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prediction, immune landscape,
genomic heterogeneity, and
drug choices in prostate cancer
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Introduction: Macrophages are components of the innate immune system and

can play an anti-tumor or pro-tumor role in the tumor microenvironment owing

to their high heterogeneity and plasticity. Meanwhile, prostate cancer (PCa) is an

immune-sensitive tumor, making it essential to investigate the value of

macrophage-associated networks in its prognosis and treatment.

Methods: Macrophage-related marker genes (MRMGs) were identified through

the comprehensive analysis of single-cell sequencing data from GSE141445 and

the impact of macrophages on PCa was evaluated using consensus clustering of

MRMGs in the TCGA database. Subsequently, a macrophage-related marker

gene prognostic signature (MRMGPS) was constructed by LASSO-Cox regression

analysis and grouped based on the median risk score. The predictive ability of

MRMGPS was verified by experiments, survival analysis, and nomogram in the

TCGA cohort and GEO-Merged cohort. Additionally, immune landscape,

genomic heterogeneity, tumor stemness, drug sensitivity, and molecular

docking were conducted to explore the relationship between MRMGPS and

the tumor immunemicroenvironment, therapeutic response, and drug selection.

Results: We identified 307 MRMGs and verified that macrophages had a strong

influence on the development and progression of PCa. Furthermore, we showed

that the MRMGPS constructed with 9 genes and the predictive nomogram had

excellent predictive ability in both the TCGA and GEO-Merged cohorts. More

importantly, we also found the close relationship between MRMGPS and the
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tumor immune microenvironment, therapeutic response, and drug selection by

multi-omics analysis.

Discussion: Our study reveals the application value of MRMGPS in predicting the

prognosis of PCa patients. It also provides a novel perspective and theoretical

basis for immune research and drug choices for PCa.
KEYWORDS

prostate cancer, macrophage-related marker gene, prognostic signature, tumor
immunity, genomic heterogeneity, drug choices, single-cell RNA-sequencing
1 Introduction

Prostate cancer (PCa) is one of the most common genitourinary

malignant tumors in the United States, accounting for nearly a

quarter of all new diagnoses of male cancers (1). Although

continuous improvements have been made in the diagnosis and

treatment of PCa in the past decade, the incidence of PCa is still

increasing for a variety of reasons. In addition, most patients with

advanced PCa will eventually experience biochemical recurrence

(BCR) or even death because of their resistance to androgen

deprivation therapy and chemotherapy (2, 3). Previous studies have

demonstrated that PCa is an immune-sensitive tumor, and

immunotherapy is feasible for PCa (4, 5). However, due to the lack

of suitable tumor immune biomarkers, most PCa patients have not

benefited from immunotherapy at present (6). Therefore, finding

appropriate biomarkers to predict prognosis and immunotherapeutic

response in PCa patients is of great significance.

As we know, the tumor microenvironment (TME) is a

heterogeneous and complex ecosystem that is closely related to

the malignant biological process and drug resistance of tumors

(7–9). Further understanding of TME is helpful to predict the

prognosis of tumors for its feasibility as a biomarker (10).

Macrophages are not only powerful immune effector cells in

the normal human microenvironment, but also the immune cell

components of TME (11). Because of their high heterogeneity

and plasticity, macrophages can show anti-tumor or pro-tumor

functions in different environments (12, 13). At the same time,

tumor-associated macrophages (TAMs) are considered to be

pro-tumoral macrophages, which can inhibit T cell-mediated

anti-tumor immune response, and then promote the initiation

and metastasis of tumor cells (14). Recent studies have found

that TAMs are positively correlated with tumorigenesis and

shorter biochemical recurrence-free survival (bRFS) in PCa

patients (15–17). Based on the vital role of macrophages in

tumor behavior, it is necessary to accurately establish a more

specific predictive signature for macrophages to better

prognostic prediction and therapeutic response of patients

with PCa.

Single-cell RNA-sequencing (scRNA-seq) is a novel technique

to amplify and sequence the whole genome at the single-cell level,
02
which can be used to explore the abundance and functional status of

cell types and analyze the molecular characteristics of macrophages

in TME (18, 19). Furthermore, compared with traditional

transcriptome analysis, it can not only evaluate thousands of cells

in one sample at the same time but also fully reveal the

heterogeneity between tumor cells and the complexity of TME

(20). In recent years, this technique has been widely used to explore

the clinical treatment and tumor characteristics of PCa (21, 22).

Thus, with these huge advantages, we can construct the prognostic

signature of PCa according to the specific cell type such as

macrophages, and provide a novel treatment strategy.

In our study, we aimed to identify macrophage-related marker

genes (MRMGs) and explore their significance in the occurrence

and development of PCa based on the scRNA-seq and unsupervised

clustering algorithm. Subsequently, we further constructed and

verified a macrophage-related marker gene prognostic signature

(MRMGPS) for assessing the prognosis of PCa. In addition, we also

revealed the relationship between MRMGPS and tumor immune

microenvironment, genomic heterogeneity, therapeutic response,

and the value of drug choices in PCa. In conclusion, these findings

may provide reliable biomarkers and therapeutic strategies for the

clinical treatment of PCa.
2 Materials and methods

2.1 Data sources and preprocessing

The 13 PCa samples with scRNA-seq data (GSE141445) were

downloaded from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih/) and were used to identify MRMGs. In addition,

a total of 548 samples were downloaded from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/) including 496 PCa

samples and 52 normal samples. After eliminating incomplete

data, 346 PCa samples were included in the analysis as a training

cohort. Subsequently, to evaluate the predictive accuracy of the

model in a verification cohort, GSE70768 (n=110) and GSE46602

(n=36) collected from the GEO database were merged and

eliminated batch effects by R package “inSilicoMerging” and

empirical Bayes methods (23).
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2.2 Identification of MRMGs by
scRNA-seq analysis

We used the “Seurat” package in R to generate objects and filter

out high-quality cells. The filtering criteria were to remove the genes

from less than 3 cells, the cells with less than 50 genes detected, or

the cells with more than 5% mitochondria genes. The data were

then normalized using the “LogNormalize” method, and the first

1500 highly variable genes identified by JackStraw analysis were

analyzed by principal component analysis (PCA). Furthermore, the

“FindClusters” function (resolution=0.5) was used to cluster and

visualize the first 15 PCA in t-distributed stochastic neighbor

embedding (t-SNE). Finally, the marker genes of each cluster

were identified (cut-off thresholds: adjusted P-value < 0.05 and |

logFC| > 1) by comparing the differences of gene expression

between a c lus te r and a l l o ther c lus te r s us ing the

“FindAllMarkers” function and Wilcoxon-Mann-Whitney test,

and the cell types were annotated and visualized by the

“SingleR” package.
2.3 Consensus clustering of MRMGs

Based on the MRMGs, we utilized the “ConensusClusterPlus”

package in R for consensus molecular clustering methods and

divided the patients from the TCGA cohort into different clusters.

After 1000 initial resamples and 50 iterations by the unsupervised

clustering algorithm, the most optimal clustering number was

selected according to the consistency matrix, the cumulative

distribution function (CDF), and the relative change of the area

under the CDF curve.

Subsequently, the differences and bRFS rates among different

clusters were computed and visualized by the R packages of

“scatterplot3d”, “survival”, and “survminer”. The relationships

between different clusters and the clinicopathological

characteristics (age, Gleason score, prostate specific antigen

(PSA), pathological T stage, and pathological N stage) were

analyzed with the chi-square test. Besides, the differences of

somatic mutations from TCGA in different clusters were analyzed

using the R package “maftools”, and a single-sample GSEA

(ssGSEA) algorithm with the “GSVA” package in R was utilized

to estimate the infiltration of immune cells in each sample based on

the gene sets of immune cell types obtained from the previous

study (24).
2.4 Functional analysis

Based on the differentially expressed genes (DEGs) identified

via the “LIMMA” package in R (FDR < 0.05) among three MRMGs

clusters or between high- and low-risk groups, the “clusterProfiler”

R package was used to perform gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis (25), and P-

value < 0.05 was considered to be significant enrichment. P-value

was adjusted with the Benjamini-Hochberg methods.
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Gene set enrichment analysis (GSEA) was used to analyze the

relative richness of specific gene sets in the sample population, and

to detect statistical differential expression patterns among three

MRMGs clusters or between high- and low-risk groups, with

FDR <0.05.
2.5 Construction and validation of
prognostic signature

Based on the MRMGs identified by scRNA-seq analysis, the

prognostic MRMGs were identified as candidate genes by univariate

Cox regression analysis. The DEGs between PCa tumors and

normal samples from the TCGA were selected through Wilcoxon

test by the R package of “LIMMA” (FDR < 0.05). Then the

intersection of scRNA-MRMGs, prognostic MRMGs, and DEGs

was obtained using the “Venn” package in R. Meanwhile, a protein-

protein interaction (PPI) network of the intersection was built by

the STRING database (https://string-db.org/) (26) and visualized by

Cytoscape (version 3.8.2) (27). The intersection genes were

evaluated by least absolute shrinkage and selection operator

(LASSO) Cox proportional hazards regression using the “glmnet”

package to eliminate the effect of overfitting. Then, the criterion for

identifying optimal model genes: According to the minimum

Akaike information criterion (AIC), the optimal model genes

were obtained by taking the optimal penalty parameter (l)
corresponding to the minimum 1-standard error (SE) obtained

from the 10-fold cross-validation results (28).

Subsequently, the risk score was calculated by summing the

expression and coefficient of each gene of MRMGPS. The

distribution of signature genes within different cell types was

further visualized by the R packages of “Vlnplot”, “Dimplot” and

“Featureplot” at the single-cell level, and the CIBERSORT algorithm

was used to estimate the relative proportion of macrophage

proportions deconvoluted from the TCGA cohort and then

calculate the correlation with gene expression. According to the

median value of risk score, patients were divided into two groups

with low- or high-risk score. Furthermore, t-SNE and PCA were

performed to reveal distribution between two groups by the

packages of “stats” and “Rtsne”. Receiver operating characteristic

(ROC) curves and Kaplan-Meier curves were generated to evaluate

the accuracy of MRMGPS by “timeROC”, “surviminer” and

“survival” in R. To further verify the accuracy and reliability of

the novel signature, the merged dataset (GSE70768 and GSE46602),

named GEO-Merged cohort, was conducted to verify the reliability

of the signature in the same way as the TCGA cohort.
2.6 Real-time quantitative PCR and
immunohistochemistry analysis

20 fresh PCa and 20 benign prostatic hyperplasia (BPH) tissue

samples were collected from the Third Affiliated Hospital of Sun

Yat-sen University (Guangzhou, China) from 2021 to 2022. All

the selected samples were informed consent of the patients and
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approved by the Clinical Ethics Board of the Third Affiliated

Hospital of Sun Yat-sen University. Following a standard

protocol, total RNA was extracted by TRIzol reagent

(Invitrogen, Cat #15596018) and reverse transcribed by

SuperScript™ III Reverse Transcriptase (Invitrogen, Cat #

18080044). SYBR Green qPCR reagent (GenStar, Cat #A311)

was applied for RT-qPCR. GAPDH was used as the internal

control. The primers used for RT-qPCR were listed in Table S1.

The IHC data and images collected from the Human Protein

Atlas (HPA, https://www.proteinatlas.org/) (29) were used to reveal

expression levels of protein of signature genes between PCa and

normal samples.
2.7 Construction and validation
of nomogram

The differences between MRMGPS-based risk score and

clinicopathological features were analyzed by a chi-square test,

and stratified survival analysis of patients in two subgroups was

conducted to evaluate the robustness of MRMGPS in both TCGA

and GEO-Merged cohorts.

Meanwhile, independent prognostic indicators were

determined by COX proportional hazard regression model and

the independent indicators were used to construct nomogram for

predicting 1-, 3-, and 5-year bRFS by using the “rms” package.

Furthermore, decision curve analysis (DCA), ROC curves, and

calibration curves were performed to assess the accuracy and

discrimination of the nomogram.
2.8 Immune landscape analysis

Firstly, the immune infiltration and function of two groups based

on MRMGPS were calculated by the EPIC (30), XCell (31),

MCPCOUNTER (32), QUANTISEQ (33), CIBERSORT-ABS,

CIBERSORT (34), and TIMER (35) algorithms. Secondly, the

ssGSEA algorithm with the “GSVA” package and Mann-Whitney

test were utilized to calculate the infiltration scores of 29 immune cells

or pathways obtained from the previous study (36). The gene sets

with annotation were shown in Table S2. Thirdly, the ESTIMATE

scores, immune scores, stromal scores, and tumor purity of the two

groups were estimated and compared by the R package of “estimate”

(37). Finally, the scores of 7 steps in the cancer-immunity cycle based

on MRMGPS were analyzed by Tracking Tumor Immunophenotype

(TIP, https://biocc.hrbmu.edu.cn/TIP/) as in previous studies (38).
2.9 Genomic heterogeneity and tumor
stemness analysis

The Copy Number Variation (CNV) data of all PCa samples in

TCGA processed by GISTIC software (39) were downloaded from
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GDC (https://portal.gdc.cancer.gov/), and further integrated for

analysis and visualization. The somatic mutation data in TCGA

processed by the VarScan platform were analyzed between two

groups by the package of “maftools” and the tumor mutational

burden (TMB) between the two groups was compared. In addition,

the markers of genomic heterogeneities, including homologous

recombination defect (HRD), microsatellite instability (MSI),

mutant-a l le le tumor heterogenei ty (MATH), loss of

heterozygosity (LOH), ploidy, neoantigens, and RNA-modified

genes (Table S3), were collected from previous studies (40). The

markers of tumor stemness, including DNA-methylation-based

stemness scores (DNAss) and RNA-based stemness scores

(RNAss), were collected from the study of Malta TM (41).

Furthermore, the correlation between them and MRMGPS-based

risk score were analyzed by Pearson or Mann–Whitney methods.
2.10 Therapeutic responses analysis

The differences in risk score and 46 immune checkpoints

obtained from the previous research (42) were examined to

explore the relationship. In addition, the immunophenoscore

(IPS) of PCa samples in TCGA were collected from The Cancer

Immunome Atlas (https://tcia.at/) (24) and were used to compare

the responses of PD1 and CTLA4 in two subgroups.
2.11 Drug sensitivity and molecular docking

According to the IC50 value from the Genomics of Drug

Sensitivity in Cancer (https://www.cancerrxgene.org/) (43), the

efficacy of common anticancer drugs between two subgroups was

calculated by the “pRRophetic” in R. Besides, the pharmacological

information about the anticancer drug targets was collected from

DrugBank database (https://go.drugbank.com/) (44), and was used

to reveal their expression level in different groups.

The molecular structures of the targeted drugs were retrieved

from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (45) and the

coordinates of MRMGPS-based genes were obtained from Protein

Data Bank (PDB, http://www.rcsb.org/pdb/home/home.do) (46). A

Molecular Operating Environment (MOE, version 2019.0102) was

used to exclude all water molecules from the protein and ligand files

and then add polar hydrogen atoms. Finally, molecular computing

and docking were performed to assess the binding energy and

interaction mode between targeted drugs and MRMGPS-

based genes.
2.12 Statistical analysis

This study used R software (version 4.2.1) for data analysis and

graphic visualization. For quantitative data, an independent t-test

was utilized to analyze normal distribution variables, and the

Wilcoxon test was used to analyze non-normal distribution
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variables. For qualitative data, a one-way analysis of variance was

used to analyze ordinal categories variables, and the Kruskal-Wallis

test was utilized to analyze unordered categorical variables. Kaplan-

Meier survival analysis was performed by the log-rank test. For all

tests, the value of P less than 0.05 was considered statistically

significant (*P <0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns,

not significant).
3 Results

The flow chart of the research was shown in Figure 1.

Meanwhile, the main clinicopathological features of patients with

PCa included in the present study were listed in Table S4.
Frontiers in Immunology 05
3.1 Definition of MRMGs by scRNA-seq

By analyzing the scRNA-seq data from GSE141445, we collected

gene expression profiles of 33441 single cells from 13 PCa samples.

Then 21 cell clusters were identified by PCA analysis, and the cells in

cluster 10 were defined as macrophage (Table S5). Moreover, a total of

307 genes were differentially expressed in the macrophage cluster,

which were defined as MRMGs and used for further research

(Figures 2A–C). The correlation of 307 MRMGs was presented in

the heatmap (Figure 2D).
3.2 Consensus clustering and phenotypic
analysis of MRMGs in PCa

To explore the expression features of MRMGs, we first

performed PCA analysis based on the expression of MRMGs
FIGURE 1

The flow chart of the present study. Mining MRMGs through scRNA-seq data to construct a MRMGPS to predict prognosis, analyze TME, and select
drugs in PCa. TCGA, The Cancer Genome Atlas; scRNA-seq, single-cell RNA-sequencing; MRMGs, macrophage-related marker genes; MRMGPS,
macrophage-related marker gene prognostic signature; TME, tumor microenvironment; PCa, prostate cancer.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1122670
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1122670
D

A B

E

F G

C

FIGURE 3

Identification of MRMGs clusters and phenotypic differences in PCa. (A) The consensus clustering of 307 MRMGs in three clusters (C1 = 121, C2 = 99, C3 = 126).
(B) 3D-PCA plot displaying the distribution among three clusters. (C) Kaplan–Meier curves for the probability of bRFS grouped in three clusters. (D) Comparison
of the clinicopathological features among three clusters. (E) Comparison of the immune infiltration among three clusters. (F) GO and KEGG analysis based on
MRMGs-related DEGs among three clusters. (G) GSEA analysis based on MRMGs-related DEGs among three clusters. PCA, principal component analysis; bRFS,
biochemical recurrence-free survival; GO, gene ontology (BP, biological processes; CC, cellular components; MF, molecular functions); KEGG, kyoto
encyclopedia of genes and genomes; DEGs, differentially expressed genes; GSEA, gene set enrichment analysis. *P <0.05, **P < 0.01, ***P < 0.001.
D

A B

C

FIGURE 2

Definition of MRMGs by scRNA-seq analysis. (A) t-SNE plot displaying 21 cell-related clusters. (B) Heatmap displaying top 10 marker genes in 21
clusters (https://postimg.cc/2bK9wfXT). (C) t-SNE plot displaying 8 annotated cell types. (D) Heatmap displaying the correlation between 307
identified MRMGs (https://postimg.cc/cvFkkdVY). t-SNE, t-distributed stochastic neighbor embedding; CMP, common myeloid progenitors.
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between PCa and normal samples in TCGA. The results suggested

that individuals could be distinguished from PCa to normal

(Supplementary Figure 1A), indicating different regulatory roles

of macrophages in normal and PCa. Based on the expression of

MRMGs, we clustered the consensus of the patients in the TCGA

cohort, and according to the area under the line of the CDF curve,

the downward trend of CDF delta, and average consistency within

the cluster groups (Supplementary Figures 1B–D), we obtained

optimal three clusters (k=3, C1 = 121, C2 = 99, C3 = 126)

(Figure 3A). Further PCA analysis showed a distinct clustering,

indicating a notable differential distribution of the MRMGs in three

clusters (Figure 3B). Survival analysis revealed that the patients in

C3 suffered the worst prognosis, whereas the patients in C1 had the

best prognosis (P < 0.001) (Figure 3C). In addition, the analysis of

the relationship among different clusters and clinical features

showed that C3 had a higher Gleason score (P < 0.001) and an

advanced pathological N stage (P = 0.031) (Figure 3D), which

explained the poor prognosis.
Frontiers in Immunology 07
Meanwhile, different clusters also showed remarkable diversity

in somatic mutations and immune phenotypes (Supplementary

Figure 1E). The level of immune infiltration in 13 out of 23

immune cells in C3 was significantly higher than that in C1 and

C2 (Figure 3E). Hence, we hypothesized that macrophages played a

significant role in the features of immunological infiltration based

on the aforementioned data.

Subsequently, to explore the differences in biological function

among different clusters, we carried out an enrichment analysis

based on 4200 DEGs among three MRMGs clusters. These DEGs

were not only enriched in biochemical processes related to the

regulation of lymphocyte activation and cytokine receptor

interaction pathways but also GSEA showed that C3 was likely to

be involved in cancer-related pathways explaining the worse

prognosis of C3 (Figures 3F, G). In general, our data suggested

that macrophages played a significant role in the progression of

PCa, and we had enough reason to predict that MRMGs might

provide important prognostic information.
D
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FIGURE 4

Prognostic value of MRMGPS in TCGA cohort. (A) The mRNA levels of MRMGPS-based genes in 20 fresh PCa and 20 BPH tissue samples detected by RT-
qPCR. (B) Interaction between signature genes in PCa. The lines connecting the genes represent their interactions with the thickness representing the
strength of the association and the color representing blue-negative or pink-positive associations. The color of the left dots represents the grey-upregulation
or red-downregulation of the genes and the color of the right dots represents the purple-risk factors or green-favorable factors of the genes. The size of
dots represents the effect of each gene on the prognosis. (C) Relationship between risk score and follow-up time, BCR events, and changes of model genes
expression in PCa patients. (D) PCA plot displaying the distribution of high- and low-risk groups. (E) t-SNE plot displaying the distribution of high- and low-
risk groups. (F) Kaplan–Meier curves for the probability of bRFS grouped in high- and low-risk groups. (G) ROC curves for the predictive efficiency in 1-, 3-,
and 5-year bRFS of MRMGPS. BPH, benign prostatic hyperplasia; ROC, receiver operating characteristic; AUC, area under the ROC curve; BCR, biochemical
recurrence. *P <0.05, **P < 0.01, ***P < 0.001.
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3.3 Construction of MRMGPS in
TCGA cohort

To select the genes with prognostic value from scRNA-MRMGs

for further studying, we first selected 21 overlapping genes among

307 scRNA-MRMGs, 18304 DEGs between PCa and normal

samples, and 38 prognostic MRMGs (Supplementary Figures 2A–

D). Then, through LASSO-Cox regression analysis based on the

minimum AIC (l = 0.03), we finally constructed an optimal

signature containing nine genes (CTSZ, FCGRT, GOLM1,

SMIM22, ACPP, FAM3B, TFF3, PCA3, and MSMB), named

MRMGPS (Supplementary Figures 2E, F). Based on their

coefficients, MRMGPS-based risk score was built: Risk score =

(0.411 × CTSZ) + (0.025 × FCGRT) + (-0.161 × GOLM1) +

(-0.107 × SMIM22) + (-0.012 × ACPP) + (-0.029 × FAM3B) +

(-0.056 × TFF3) + (-0.025 × PCA3) + (-0.080 × MSMB).

According to the formula for calculating the risk score, it could

be considered that the risk score is largely determined by the

expression of CTSZ, which was mainly expressed in immune cells

such as macrophages and monocytes (47). Therefore, we analyzed

the expression profiles of model genes across all cell types identified

in the scRNA-seq data and further calculated the correlation

between CTSZ expression and macrophage proportions

deconvoluted from the bulk RNA-seq data of TCGA cohort. The
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results showed that CTSZ was mainly expressed in macrophages

(Supplementary Figures 3A–C) and positively correlated with

macrophage proportions (R = 0.11, P = 0.04) (Supplementary

Figure 3D), suggesting the reliability of our formula for

calculating the risk score.

We further examined the mRNA expression profiles of the

model genes by RT-qPCR. The result demonstrated that CTSZ,

GOLM1, SMIM22, FAM3B, TFF3, and PCA3 had higher expression,

while FCGRT, ACPP, andMSMB had lower expression in PCa than

BPH samples (Figure 4A). We also observed consistent trends in the

protein levels of CTSZ, FCGRT, GOLM1, ACPP, FAM3B, TFF3, and

MSMB by exploring the HPA database (Supplementary Figure 4).

Unfortunately, there were no matching IHC images of PCA3 and

SMIM22 in the database. In addition, the network diagram

provided a comprehensive view of survival and interactions

between model genes (Figure 4B).

According to the median risk score, patients were divided into

high- or low-risk groups. The risk score plot and survival status

indicated that the low-risk group had lower BCR rates (Figure 4C).

The results of the PCA and t-SNE analysis implied that the

distribution of samples in two groups showed two trends

(Figures 4D, E). Moreover, the Kaplan-Meier curve revealed that

patients in the low-risk group had better bRFS (P < 0.001)

(Figure 4F). Consistently, the area under the ROC curve (AUC)
D
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FIGURE 5

Correlation between MRMGPS and clinicopathological features in TCGA cohort. (A) The landscape of MRMGPS and clinicopathological features (pN
stage, pT stage, PSA, Gleason Score, Age). (B) Sankey diagram displaying the distribution of samples in different subgroups stratified by
clinicopathological features. (C) Comparison of the risk score between different subgroups stratified by clinicopathological features. (D) Kaplan–
Meier curves for the probability of bRFS stratified by clinicopathological features. PSA, prostate specific antigen. *P <0.05, **P < 0.01, ***P < 0.001.
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for 1-, 3-, and 5-year bRFS were 0.674, 0.787, and 0.803, respectively

(Figure 4G). The above results showed that MRMGPS had good

accuracy in predicting the prognosis of PCa patients.
3.4 Validation of MRMGPS in
GEO-Merged Cohort

To better verify the robustness of MRMGPS, we combined two

independent cohorts (GSE70768 and GSE46602) into an external

cohort (GEO-Merged) for evaluation (Supplementary Figure 5A).

After removing the batch effect, the data distribution tended to be

consistent between each dataset. The median was homogenized, the

mean and variance were comparable, and the samples between the

datasets were clustered and intertwined with each other

(Supplementary Figure 5B), suggesting that the batch effect was

better removed.

The same formula as in the TCGA cohort was used to calculate

the risk score in the GEO-Merged cohort. The risk score plot and

survival status demonstrated consistent trends as shown in the

TCGA cohort (Supplementary Figure 5C), and indicated that the

risk score was a reliable predictor of BCR in patients with PCa.

Consistent with the TCGA cohort, PCA and t-SNE also

demonstrated excellent separation between two groups
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(Supplementary Figures 5D, E). Besides, survival analysis

demonstrated that individuals in the high-risk group had worse

bRFS than patients in the low-risk group (P < 0.05) (Supplementary

Figure 5F). ROC analysis revealed that the AUCs of the MRMGPS

were 0.652 at 1 year, 0.685 at 3 years, and 0.700 at 5 years

(Supplementary Figure 5G).
3.5 Relationship between MRMGPS and
clinicopathological features

To explore the association with clinical and pathological

characteristics, we first compared the differences in MRMGPS-

based risk score according to different stratified characteristics. The

violin charts indicated that patients with advanced age (P < 0.05),

Gleason score (P < 0.001), pathological T stage (P < 0.01), and

pathological N stage (P < 0.001) had higher risk score in TCGA

cohort (Figures 5A–C). The GEO-Merged cohort showed the same

significant differences in Gleason score (P < 0.05) and pathological

T stage (P < 0.05) as the TCGA cohort (Supplementary Figures 6A–

C). Moreover, we found that both TCGA cohort and GEO-Merged

cohort patients with advanced Gleason score (TCGA cohort: P <

0.001; GEO-Merged cohort: P = 0.003) and pathological T stage

(TCGA cohort: P = 0.003; GEO-Merged cohort: P = 0.008) had
D
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FIGURE 6

Construction of a nomogram in TCGA cohort. (A) The nomogram based on risk score, pT stage, PSA, and Gleason Score. (B) Calibration curves for
the internal verification in 1-, 3-, and 5-year bRFS of the nomogram. (C) ROC curves for the predictive efficiency in 1-, 3-, and 5-year bRFS of the
nomogram. (D) DCA curves for the net benefit in 1-, 3-, and 5-year bRFS of the nomogram. DCA, decision curve analysis; *P <0.05, **P < 0.01,
***P < 0.001.
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poorer bRFS by stratified survival analysis (Figure 5D,

Supplementary Figure 6D).

Next, to explore the independence of MRMGPS-based risk

score and clinicopathological factors, we also carried out

univariate and multivariate Cox regression analysis. Univariate

Cox regression analysis showed that Gleason score, PSA,

pathological T stage, and risk score were significantly correlated

with bRFS in both TCGA and GEO-Merged cohorts. Multivariate

Cox regression analysis showed that they remained independent

predictors of bRFS (Table S6).
3.6 Construction and validation of the
prognostic prediction nomogram

To explore the value of MRMGPS in clinical practice, we built a

predictive nomogram for bRFS of the independent factors (risk score,

pathological T stage, PSA, and Gleason score) obtained by

multivariate regression analysis in TCGA and verified by GEO-

Merged cohort (Figure 6A, Supplementary Figure 7A). As

expected, the calibration charts of the nomogram showed excellent

predictive performance in both the training and validation cohorts

(Figure 6B, Supplementary Figure 7B). The AUCs in both cohorts

demonstrated that the nomogram was more effective at predicting
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bRFS than the risk score, PSA, Gleason score, and pathological T

stage alone (TCGA cohort: 1-year = 0.709, 3-year = 0.797, 5-year =

0.830; GEO-Merged cohort: 1-year = 0.656, 3-year = 0.759, 5-year =

0.789) (Figure 6C, Supplementary Figure 7C). Furthermore, the

nomogram had a higher net benefit than other independent factors

in two cohorts (Figure 6D, Supplementary Figure 7D). The findings

indicated that the nomogram for bRFS had excellent predictive ability

for long-term BCR risk and brought greater application value.
3.7 Functional enrichment analysis based
on MRMGPS

To investigate potential biological functions and pathways related to

MRMGPS in PCa, we screened out 4701 DEGs between two risk groups

in the TCGA cohort. GO and KEGG analysis demonstrate that the

DEGs were not only enriched in a variety of molecular functions and

biological processes related to immunity, such as immune receptor

activity, lymphocyte activation, and immune system regulation but also

found that the primary immunodeficiency pathway was enriched

(Figures 7A–D). In addition, GSEA analysis revealed that the high-

risk group was mainly enriched in pathways about immune, including

primary immunodeficiency, T cell receptor signaling pathway, and NK
D
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FIGURE 7

Functional enrichment analysis based on MRMGPS. (A–C) GO analysis based on MRMGPS-related DEGs between high- and low-risk groups. (D)
KEGG analysis based on MRMGPS-related DEGs between high- and low-risk groups. (E) GSEA analysis based on MRMGPS-related DEGs between
high- and low-risk groups.
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cell-mediated cytotoxicity (Figure 7E). These findings suggested that

immunity might be a vital factor in bRFS disparities between subgroups.
3.8 Tumor immune microenvironment and
genomic heterogeneity based on MRMGPS

To further study the relationship between MRMGPS and tumor

immune microenvironment of the PCa samples, we first showed the

heatmap and the correlation coefficient of the immune cells with

risk score calculated by seven algorithms (Figures 8A, B).

Additionally, patients in the high-risk group had significantly

higher stromal scores, ESTIMATE scores, and immune scores,

but the tumor purity showed an inferior to that of the low-risk

group (P < 0.001) (Figure 8C), indicating that PCa tissue from the

high-risk subgroup contained more immune cells and immune

molecules. It’s interesting to note that the high-risk group had much

higher scores for 13 out of 16 of immune cells and 12 out of 13 of

immune-related processes (Figures 8D, E). Furthermore, the
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immune activity scores at each step calculated by TIP analysis

revealed that two groups had certain differences in 5 out of 7 steps of

the cancer immune cycle (Figure 8F). These results revealed the

unique tumor immune microenvironment in PCa.

Given tumor heterogeneity has a profound impact on the

immune microenvironment, we comprehensively explored crucial

features of tumor heterogeneity based on MRMGPS including

CNV, mutation profiles, TMB, epigenetic modification, HDR,

MSI, MATH, LOH, ploidy, neoantigen, and tumor stemness (40,

41, 48).We found that among MRMGPS-based genes, ACPP,

GOLM1, PCA3, SMIM22, and CTSZ showed comparatively high

amplification, whereas TFF3, FAM3B, MSMB, and FCGRT showed

primarily deletion (Figures 9A, B). However, no significant

difference in TMB was found between the risk groups (P = 0.24).

(Figure 9C). The mutation profiles showed that there were more

mutations in the high-risk group, and the missense mutations in

both groups were higher, in which the mutation rates of TTN and

TP53 were both higher than 10% (Figure 9D). Furthermore, the

correlation between MRMGPS and epigenetic modification-related
D
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FIGURE 8

Tumor immune landscape based on MRMGPS. (A) Heatmap displaying enrichment of tumor immune-infiltrating cells through 7 algorithms between
high- and low-risk groups. (B) Lollipop plot displaying the correlation coefficient of immune cells on the basis of risk score through 7 algorithms. (C)
Comparison of the ESTIMATE scores, immune scores, stromal scores, and tumor purity between high- and low-risk groups. (D) Comparison of 16
cells related to immunity between high- and low-risk groups. (E) Comparison of 13 functions related to immunity between high- and low-risk
groups. (F) Comparison of activity scores of each step in the cancer-immunity cycle between high- and low-risk groups. *P <0.05, **P < 0.01,
***P < 0.001.
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genes (m1A = 10, m5C = 13, and m6A = 20) was calculated and the

result showed that 20 out of 43 genes were significantly related to

risk score (Figure 9E). Moreover, we observed that risk score

revealed a positive correlation with HRD (R = 0.32, P < 0.001),

MSI (R = 0.20, P < 0.001), ploidy (R = 0.29, P < 0.001), neoantigen

(R = 0.19, P < 0.01) and RNAss (R = 0.23, P < 0.001) but not with

MATH and DNAss (Figures 9F–M). These results reflected the

potential application value of MRMGPS in the exploration of

heterogeneity of PCa.
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3.9 Therapeutic responses and
pharmaceutical analysis based on MRMGPS

Taking into account the critical role immune checkpoints

played in immune responses and therapy, we further examined

the relationship between the expression of immune checkpoints-

associated genes and risk score. We discovered that 32 of 46

immune checkpoints, including PDCD1 and CTLA4, showed a

significant correlation with MRMGPS and 2 checkpoints, HHLA2
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FIGURE 9

Genomic heterogeneity and tumor stemness based on MRMGPS. (A) CNV of the 9 MRMGPS-based genes. (B) Chromosomal location of CNV of
MRMGPS-based genes. (C) Comparison of TMB between the low- and high-risk groups. (D) Waterfall plot displaying gene mutations in high- and
low-risk groups. (E–M) Correlation between risk score and RNA-modified genes (E), HDR (F), MSI (G), MATH (H), LOH (I), Ploidy (J), Neoantigen (K),
RNAss (L), DNAss(M). CNV, copy number variation; TMB, tumor mutational burden; HRD, homologous recombination defect; MSI, microsatellite
instability; MATH, mutant-allele tumor heterogeneity; LOH, loss of heterozygosity; RNAss, RNA-based stemness scores; DNAss, DNA-methylation-
based stemness scores.
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and CD44, showed significant negative correlation (P < 0.05)

(Figure 10A). Additionally, we specifically calculated the IPS of

patients undergoing different treatments and showed that patients

with low-risk score might be more responsive to CTLA4-positive/

PD1-positive immunotherapy (P = 0.032) and had a more favorable

therapeutic outcome (Figure 10B).

To explore the possibility of applying MRMGPS to the

personalized and accurate treatment of PCa, we first compared the

differences in sensitivity to different anticancer drugs between high-

and low-risk groups according to the IC50 value. The results showed

that 10 commonly used anti-PCa drugs showed satisfactory differences

in sensitivity, that is, patients in the high-risk group were more likely to

be sensitive to bicalutamide and docetaxel, whereas individuals in the

low-risk group were more likely to be sensitive to doxorubicin,

etoposide, gemcitabine, methotrexate, mitomycin C, paclitaxel,

vinblastine, and cisplatin (Figure 11A). Based on the targeted genes

obtained from the DrugBank database (Table S7), we further found

that 15 genes targeted by these drugs had increased expression in the

high-risk group (Figure 11B). The above evidence indicated that

MRMGPS might help clinicians to select personalized drugs and

treatments according to different patients.

We further evaluated the affinity of targeted drugs to genes and

used MOE for molecular docking to explore the internal relationship

between MRMGPS and 10 anti-PCa drugs. The results demonstrated

that 51 out of 75 minimum binding energy of drug-gene pairs were

less than -6.0 kcal/mol, except that cisplatin could not be docked

(Figures 11C, D), indicating that the majority of targeted drugs and

MRMGPS-based genes maintained extreme stability of the

intersectional combination. These findings revealed that there

might be a certain relationship between genes and drugs, which

provided a certain theoretical value for the study of drugs for PCa.
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4 Discussion

Due to the rapid development of scRNA-seq technologies,

researchers obtained unprecedented opportunities to simultaneously

assess thousands of cells within a sample, enabling the complex

molecular features of the TME to be revealed (18). However, the

majority of recent research concentrated on adaptive immune cells in

TME, and the contribution of innate immune cells that may have a

significant impact on prognosis and treatment response in certain

cancers has not yet gotten adequate attention (8, 9). TAMs represent

the primary element of the innate immune system in TME, which are

the most abundant infiltrating immune cells and constitute up to 50%

of the cell mass of human tumors (49). Increasing studies reveal that

the prognosis of PCa patients is closely correlated with the abundance

of tumor-infiltrating macrophages now (50–53). Given the critical role

of macrophages in the immune microenvironment and prognostic

prediction, we attempted to identify the MRMGs associated with the

prognosis of PCa patients. To our knowledge, this is the first study on

mining MRMGs through scRNA-seq data to construct a signature to

predict prognosis, analyze TME, and select drugs in PCa.

In this study, we first performed scRNA-seq analysis and

systematically investigated the 307 MRMGs. Three clusters were

identified based on the expression of MRMGs in TCGA and there

were significant discrepancies in clinicopathological characteristics,

somatic mutations, and immune phenotypes between each cluster.

These results demonstrated that macrophages had a significant role in

the development and progression of PCa. Subsequently, we established

MRMGPS based on the MRMGs in the TCGA cohort and verified its

excellent prognostic performance in a merged GEO validation cohort.

The results also showed that MRMGPS could function as a solitary

prognostic factor.
A B

FIGURE 10

Evaluation of immunotherapeutic responses based on MRMGPS. (A) Correlation between immune checkpoint and MRMGPS-based genes. (B)
Comparison of IPS of PD1 and CTLA4 between high- and low-risk groups. IPS, immunophenoscore.
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The majority of MRMGPS-based genes (CTSZ, FCGRT,

GOLM1, SMIM22, ACPP, FAM3B, TFF3, PCA3, and MSMB) are

associated with either TAMs activity or the prognosis of PCa

patients. CTSZ is an immune-related gene also known as CTSX,

which is consistently expressed by immune cells, especially TAMs

(54, 55). The high expression level of CTSZ, found in prostatic

intraepithelial neoplasia and PCa, may contribute a significant role

in the early tumorigenesis of PCa (55), which is further clarified by

RT-qPCR. FCGRT is also known as FcRn, which encodes a receptor

that binds the Fc region of monomeric immunoglobulin G.

Previous studies reveal that FCGRT plays a crucial role in anti-

tumor immunosurveillance (56) and lack of FCGRT could impair

development and function of innate immune cells leading to poor

prognosis of cancer (57). GOLM1, known as GP73 or GOLPH2 and

overexpressed in multicancer including PCa, plays a crucial role in

the tumor immune microenvironment (58, 59). A previous study
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reveals that overexpressed GOLM1 promotes PD-L1 transport into

TAMs in hepatocellular carcinoma, aggravating CD8+ T cell

suppression and promoting tumor progression (60), which is

similar to our results on MRMGPS-based immune cell infiltration

in PCa. SMIM22 also called CASIMO1 is a critical factor for

proliferation and cell cycle progression in breast cancer (61).

TFF3 is highly expressed in PCa and enhances the carcinogenic

properties of PCa cells (62, 63). As for PCA3 andMSMB, it has been

reported that they are specificity biomarkers and helpful for the

diagnosis of PCa (64–66). Although there are few studies focused on

the influence of ACPP and FAM3B in cancer, we believe that the

potential mechanisms of all MRMGPS-based genes in

tumorigenesis and progression deserve further exploration

combined with the results of our analysis.

As expected, our functional analysis results showed that

MRMGPS was mainly embodied in immune-related biological
D
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FIGURE 11

Evaluation of anti-PCa drugs based on MRMGPS. (A) Comparison of 10 anti-PCa drugs sensitivity (IC50) between high- and low-risk groups. (B)
Comparison of the expression profile of 10 anti-PCa drugs targeted genes between high- and low-risk groups. (C) Heatmap displaying the lowest
binding energy of 10 anti-PCa drugs docking with MRMGPS-based genes. (D) 2D (left) or 3D (right) binding mode of 10 anti-PCa drugs to the
MRMGPS-based genes with the lowest binding energy. *P <0.05, **P < 0.01, ***P < 0.001.
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processes and pathways. Moreover, immune cells infiltrated in the

TME play a critical role in tumor development and prognosis (67).

Therefore, it is so critical to study the landscape of MRMGPS in

TME. Our result suggested that differences in the infiltration of the

immune-related cells and functions between MRMGPS-based

groups, such as high-risk group with more immunosuppressive

cells like pCDs and Tregs, might explain the poor prognosis of

patients in high-risk group. As we explored the features of genomic

heterogeneity and tumor stemness that influence the immune

microenvironment, we found that TMB did not show a

significant difference between two risk groups, which was similar

to the results of a previous prospective study of PCa (68). Besides

mutations in overall genes, TMB has been linked to

immunotherapy responses, particularly ICI therapy, of which

CTLA4 and PD1 are commonly targeted molecules (69).

However, if patients are not differentiated by specific markers, the

efficacy of extensive treatment is not well for PCa (70). Interestingly,

our research found that immunotherapy for high-risk patients with

PD1-positive and CTLA4-positive would achieve more satisfactory

results. A previous prospective study on PCa immunotherapy found

that the expression of VISTA in TAM restricted the compensation

pathway of ICI treatment efficiency (71), which may well explain

the interesting phenomenon we found. The above results and our

drug analysis based on MRMGPS mean that MRMGPS is of great

significance in personalized and precise drug use for PCa patients.

Although our findings are so exciting, there are some limitations to

this study that need to be taken into consideration. First of all, except

for the basic verification experiments, the rest of the data in this study

come from public databases, and the experimental study of the

functional mechanism is also crucial. Finally, this study is based on a

retrospective analysis of the database, and the risk model we established

needs further support from prospective research evidence.
5 Conclusions

In summary, through multi-omics analysis, we established a

prognostic signature based on MRMGs with excellent performance

for prediction, tumor immune research, and drug selection.

Additionally, MRMGPS is not only a potential biomarker for

evaluating bRFS rate and immune characteristics, but it also provides

useful insights and a theoretical basis for creating personalized and

accurate treatment strategies and drug decisions for patients with PCa.
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