FPscore subtype. Lower AUC values on the y-axis of boxplots indicate greater drug sensitivity. (G) Heat map showing each compound (perturbagen) from 
the CMap that shares a mechanism of action (rows) and sorted by descending number of compounds with shared mechanisms of action. (H) Kaplan-Meier analyses of OS of high 
and low FPscore patient groups in the IMvigor210 cohort (log-rank test, P = 0.043), (I) the GSE91061 cohort (log-rank test, P= 0.002), (J) the TCGA-SKCM cohort (log-rank 
test, P = 0.046), (K) the Gide et al. cohort (log-rank test, P = 0.035), and (L) the GSE78220 cohort (log-rank test, P = 0.021). P values were tested using the Student’s t-test and 
the Mann-Whitney test (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001). 
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Chemotherapy is frequently administered to 
patients with OSCC, although drug resistance is a 
major problem that hinders treatment. We therefore 
applied CTRP and PRISM data to delineate drug 
resistance and sensitivity associated with the FPscore 
subtype. A high FPscore was associated with 
sensitivity to chemotherapeutic drugs, and a low 
FPscore subtype was significantly associated with 
drug resistance (P < 0.05) (Figure 6F). Moreover, we 
found that the sensitivity of erastin, an inducer of 
ferroptosis, significantly correlated with the high 
FPscore subtype. These findings indicated that a 
patient with a high FPscore may achieve a good 
response to chemotherapy. 

Further, the CMap mode of action analysis 
identified 21 pathways shared by the 24 compounds. 
(Figure 6G; Table S12). To decipher the prognostic 
value of the FPscore for immunotherapy, we 
performed Kaplan-Meier analyses of five independent 
ICI treatment cohorts. Each cohort showed that a high 

FPscore subtype was associated with better prognosis 
compared with that of a low FPscore (Figure 6H-L) 
and time-dependent ROC curves validated the 
accuracy of the FPscore (Figure S5A-E). These results 
suggested that the FPscore has prognostic value for 
ICI therapy administered patients. 

Analysis of pan-cancer data 

To systematically analyze the significance of the 
FPscore in pan-cancer, we evaluated the expression of 
the immune check-points and GPX4. The FPscore was 
significantly associated with GPX4, PD-L1, PD-1, and 
CTLA4 in many cancers, including HNSCC (Figure 

7A-D; Table S13). A high FPscore was identified as a 
favorable prognostic biomarker for 13 independent 
TCGA cohorts, some of which comprised “hot 
tumors” with high immunogenicity, such as head and 
neck cancer, colon cancer, kidney cancer, urothelial 
cancer, and cervical cancer (Figure 7E). 

 

 
Figure 7. Evaluation of the utility of the FPscore in pan-cancers. (A-D) Dot plot showing the correlation between FPscore and GPX4, PD-L1, PD-1, and CTLA4 
expression in pan-cancer. The triangle and gray circle represent P > 0.05 and P < 0.05, respectively. (E) Univariate Cox regression analyses of the prognostic value of the FPscore 
in different cancers. The length of the horizontal line represents the 95% CI for each group. The vertical dotted line represents HR = 1. HR < 1.0 indicates that an elevated 
FPscore is a favorable prognostic biomarker. The numbers of patients are displayed. 
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Figure 8. Graphical abstract. 

 

Discussion 

Here we established three distinct ferroptosis 
regulation patterns, defined by immune phenotypes, 
which were associated with various levels of 
anticancer immunity and the scheme of our study is 
shown in Figure 8. This study depicts the 
identification of ferroptosis cluster A, associated with 
the immune-excluded phenotype, which was 
characterized by the stromal activation. Ferroptosis 
cluster B was characterized by immune-activation and 
metabolism, which represents an immune-inflamed 
and ferroptosis phenotype. The ferroptosis cluster C 
was characterized by less infiltration with immune 
cells, represented as the immune-desert phenotype 
(Figure 1D-F). 

Previous studies showed that stromal activation 
prevented the infiltration of immune cells in tumor by 

retaining them in the stroma, which were 
consequently blocked from penetrating into tumors. 
And the activation of stromal cells was considered to 
suppress T cell activation [22, 44]. Consistent with 
these results, ferroptosis cluster A was associated with 
poor prognosis despite having abundant immune 
cells. Notably, we identified ferroptosis cluster B, 
which was associated with better prognosis, activated 
T cell abundance, and high ferroptosis activity. We 
believe that it is reasonable to conclude therefore that 
the activation of T cells enhances ferroptosis and 
contributes to its strong antitumor effect. For example, 
ferroptosis is consistent with T cell-mediated cancer 
immunity [18]. 

We showed here that the DEGs of distinct 
ferroptosis patterns were greatly overrepresented in 
biological pathways involved in ferroptosis-related 
metabolism, indicating that DEGs represented gene 
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signature linked to ferroptosis phenotypes (Figure 

2A-B). Similar to the ferroptosis clustering data, three 
subtypes of transcriptomic profiles were significantly 
associated with survival outcomes; and the 
ferroptosis gene signature was established and 
designated gene clusters A, B, and C. These gene 
clusters were each significantly associated with a 
specific clinical subtype (Figure 2C-D). 

We therefore sought to quantify the ferroptosis 
trends of individual tumors according to the specific 
heterogeneity of alterations of ferroptosis. Therefore, 
the FPscore was developed to identify the ferroptosis 
patterns of an individual patient. As a result, we 
found that the FPscore was significantly associated 
with the expression of canonical ferroptosis-related 
genes and was consistent with the ferroptosis patterns 
(Figure 2G). And the immune-inflamed and 
ferroptosis phenotype had a higher FPscore compared 
with those of the immune-desert and immune- 
excluded phenotypes (Figure 2H-I). These findings 
indicate that the FPscore will serve as an accurate and 
robust tool for detailed evaluation of the patterns of 
alterations of ferroptosis in individual tumors, which 
may be useful for further evaluation of the patterns of 
TME, such as tumor immune phenotypes. 

Therefore, we conducted a comprehensive 
evaluation of the FPscore. In clincal practices, Cox 
regression analysis indicated that the FPscore was an 
independent clinical predictive factor of the prognosis 
of OSCC (Figure 3F-G). Further, a nomogram model 
comprising the FPscore and tumor stage achieved 
good prognostic predictive performance when 
applied to patients with OSCC (Figure 3H-K). 
However, from a clinical perspective, a large-cohort 
validation is needed. These results convincingly 
demonstrate that the nomogram model may provide 
clinicians with robust prognostic biomarkers for 
managing patients with OSCC. We further 
demonstrated that the FPscore was related to 
clinicopathological characteristics. FPscore was found 
to be elevated in patients with low grade, early stage, 
immune C2 subtype, low mRNAsi/mDNAsi, T1 
stage, and no lymph node metastasis, which always 
represents a better prognosis (Figure 4A-J). Immune 
subtype C1 was reported to be highly enriched in 
angiogenesis and C2 subtype represented the strong 
CD8 signal and antitumor immune response [45]. 
Moreover, the high value of mRNAsi/mDNAsi in 
tumors has been identified to reflect the 
dedifferentiation and metastasis of tumors [46]. Taken 
together, these results indicated that the FPscore is 
associated with tumor progression and TME 
remodeling. 

Through GSEA, our data revealed that a high 
FPscore was significantly enriched in ferroptosis- 

positive regulatory pathways and immune-activation 
signature (Figure 5A-B). For example, arachidonic 
acid metabolites release oxidized lipid mediators, 
such as 11-HETE and 15-HETE during ferroptosis to 
recruit immune cells [6]. Fatty acid accumulation in 
cells and the depletion of cysteine and glutathione 
peroxidase 4 (GPX4) will also induce ferroptosis [45, 
46]. Therefore, those factors were in concordance with 
our results that high FPscore subtype had higher 
ferroptosis levels (Figure 5C). These results also 
explain that the patients with a high FPscore subtype 
survived longer compared with those with low 
FPscore subtype. 

We were intrigued by our findings that the 
FPscore positively correlated with the TMEscore and 
negatively with the m6A signature (Figure 5D). 
Previous studies showed that a lower m6A signature 
and a higher TMEscore represented the immune- 
inflamed phenotype. Both showed a predictive 
advantage of immunotherapy for gastric cancer [24, 
47]; here, the TIDE algorithm and the 
immunophenoscore showed that a high FPscore was 
significantly associated with a better response to ICI 
treatment (Figure 6B-D). Further, PD-L1, PD-1, and 
CTLA-4 were significantly expressed at high levels by 
the high FPscore subtype (Figure 6A). Specifically, the 
submap results imply that the high FPscore subtype 
may respond to PD-1 treatment (Figure 6E). The 
results of the study by Wang et al. are consistent with 
our findings using a mice model, in which ICIs 
enhanced T cell-mediated antitumor immunity 
though the upregulation of IFN-γ and 
downregulation of the cystine/glutamate antiporter, 

system Xc- [18]. Recently, several clinical studies have 
reported that gene mutations may reflect the response 
of immune therapy; in particular, TMB has been 
identified as an independent factor for predicting ICI 
treatment [48, 49]. However, some studies have also 
concluded that high-TMB failed to predict ICI 
treatment; thus, whether TMB could be a biomarker 
across all tumors is still unclear [50, 51]. When we 
evaluated the TMB of the two ferroptosis subtypes, 
we found that they were not significantly different (P 
= 0.13, Figure S4A). In contrast, we were further 
intrigued that copy number aberrations associated 
with the FPscore subtype (Figure 5E-F). A 
significantly lower copy number burden in the high 
FPscore subtype compared with that of the low 
FPscore subtype was demonstrated. Indeed, copy 
number aberrations make a larger contribution to the 
immune signature, and the low burden of copy 
number gain/loss correlates with the response to 
immunotherapy [16, 52]. A recent report 
demonstrating that the burden of copy number loss 
did not correlate with the mutational load during 
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immune therapy [16]. Notably, the FPscore may 
predict the response to immunotherapy as an 
independent factor or even among OSCC patients 
with the same TMB level. Furthermore, we found that 
the low FPscore subtype showed more TP53 
mutations than the high FPscore subtype; 
additionally, the TP53 pathway was activated in 
tumors with a high FPscore (Figure 4C; Figure 5G). 
Therefore, these findings indicate that TP53 may 
regulate ferroptosis in OSCC cells and are consistent 
with those of recent studies showing that TP53 and 
the tumor-associated mutant TP53 may play import 
roles in ferroptosis of cancer cells [53, 54]. 

Moreover, the high FPscore subtype showed 
significant sensitivity to chemotherapeutic agents and 
to erastin (Figure 6F), the latter of which induces 
ferroptosis of cancer cells through the cysteine–
glutamate transporter [55]. However, other inducers 
of ferroptosis, such as RLS3, ML162, and ML210, 
which directly inhibit GPX4 leading to ferroptosis, did 
not exhibit drug sensitivity in FPscore subtypes. 
These findings are likely explained by low GPX4 
expression in the high FPscore subtype [5, 56]. We 
used CMap to identify other inhibitors that may have 
antitumor efficacy in OSCC (Figure 6G). The above 
suggest that ferroptosis represents a pathway in 
cancers cells that can be effectively targeted by 
therapeutic agents. For example, we validated the 
prognostic value of the FPscore of five independent 
ICI treatment cohorts (Figure 6H-L), the same results 
were obtained. That is, patients with a high FPscore 
experience a better prognosis than those with a low 
FPscore, suggesting that the FPscore predicts the 
survival ratio of patients who undergo immuno-
therapy. Further, our present pan-cancer analysis 
showed that the FPscore was associated with the 
immune checkpoints and GPX4 (Figure 7A-D), which 
predicted the OS of patients with “hot tumors.” These 
findings support our conclusion that the FPscore 
could be suitable for translation to the clinic. 

In short, the high FPscore subtype was defined 
as the ferroptosis-related immune-activation subtype 
and was associated with clinicopathological features, 
various biomarkers including TME, immune 
checkpoint expression, and copy number aberrations, 
which indicates that the FPscore is a promising 
prognostic biomarker related to ICI treatment and 
chemotherapy in OSCC. However, further studies 
including single-cell RNA-seq and proteomics data 
analyses are required to identify the details of the 
activation of T cells caused by ferroptosis, such as the 
mechanism of ferroptosis-induced cell death, which 
releases signals that trigger cytotoxic T cell-mediated 
adaptive immunity, which is beyond the scope of the 
current study. Moreover, ferroptosis also occurred in 

the normal cells and play a role as a double-edged 
sword in oncogenesis through the release of signaling 
molecules that inhibit or promote tumor growth and 
proliferation [57]. A critical cutoff value and the role 
of FPscore in assessing prognosis and the 
immunotherapy responses of OSCC remain to be 
accurately determined through prospective studies. 

Conclusions 

In conclusion, multi-omics analysis revealed that 
a high FPscore identified patients with OSCC with 
ferroptosis-related immune activation, who 
experienced longer survival and benefited from 
immunotherapy and chemotherapy in OSCC. These 
findings contribute toward new insights into the 
regulation of ferroptosis associated with the TME, 
which may be clinically relevant for developing 
combination therapies of OSCC. 
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