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Aging is a complex multifactorial process that greatly affects animal health. 

Multi-omics analysis is widely applied in evolutionary biology and biomedical 

research. However, whether multi-omics can provide sufficient information to 

reveal comprehensive changes in aged non-human primates remains unclear. 

Here, we explored changes in host–microbe interactions with aging in Chinese 

rhesus macaques (Macaca mulatta lasiota, CRs) using multi-omics analysis. 

Results showed marked changes in the oral and gut microbiomes between 

young and aged CRs, including significantly reduced probiotic abundance 

and increased pathogenic bacterial abundance in aged CRs. Notably, the 

abundance of Lactobacillus, which can metabolize tryptophan to produce aryl 

hydrocarbon receptor (AhR) ligands, was decreased in aged CRs. Consistently, 

metabolomics detected a decrease in the plasma levels of AhR ligands. In 

addition, free fatty acid, acyl carnitine, heparin, 2-(4-hydroxyphenyl) propionic 

acid, and docosahexaenoic acid ethyl ester levels were increased in aged CRs, 

which may contribute to abnormal fatty acid metabolism and cardiovascular 

disease. Transcriptome analysis identified changes in the expression of genes 

associated with tryptophan metabolism and inflammation. In conclusion, 

many potential links among different omics were found, suggesting that aged 

CRs face multiple metabolic problems, immunological disorders, and oral 

and gut diseases. We  determined that tryptophan metabolism is critical for 

the physiological health of aged CRs. Our findings demonstrate the value of 

multi-omics analyses in revealing host–microbe interactions in non-human 

primates and suggest that similar approaches could be applied in evolutionary 

and ecological research of other species.
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Introduction

Aging is a complex multifactorial process involving many 
biological pathways and molecules (Ahadi et al., 2020; Bunning 
et al., 2020). Aging is also a major risk factor for many chronic 
diseases (Lehallier et al., 2019). Therefore, a deeper understanding 
of aging could provide new insights into the mechanisms of 
age-related diseases to promote health and longevity (Alpert et al., 
2019; Lehallier et  al., 2019). As such, increasing studies have 
explored the processes and mechanisms of aging at the genomic 
(Kenyon, 2010; Hou et al., 2020), transcriptomic (Peters et al., 
2015; Bryois et al., 2017; Balliu et al., 2019), proteomic (Lehallier 
et al., 2019), and metabolomic levels (Bunning et al., 2020; Hou 
et al., 2020). However, given the complex involvement of genetic, 
environmental, and lifestyle factors, the molecular changes that 
occur with aging remain poorly understood (López-Otín et al., 
2013; Ahadi et al., 2020; Bunning et al., 2020).

In addition to molecular changes during aging, the host 
microbiome, consisting of diverse microbial communities, plays 
an important role in host physiology and metabolism (Sommer 
and Bäckhed, 2013; Manara et al., 2019). In particular, the gut 
microbiota is increasingly regarded as an ‘invisible organ’ in 
animals (Hill et al., 2017) and is associated with host physiology, 
immunity, neurological function, metabolism, and disease 
(Gilbert et al., 2018; Kurilshikov et al., 2021). Recent studies have 
also provided new insights into gut microbial trajectories 
associated with aging (Wilmanski et al., 2021; Zhang et al., 2021). 
For example, the gut microbiota develops rapidly from birth until 
3 to 5 years of age (Hill et al., 2017; Roswall et al., 2021; Wilmanski 
et al., 2021), followed by a long period of relatively stability, then 
gradual changes with aging (O’Toole and Jeffery, 2015). Wilmanski 
et al. (2021) reported increasing compositional uniqueness of the 
gut microbiome as a component of healthy aging. Therefore, 
identifying age-related patterns in the gut microbiota may 
be useful for monitoring gut microbiome health and thus host 
health (Wilmanski et al., 2021).

Oral microbiota is also important because the oral cavity 
serves as the initial entry point for oral and gut microbial 
colonization (Xiao et  al., 2020). In addition, oral bacteria are 
implicated in oral and dental health as well as many diseases that 
affect the elderly, such as non-oral cancers, cardiovascular disease, 
and Alzheimer’s disease (Hezel and Weitzberg, 2015; Olsen and 
Singhrao, 2015; Shoemark and Allen, 2015; Fan et al., 2018; Xiao 
et al., 2020). To date, however, most studies have focused on oral 
microbiome changes associated with oral disease (Chen et al., 
2020; Nóvoa et al., 2020; Baker et al., 2021), with changes during 
aging still largely unexplored.

Research related to human aging presents several challenges, 
including ethical and practical difficulties in recruiting large 
cohorts for long-term research, long human lifespans, and 
differences in medical interventions, diet, and socioeconomic 
circumstances (Janiak et al., 2021). Non-human model organisms, 
such as roundworms, mice, and rats, can provide considerable 
data regarding the aging process (Kenyon, 2010; Campisi et al., 

2019). However, given the distant evolutionary relationships 
between such species and humans, findings may not be directly 
transferable to human aging. In contrast, considering their close 
relationship to humans (Gibbs et al., 2007) and similar anatomy, 
physiology, and behavior (Lan et  al., 2020; Yan et  al., 2020), 
non-human primates, such as rhesus macaques (Macaca mulatta, 
RMs), are well-suited animal models and have been successfully 
used in aging-related studies (Mattison et al., 2017; Campisi et al., 
2019; Zhou et al., 2020).

Studies have indicated that multi-omics analysis can 
effectively detect molecular changes during aging (Price et al., 
2017; Schüssler-Fiorenza Rose et al., 2019; Zhou et al., 2019; 
Ahadi et al., 2020; Hou et al., 2020). Here, we used a multi-omics 
approach to profile the blood transcriptome and metabolome 
as well as the gut and oral microbiome in young adult (7–9 years 
old) and aged (>20 years old) Chinese rhesus macaques 
(Macaca mulatta lasiota, CRs). We examined the dynamics of 
molecular and microbiome changes and explored the changes 
in host–microbe interactions that occur during aging. This 
study should provide useful information to better understand 
and maintain the health of aged CRs and provide new insights 
into the mechanisms of aging.

Materials and methods

Sample collection

We collected anal swabs, oral swabs, and whole peripheral 
blood samples from young (n = 9, ages: 7–9 years) and old (n = 10, 
ages: 20–28 years) semi-captive CRs housed at Sichuan Green-
House Biotech Co., Ltd. (Meishan, Sichuan, China) in a 2000-m2 
open-air enclosure. All macaques were housed under the same 
conditions and fed the same diet.

PAXgene Blood RNA tubes were used to collect fresh blood 
samples. The samples were first stored at room temperature 
(18–20°C) for 4 h, then transferred to −20°C for 24 h, and finally 
preserved at −80°C until RNA extraction. Other blood samples 
were centrifuged on site to extract supernatants, which were then 
stored at −80°C for subsequent metabolome analysis and 
inflammatory factor measurement.

This study was approved by the Ethics Committee of the 
College of Life Sciences, Sichuan University, China (No. 
20200327012 and No. 20210308001). All guidelines of the 
Management Committee of Experimental Animals of Sichuan 
Province, China (SYXK-Sichuan, 2019–192) regarding sample 
collection and use were strictly followed.

RNA sequencing and differentially 
expressed gene analysis

Details on methods used are reported in our previous study 
(Lan et al., 2020). In brief, RNA samples were sent to Novogene 
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(Beijing, China) for sequencing using the Illumina 
NovaSeq 6,000 platform with a paired-end sequencing length 
of 150 bp. The NGS QC Toolkit v2.3.3 (Patel and Jain, 2012) 
and HISAT2 v2.1.0 (Kim et al., 2015) were used for quality 
control and read mapping, and StringTie v1.3.6 (Pertea et al., 
2015) was used to assemble transcriptomes and obtain raw read 
counts for each gene and transcript. Based on expression 
values, we used the DESeq2 R package (Love et al., 2014) to 
perform differential expression analysis. The DEGs were 
selected based on adjusted p ≤ 0.05 and log2 fold-change ≥1, 
resulting in 124 DEGs in the two age categories. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed using g: Profiler 
(Raudvere et al., 2019) to functionally classify DEGs, with a 
Benjamini-Hochberg false discovery rate (FDR) ≤ 0.05 
considered significant.

Untargeted blood metabolomics analysis

The collected blood supernatants were sent to MetWare 
(Chengdu, China) for targeted metabolite analysis. After 
thawing the blood sample on ice, 300 μl of pure methanol was 
added to 50 μl of sample to remove blood protein. The samples 
were then centrifuged at 12000 g and 4°C several times 
(centrifuged 10 min → collected the supernatant → centrifuged 
5 min → stored at 20° for 30 min → centrifuged 3 min). In total, 
150 μl of supernatant was analyzed using high-performance 
liquid chromatography-electrospray tandem mass 
spectrometry (HPLC-ESI-MS/MS; UPLC, ExionLC AD; MS, 
QTRAP 6500 + System, Sciex). All chemicals used, including 
methanol (Merck), acetonitrile (Merck), formic acid  
(Aladdin), and standards (BioBioPha/Sigma-Aldrich), were 
chromatographically pure. Analyst v1.6.3 was used to analyze 
mass spectrometry data, in a qualitative analysis of the 
metabolites according to the retention time of the detected 
substance and secondary spectral data based on the 
MetWare database.

Each metabolite was subjected to a two-tailed unpaired t-test 
assuming unequal variances and using the q-value package (for 
total metabolites) to correct for false discovery.

Metagenomic analysis

Total DNA from the swabs was extracted using a Tiangen 
DNA Stool Mini Kit (Tiangen Biotech Co., Ltd., China) and 
sent to Novogene (Beijing, China) for sequencing using the 
Illumina NovaSeq 6,000 platform with a paired-end sequencing 
length of 150 bp. After sequencing, adapters and low-quality 
raw reads were removed using Trimmomatic based on a four-
base wide sliding window, with average quality per base >20 
and minimum length 90 bp (Bolger et  al., 2014). The CR 
potential sequences were removed using Bowtie2 (Langmead 

and Salzberg, 2012) as part of the KneadData pipeline1 with the 
RM reference genome (assembly Mmul_10). De novo assembly 
of the metagenomes from the quality-filtered Illumina reads 
was performed using MEGAHIT (Li et  al., 2015) with the 
option “-t 96 –m 0.95 --min-contig-len 300.” Separate assembly 
of each sample was applied, rather than co-assembly of all 
samples, the advantages and disadvantages of which have been 
discussed previously (Pasolli et al., 2019). Gene prediction was 
performed using Prodigal (Hyatt et al., 2010) with the option 
“-p meta –g 11.” Non-redundant gene sets with thresholds of 
95% similarity and 90% coverage of query sequences were 
constructed with CD-HIT (Fu et al., 2012) with the option “-c 
0.95-aS 0.90.” The non-redundant genes were further translated 
into amino acid sequences. The amino acid sequences were 
aligned using DIAMOND (Buchfink et  al., 2015) with the 
option “--id 80% --query-cover 70% --evalue 1e-5” in the 
Carbohydrate-Active enZYmes (CAZy) database (Lombard 
et al., 2014). Quantification of the non-redundant genes in each 
metagenome was performed using Salmon (Patro, 2017) with 
the option “--meta.” Total abundance of each gene type was 
determined by total abundance of all genes mapped to the same 
gene type. Gene family and microbial metabolic pathway 
abundances were assessed using HUMANn3 (Franzosa, 2018) 
with the ChocoPhlAn and UniRef90 EC filtered databases 
(Suzek et al., 2007), and were normalized by copies per million 
(CPMs). Taxonomic labels of metagenomic sequences were 
assigned using Kraken2 (Wood and Salzberg, 2014) with the 
option “--use-mpa-style.” Taxon abundances were normalized 
by relative abundance. Differences in taxon, functional gene, 
and metabolic pathway abundances were determined using 
Linear discriminant analysis effect size (LEfSe) analysis (Segata 
et al., 2011). Antibiotic resistance genes (ARGs) were quantified 
using ShortBRED (Kaminski et  al., 2015). In brief, the 
shortbred_identify.py script was used to produce a FASTA file 
of markers using the ARG sets in the Comprehensive Antibiotic 
Resistance Database (CARD; Alcock et al., 2019) as proteins of 
interest and UniRef90 sequences as reference proteins, and the 
shortbred_quantify.py script was used to quantify the 
abundance of ARGs in the metagenomes. The ARG and gut 
microbiome abundance network was drawn using Cytoscape 
(Otasek et al., 2019).

Diversity analyses

The taxonomic abundance table generated using Kraken2 was 
used as input for QIIME2 (Bolyen et  al., 2019). The QIIME2 
diversity plugin was used to calculate alpha (α) diversity (within 
sample diversity; Bolyen et  al., 2019). The QIIME2 plugin 
DEICODE (Martino et  al., 2019) was used to calculate beta 
diversity with feature loadings.

1 http://github.com/biobakery/kneaddata
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Association analysis between 
multi-omics

To assess possible relationships between microbial genera, 
DEGs, and differentially expressed metabolites (DEMs), Spearman 
correlation analysis was performed based on the combined dataset 
of all variables. As an example, to determine whether microbe M 
is related to host genes X, Y, and Z, respectively, we calculated the 
correlation between the abundance of M and expression levels of 
X, Y, and Z in the samples, thereby obtaining three correlation 
values for microbe M, i.e., M ~ X, M ~ Y, and M ~ Z. This was 
carried out for all microbes and DEGs (and metabolites), with the 
top 100 relationships showing the highest relevance selected for 
display. All value of ps were corrected using the python model 
statsmodels. Stats. multitest. Multipletests (Supplementary Table 2).

Inflammatory factor measurements

To quantify the levels of interleukin 21 (IL-21) and interleukin 
27 (IL-27) in the two groups, enzyme-linked immunosorbent 
assays (ELISA) were performed using an ELISA kit (JM-10921 M2 
and JM-10916 M2, Jingmei, Jiangsu, China). Data were analyzed 
using Wilcoxon rank tests, with p < 0.05 considered significant.

Results

Gut microbiota

To characterize differences in gut microbial composition, 
we compared relative abundance of gut bacteria between old and 
young CRs using the Wilcoxon rank sum test, which showed 
enrichment in different bacterial lineages. At the genus level, 
Prevotella, Faecalibacterium, and Lactobacillus were dominant in 
both groups (Figure  1A). Compared to the young group, the 
relative abundances of Lactobacillus, Lactiplantibacillus and 
Limosilactobacillus were lower in the old group (p < 0.05 and 
LDA > 2), while the relative abundances of Salmonella, 
Odoribacter, Ornithobacterium, Tamlana, and Sarcina were higher 
in the old group (p < 0.05 and LDA > 2; Figure 1B). Comparing 
α-diversity, results showed no significant differences in the four 
indices (ACE, Chao1, Shannon, and Simpson) between the two 
groups (p > 0.05; Figure 1C).

To characterize the global function of the gut microbiome and 
compare functional differences between young and old CRs, the 
abundances of microbial gene families and metabolic pathways 
were quantified using HUMANn3. Results indicated that the 
young CR gut microbiome was mainly enriched in aerobactin 
biosynthesis-related pathways such as L-lysine biosynthesis II, 
O-antigen building blocks biosynthesis, and pyrimidine 
deoxyribonucleotides biosynthesis, while the old CR gut 
microbiome was primarily enriched in L-glutamate and 
L-glutamine biosynthesis, ketogenesis, and petroselinate 

biosynthesis. Interestingly, the homolactic fermentation pathway 
was significantly enriched in the young CRs compared to the old 
CRs, while the opposite pattern was observed in the oral 
microbiome (Figure 1D).

Identification and quantification of ARGs showed that the 
tetracycline resistance tetW gene, was more abundant in the gut 
microbiome of old CRs than young CRs (p < 0.05; Figure 1E). 
Furthermore, carbohydrate esterases (CEs) and auxiliary activities 
(AAs) of the CAZy enzyme family were significantly down-
regulated in aged CRs, indicating decreased carbohydrate 
metabolism in the older monkeys (p < 0.05; Figure 1F).

Oral microbiota

We also identified and characterized differences in the oral 
microbiota of young and old CRs. Unlike the gut microbiota, 
however, the distribution of dominant microflora in the oral 
cavity of young and old CRs was similar, while the less 
abundant microflora showed considerable differences 
(Figure 2A). At the genus level, nine genera were significantly 
more abundant in the young CRs (p <  0.05 and LDA > 2), 
including Ottowia, Simonsiella, Streptobacillus. In contrast, 26 
genera were more abundant in the old CRs (p < 0.05 and 
LDA > 2), including Veillonella, Filifactor, Paenibacillus, 
Olsenella, Dialister, Sporomusa, and Bifidobacterium 
(Figure  2B). No significant differences were found in 
α-diversity, consistent with the gut microbiota results 
(Figure 2C).

In addition to microbial composition, oral microbiota 
function and ARGs showed significant differences between young 
and old CRs. The young CR oral microbiome was enriched in 
several metabolic-related pathways, including CDP-diacylglycerol 
biosynthesis I/II, superpathway of glycolysis and Entner-
Doudoroff, and superpathway of L-lysine, L-threonine, and 
L-methionine biosynthesis I. In contrast, the old CR oral 
microbiome was primarily enriched in homolactic fermentation, 
pyruvate fermentation to propanoate I, and glycolysis-related 
pathways (Figure 2D). For oral microbiota ARGs, the tet (L) gene, 
encoding resistance to tetracycline antibiotic, and the ADC-76 
gene, encoding resistance to cephalosporin, were more abundant 
in old CRs than in young CRs (p < 0.05; Figure 2E). However, there 
were no significant differences in the six CAZy enzyme family 
modules between the two groups (p > 0.05).

Host metabolome

After removing unqualified samples, whole peripheral blood 
samples from 18 CRs (10 old and eight young CRs) were collected 
and secondary metabolite species were determined by HPLC-
ESI-MS/MS. All metabolites were annotated using KEGG. Based 
on the local metabolite database, qualitative and quantitative mass 
spectrometry analyses were conducted on the sample metabolites. 
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In total, 644 metabolites were identified, including 14 sugars, 56 
amino acids and their derivatives, and 45 organic acids and their 
derivatives. All raw data for the detected metabolites are shown in 
Supplementary Table 1.

Based on certain criteria (p < 0.05 and variable importance in 
projection (VIP) > 1), 53 significant DEMs were identified between 
the old and young groups (26 up-regulated and 27 down-regulated 
in old CRs; Figures 3A,B). Both CARs and FFAs were the major 
up-regulated DEMs in old CRs and included carnitine C18: 3, 
carnitine C20: 2, hexadecanoic acid (C16: 0), palmitoleic acid 
(C16: 1), and cis-11,14-eicosadienoic acid (C20: 2), which were 
enriched in the arginine biosynthesis, ABC transporter, 
amyotrophic lateral sclerosis, and biosynthesis of amino acid 
pathways. Indole and its derivatives, organic acid and its 
derivatives, and phenolic acids were the top three classes down-
regulated in the old group and included 3-indolepropionic acid, 
indole-3-carboxaldehyde, indoleacrylic acid, and 
3-hydroxyanthranilic acid. However, the down-regulated DEMs 
were not enriched in any pathway (Figures 3C,D).

Host transcriptome

Whole peripheral blood transcriptomes of 15 CRs (nine old 
and six young CRs) were sequenced. The 524.5 million clean reads 
obtained after removing adaptor sequences and low-quality reads 

were aligned to the rhesus macaque reference genome 
(MMUL_10) separately with an average mapping rate of 95.55% 
per sample. All samples were processed using the same 
bioinformatics pipeline. After removing low-expression genes, the 
reads were assembled into 19,902 known genes.

In total, 124 genes were identified as DEGs between the 
groups (Figure  3E), including 44 up-regulated DEGs and 80 
down-regulated DEGs in the old group compared to the young 
group. To clarify the biological roles of the DEGs, we performed 
GO and KEGG pathway enrichment analyses of the up-regulated 
and down-regulated DEGs separately. For GO enrichment 
analysis, the old down-regulated DEGs were mainly enriched in 
protein binding-or nucleotide binding-related molecular function 
(MF) categories, such as heat shock protein binding (GO: 
0031072) and adenyl nucleotide binding (GO: 0030554). In the 
biological process categories, the old down-regulated DEGs were 
mainly enriched in immune response and interferon signaling 
pathways, such as interleukin-27-mediated signaling pathway 
(GO: 0070106), defense response to bacterium (GO: 0042742), 
Toll-like receptor 3 signaling pathway (GO: 0034138), and type 
I interferon signaling pathway (GO: 0060337). Based on KEGG 
enrichment analysis, the old CR down-regulated DEGs were 
significantly enriched in nine pathways, including NOD-like 
receptor signaling pathway (KEGG: 04621) and antigen processing 
and presentation (KEGG: 04612; Figure 3G). For analysis of old 
CR up-regulated DEGs, only GO terms related to vitamin D 

A

D E

C B

F

FIGURE 1

Metagenomics analysis of gut microbiota. (A) Top 10 most abundant genera in gut microbiome between young and old groups. (B) Differential 
analysis of gut microbial composition in young and old groups. (C) Alpha (α) diversity estimates between young and old groups. (D) Differential 
analysis of gut microbial function in young and old groups. (E) Differential analysis of gut microbial ARGs in young and old groups. (F) Differential 
analysis of gut microbial CAZy enzyme in young and old groups. p < 0.05 was considered significant.
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biosynthesis were enriched, including regulation of calcidiol 
1-monooxygenase activity (GO: 0060558) and vitamin D 
biosynthetic process (GO: 0042368; Figure 3F).

Association analysis between 
multi-omics

To reveal host–microbe interactions, metabolites were 
used as the core factor to link differential microbial genera, 

DEMs, and DEGs. We  performed Spearman correlation 
analysis, which generated a correlation network between the 
variables that differed significantly between the young and old 
CRs (Figure 4A). The correlation network between differential 
gut microbial genera and DEMs contained 36 nodes and 53 
edges, and each of the top gut microbial genera had 
associations with more than four differential metabolites were 
Sarcina, Lactiplantibacillus, Limosilactobacillus, Odoribacter, 
and Lactobacillus (Figure  4B). As shown in Figure  4C, the 
correlation network between differential oral microbial genera 

A

B D

E

C

FIGURE 2

Metagenomics analysis of oral microbiota. (A) Top 10 most abundant genera in oral microbiome between young and old groups. (B) Differential 
analysis of oral microbial composition in young and old groups. (C) Alpha (α) diversity estimates between young and old groups. (D) Differential 
analysis of oral microbial function in young and old groups. (E) Differential analysis of oral microbial ARGs in young and old groups. p < 0.05 was 
considered significant.
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and DEMs contained 51 nodes and 72 edges, and each of the 
top oral microbial genera associated with more than four 
differential metabolites were Acetobacterium, Filifactor, 
Intestinibaculum, Megasphaera, Ottowia, and Veillonella. The 
correlation network between DEGs and DEMs contained 64 
nodes and 99 edges. We found that six DEGs, which each of 
them had more than four associations with differential 
metabolites, including FBN2, ENSMMUG000000 
63631, ENSMMUG00000041057, IFNG, TPH1, and CIB2 
(Figure 4D).

Analyses related to tryptophan metabolism appeared in each 
omics data. Thus, we next focused on the correlations between 
tryptophan metabolites (3-indolepropionic acid, indole-3-
carboxaldehyde, indoleacrylic acid, and 3-indolebutyric acid), 
differential microbial genera, and DEGs. The DEGs showing the 
strongest association with differential tryptophan metabolites 
were IFNG and ENSMMUG00000059005. The differential gut 
microbial genera showing the strongest associations with 
differential tryptophan metabolites were Sarcina and Lactobacillus, 
and the differential oral microbial genus showing the strongest 
association with differential tryptophan metabolites was Slackia 
(Table 1).

Inflammatory factor measurements

We determined the levels of immune factors IL-21 and IL-27 
using an ELISA kit. As shown in Supplementary Figure S1, the 
level of IL-21 was significantly higher in the old group (p < 0.05), 
consistent with the transcriptome results, while the level of IL-27 
showed no significant differences between the two groups 
(p > 0.05).

Discussion

As CRs exhibit similar molecular and phenotypic changes 
to humans during aging, they are considered an excellent 
model species for studying cardiovascular (Zhou et al., 2020) 
and microbiota-associated human diseases (Chen et al., 2018; 
Janiak et al., 2021). Currently, our understanding of how the 
oral and gut microbiomes change in aged CRs and how these 
changes affect host gene expression and physiology during 
aging remains limited. Most previous studies on molecular 
changes during aging in non-human primates have been based 
on single omics data, e.g., transcriptome (Li et al., 2019; Yan 
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FIGURE 3

Blood metabolome and blood transcriptome analyses. (A) Volcano plots of metabolomes between young and old groups. (B) Partial least squares 
discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) score plots based on metabolic profiles. 
(C) Differential abundance of blood metabolites in young and old groups (VIP ≥ 1, p < 0.05). (D) Enrichment analysis of differentially abundant 
pathways in young and old groups (p < 0.05). (E) Volcano plots of DEGs in young and old groups (log fold-change ≥1, p < 0.05). (F) GO and KEGG 
pathway enrichment analyses of up-regulated DEGs in old group (p < 0.05). (G) GO and KEGG pathway enrichment analyses of down-regulated 
DEGs of old group (p < 0.05).
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et  al., 2020; Zhou et  al., 2020) and 16S rRNA gene  
amplicon profiling (Chen et al., 2018; Ebersole et al., 2020; 
Janiak et al., 2021). In the present study, we evaluated host–
microbe interactions in aged CRs using a multi-omics  
approach.

first identified changes in oral and gut microbiome 
composition and function. The gut microbiota in young and old 
CRs was dominated by Prevotella, Faecalibacterium, and 
Lactobacillus, consistent with previous reports (Chen et al., 2018; 
Janiak et al., 2021). At the genus level, Prevotella was the most 

A B

C D

FIGURE 4

Association analysis among multi-omics. (A) Correlation network of variables that differed significantly between young and old groups of each 
omics. (B) Correlation network of differential gut microbial genera and DEMs. (C) Correlation network of differential oral microbial genera and 
DEMs. (D) Correlation network of DEGs and DEMs. DEGs: differentially expressed genes; DEMs: differentially expressed metabolites; B_DEMi: 
differentially expressed oral microbiota; M_DEMi: differentially expressed gut microbiota. All nodes and edges of correlation networks, with lines 
indicating significant correlations (p < 0.05). Blue lines indicate positive correlation and green lines indicate negative correlation.

TABLE 1 The correlation top three of tryptophan metabolites with DEGs and DEMi.

source_id target_id Correlation coefficient value of p

DEGs IFNG Indoleacrylic acid −0.7889 0.000472

IFNG 3-Indolepropionic Acid −0.7853 0.000522

ENSMMUG00000059005 3-Indolebutyric Acid 0.8786 1.63E-05

M_DEMi M_Sarcina 3-Indolepropionic Acid −0.7941 0.000239

M_Sarcina Indoleacrylic acid −0.7794 0.000372

M_Lactobacillus 3-Indolepropionic Acid 0.7029 0.002387

B_DEMi B_Slackia 3-Indolepropionic Acid −0.7643 0.000907

B_Slackia Indoleacrylic acid −0.8 0.000342
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abundant in both young and old CRs, as found in humans on 
non-westernized diets associated with carbohydrates and fiber 
(Wu et  al., 2011; Tett et  al., 2019). Lactobacillus showed high 
abundance in both young and old CRs but was significantly more 
abundant in the young group. Based on 16S V4 rRNA amplicon 
sequences, Janiak et al. (2021) also detected significant differences 
in the relative abundance of Lactobacillus between infant and 
non-infant CRs, but not between other post-infancy age groups, 
suggesting that Lactobacillus may play an important role in 
digesting milk. Lactobacillus species are beneficial bacteria in the 
gut of humans and other mammals (Jia et al., 2010; Rossi et al., 
2016; Valeriano et al., 2017), identified as important probiotics for 
gut health (Spinler et al., 2008). Lactobacillus species can inhibit 
the overgrowth of pathogens in the gut by producing various 
antibiotic factors, such as organic acid, hydrogen peroxide, and 
bacteriocin (Reid and Burton, 2002; Spinler et al., 2008; Linninge 
et  al., 2019). Therefore, the significantly higher abundance of 
probiotics in young CRs may contribute to better gut health 
maintenance. The homolactic fermentation pathway was also 
enriched in the gut of young CRs, which inhibits the growth of 
intestinal saprophytes and ensures a healthy gut (Zhang 
et al., 2019).

In contrast, we  identified two highly abundant genera 
(Salmonella and Sarcina) in the gut of old CRs associated with 
intestinal issues. Salmonella species are common food-borne 
pathogens (Bula-Rudas et al., 2015; Rivera-Chávez and Bäumler, 
2015). In addition, Sarcina species can cause abomasal bloat and 
death in livestock, especially sheep and goats, and are associated 
with certain human diseases, including emphysema gastritis and 
gastric ulcers (Lam-Himlin et  al., 2011). Functional analysis 
indicated that the L-glutamine biosynthesis III (PWY-6549) and 
L-glutamate and L-glutamine biosynthesis (PWY-5505) pathways 
were enriched in old CRs. These two pathways produce 
L-glutamine, which can induce cancer cells to undergo rapid 
growth (Daye and Wellen, 2012). Taken together, the significant 
decrease in probiotics and significant increase in pathogenic 
bacteria in old CRs may induce a variety of intestinal and 
other diseases.

Compared with the gut microbiome, the oral microbiome of 
CRs shows marked similarities to that of humans (Janiak et al., 
2021). Similarly, we found that most of the top 15 genera in the 
oral microbiome of CRs were also core genera in the oral 
microbiome of healthy humans, e.g., Streptococcus, Fusobacterium, 
Haemophilus, Porphyromonas, and Gemella (Aas et  al., 2008; 
Zaura et al., 2009; Krishnan et al., 2017; Chen et al., 2018). We also 
found a higher abundance of oral pathogens in old CRs, such as 
Bifidobacterium. Bifidobacterium is normally considered a 
probiotic, producing a variety of organic acids, including lactic 
acid, and showing beneficial effects, such as reducing the number 
of harmful bacteria in the gut (Gill et al., 2001; Manome et al., 
2019). However, oral Bifidobacterium is recognized as a novel 
caries-associated bacterium, especially in children (Aas et  al., 
2008; Tanner et al., 2011; Kaur et al., 2013). In humans, frequently 
detected Bifidobacterium species in the oral microbiome include 

B. dentium (Munson et  al., 2004) and B. longum (Nyvad and 
Kilian, 1990; Aas et  al., 2008; Mantzourani et  al., 2009). 
We detected 23 Bifidobacterium species in the oral microbiome of 
CRs, with B. adolescentis and B. longum found in higher 
abundance in old CRs than in young CRs. This is consistent with 
our observation that almost all aged individuals sampled showed 
evidence of caries or other oral disease. Functional pathway 
analysis showed that the homolactic fermentation pathway, which 
is related to lactic acid formation, was enriched in the oral 
microbiome of the old group. Lactic acid in the oral cavity is not 
beneficial, with long-term presence associated with tooth damage 
and corrosion (Jijakli and Jensen, 2019). Functional analysis also 
indicated that the L-glutamine biosynthesis III (PWY-6549) and 
L-glutamate and L-glutamine biosynthesis (PWY-5505) pathways 
were enriched in the oral and gut microbiomes of old CRs. Thus, 
the microbial characteristics of both the oral and gut microbiomes 
changed with age, likely increasing health risks for the host (Ahadi 
et al., 2020; Wilmanski et al., 2021).

Filifactor alocis, Selenomonas, and Veillonella, which are 
associated with periodontal diseases (Aruni et al., 2011; Barzilai 
et al., 2012; Antezack et al., 2021), were more abundant in the old 
CRs. Filifactor alocis has been used as a diagnostic marker for 
periodontitis due to its unique ability to tolerate oxidative stress 
and generate a strong pro-inflammatory response (Aruni et al., 
2011; Moffatt et  al., 2011). Filifactor alocis is associated with 
gingivitis, gestational diabetes, and oral squamous cell carcinoma 
(Gogeneni et al., 2015; Yang et al., 2018), but has not been found 
in healthy individuals (Schulz et al., 2019). Selenomonas is also 
associated with gingivitis and may be a potential biomarker for the 
onset of periodontitis (Tanner et al., 1996, 1998; Socransky et al., 
1998; Antezack et al., 2021). Oral Veillonella is closely related to 
dental pulp, periapical infection, and chronic periodontitis, and 
can cause caries in cooperation with Streptococcus mutans 
(Barzilai et al., 2012). Comparing the oral microbiomes of young 
and old CRs, we identified several bacteria related to human oral 
diseases that were more abundant in aged CRs. These results 
suggest that aged CRs may face similar dental issues as humans, 
and thus could be an excellent model for studying oral diseases 
in humans.

We next investigated metabolite and gene expression levels in 
the plasma metabolome and blood transcriptome. Metabolomics 
is a popular approach to study aging, as metabolic changes are 
central to the aging process (Barzilai et al., 2012; López-Otín et al., 
2013; Hou et al., 2020; Wilmanski et al., 2021). Metabolomics also 
reflects both genetic and nongenetic factors, as metabolites are 
influenced by the host, microbial activity, and environmental 
exposure (Rinschen et al., 2019; Bunning et al., 2020). In recent 
years, metabolomics has been successfully applied in the study of 
human aging, identifying many age-related biomarkers and 
biological pathways (Tanner et al., 1998; López-Otín et al., 2013; 
Price et al., 2017; Hou et al., 2020; Antezack et al., 2021; Wilmanski 
et al., 2021). However, few studies have explored metabolomics in 
non-human primates. Here, plasma metabolomics revealed 
significant differences at the single metabolite level between young 
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and old CRs. We found that indole and its derivatives (indole-3-
carboxaldehyde, 3-indolepropionic acid, and indoleacrylic acid), 
produced from tryptophan metabolism (Natividad et al., 2018), 
were significantly decreased in old CRs. These microbial 
tryptophan metabolites act as AhR ligands to increase IL-22 
secretion (Zelante et al., 2013; Lamas et al., 2016). AhR is widely 
distributed in different mammalian cells and produces different 
effects by binding to different ligands, thus playing a vital role in 
immune and inflammatory responses, with its deletion leading to 
an increase in pro-inflammatory cytokines (Alexeev et al., 2018). 
Previous research has shown that the gut microbiota of Anopheline 
mosquitoes promotes anti-parasitic responses by participating in 
tryptophan metabolism (Feng et al., 2022).

In addition to indole and its derivatives, a variety of FFAs were 
also found in the aged CRs, including cis-11, 14-cicosadienoic 
acid (C20: 2), linoleic acid (C18: 2N6C), and hexadecanoic acid 
(C16: 0). Compared with other saturated FFAs, hexadecanoic acid 
(palmitic acid) is found at higher concentrations in human plasma 
(Richieri and Kleinfeld, 1995). High concentrations of palmitic 
acid can enhance serine 307 phosphorylation of insulin receptor 
substrate 1 (IRS1) through multiple mechanisms, leading to 
insulin resistance (Wei et al., 2018). High levels of palmitic acid 
can also induce excessive reactive oxygen species (ROS) 
production, resulting in mitochondrial and endoplasmic 
reticulum stress and fatty acid metabolism disorders (Tumova 
et al., 2016). Therefore, fatty acid metabolism disorders may occur 
in aged CRs.

Dysregulation of carnitine homeostasis is a prominent feature 
of fatty acid metabolism disorders (Bene et al., 2018). We detected 
higher abundance of carnitine in the old CR group. One of the 
main functions of carnitine is to transport long-chain fatty acids 
from the cytoplasm across the mitochondrial membrane into the 
mitochondrial matrix for β-oxidation, thereby generating cellular 
energy (Bene et al., 2018). Dysfunction in fatty acid metabolism 
can lead to a substantial accumulation of free carnitine and CARs 
(Möder et al., 2003; Zhang et al., 2014). Indeed, we found that the 
most significant changes in plasma metabolites in the aged CRs 
were the increases in free carnitine and CARs, including carnitine 
C18: 3, carnitine C6: 0 isomer 1, carnitine C8: 0, carnitine C20: 2, 
and carnitine C7: 1 isomer 1, further suggesting that older CRs 
may experience disturbances in fatty acid metabolism. This 
finding is similar to that reported in human studies showing that 
lipid metabolism disturbance can increase abnormal acylcarnitine 
levels, leading to obesity or diabetes (Mihalik et al., 2010).

The top three DEMs showing higher abundance in the aged 
CRs were all related to cardiovascular function and blood 
coagulation. Heparin is a commonly used anticoagulant for the 
prevention and treatment of venous thrombosis (Gray et  al., 
2008). 2-(4-hydroxyphenyl) propionic acid (2-HPPA CPD) can 
act on cyclooxygenase (COX) to regulate platelet aggregation 
(Yamanishi et al., 2008). Elevated levels of docosahexaenoic acid 
ethyl ester (DHA-EE) in the body can increase DHA levels, which 
play an important role in neurological and cardiac function 
(Martínez et al., 2000; Valenzuela et al., 2005), and thus DHA-EE 

intake may delay damage caused by aging. These results are 
consistent with our previous study, which showed that aged CRs 
have shorter coagulation times and higher coagulation factor II 
(FII) and VIII (FVIII) activity compared to young CRs (Zhou 
et al., 2020). The above results indicate that aged CRs may face the 
same problems as older humans, and thus are an appropriate 
model species for studying human cardiovascular disease (Zhou 
et al., 2020).

Consistent with the metagenome and metabolome results, 
transcriptome analysis detected several DEGs (TPH1, IFNG, 
IL-21, and IL-27) and signaling pathways related to 
inflammation and tryptophan metabolism. Tryptophan 
hydroxylase 1 (TPH1) is mainly expressed in enterochromaffin 
and other non-neuronal cells (Walther et al., 2003) and is the 
rate-limiting enzyme encoded by TPH1 for tryptophan 
metabolism into serotonin (5-HT; Billing et al., 2019). 5-HT is 
a key neurotransmitter in the central nervous system and plays 
a role in controlling mood, sleep, and anxiety, and regulating 
gastrointestinal motility (Martin et  al., 2017; Keating and 
Spencer, 2019). High levels of 5-HT and TPH1 are observed in 
certain metabolic diseases (e.g., NAFLD and type 2 diabetes; 
Crane et al., 2015). Interferon-γ (IFN-γ), which is encoded by 
IFNG, is involved in tryptophan metabolism. Notably, IFN-γ 
can induce the synthesis of indoleamine-2, 3-dioxygenase, a 
tryptophan-catabolizing enzyme, converting tryptophan into 
kynurenine and reducing the level of tryptophan in plasma 
(Munn et al., 2005). IFN-γ is produced by natural killer (NK) 
and T cells and is considered a pro-inflammatory factor due to 
its strong macrophage activation potential (Seder et al., 1993). 
IL-21, which is encoded by IL-21, is secreted by follicular helper 
T cells (Tfh), peripheral helper T cells (Tph), and helper T cells 
(Th17). Stimulating T cell receptor (TCR) signals induces IL-21 
production and IFN-γ release (Apetoh et al., 2010). In addition, 
IL-21 can promote the differentiation of CD4+ T cells into Th17 
cells, which are robust producers of IL-21 (Manel et al., 2008). 
Dendritic cells (DCs) can express Toll-like receptors (TLRs), 
which can recognize cell wall components such as 
lipopolysaccharide, peptidoglycan, and lipoprotein. Therefore, 
TLRs are regarded as a bridge for DC activation caused by 
microbial components (Kawai and Akira, 2011). DCs also 
produce IL-27  in response to TLR activation (Molle et  al., 
2010). IL-27, which is encoded by IL-27, was originally thought 
to be  a pro-inflammatory cytokine due to its structural 
homology with IL-12 and its ability to trigger IFN-γ production. 
However, Kastelein et al. (2007) found that IL-27 inhibits Th1, 
Th2, and Th17 cell responses and limits central nervous system 
inflammation. IL-27 also promotes the differentiation of type 1 
regulatory T cells (Tr1 cells), which produce IL-10 to inhibit 
inflammation (Stumhofer et al., 2007). Our results showed that 
the expression levels of IL-21 and IFN-γ increased, whereas the 
expression level of IL-27 decreased in aged CRs. Furthermore, 
the Toll-like receptor TLR1: TLR2 and Toll-like receptor 3 
signaling pathways, which recognize viruses and bacteria, were 
down-regulated in the aged CRs. In addition, the vitamin D 
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biosynthetic process pathway, which directly and indirectly 
inhibits antigen processing and presentation and Th1 cell 
activation (Bartels et al., 2010), was up-regulated in aged CRs. 
These changes suggest that aged CRs may be more prone to 
tryptophan metabolism disorder and inflammation than 
young CRs.

Using multi-omics analysis, we observed many potential links 
among the detected differential microbiota, metabolites, and 
genes. We found that changes in metabolite composition in aged 
CRs were primarily caused by decreased abundance of beneficial 
genera (Lactobacillus, Lactiplantibacillus, and Limosilactobacillus) 
and increased abundance of pathogenic genera. Changes in 
metabolite composition may also have contributed to the increase 
in oral pathogenic genera (Filifactor and Veillonella). Among the 
DEGs associated with DEMs, IFNG and TPH1 were both related 
to tryptophan metabolism. Correlation analysis showed that IFNG 
was strongly associated with tryptophan metabolites, consistent 
with studies showing that IFN-γ can accelerate tryptophan 
metabolism (Munn et al., 2005). At the same time, Lactobacillus 
in the gut was strongly associated with tryptophan metabolites, 
consistent with studies showing that Lactobacillus can metabolize 
tryptophan to produce indole-3-carboxaldehyde (Natividad et al., 

2018). Zhang et al. (2022a,b) also found that Lactobacillus in the 
honeybee gut modulates host learning and memory behaviors via 
tryptophan metabolism regulation.

Based on our results, tryptophan metabolism appears to 
be critical for the physiological health of aged CRs (Figure 5). 
Most tryptophan obtained from food is absorbed in the small 
intestine and plays an important role in immune regulation 
and neuronal activity (Martin et al., 2017; Keating and Spencer, 
2019). We found the key gene TPH1 involved in 5-HT synthesis 
and IFN-γ involved in tryptophan convert into kynurenine 
were up-regulated, suggesting the increase in 5-HT and the 
decrease in circulating tryptophan in old CRs. In our study, the 
down-regulation of SLC7A8, which is involved in tryptophan 
transport, further confirmed the decrease in circulating 
tryptophan (Tina et al., 2019). Studies in healthy older people 
have shown that low circulating tryptophan is associated with 
several diseases, including neurodegenerative diseases, 
olfactory dysfunction, and immunological disorders (Denz 
et  al., 1993; Iwagaki et  al., 1995; Widner et  al., 1999, 2000; 
Adachi et al., 2017).

We found that the abundance of Lactobacillus, which is 
involved in tryptophan metabolism, decreased in aged CRs, 

FIGURE 5

Dysregulation of tryptophan metabolism in aged CRs. Tryptophan obtained from food is absorbed in the small intestine. Up-regulation of key gene 
TPH1, which is involved in 5-HT synthesis, and up-regulation of IFN-γ, which is involved in the conversion of tryptophan into kynurenine, suggest 
a decrease in circulating tryptophan in aged CRs. On the other hand, in the colon, tryptophan is metabolized by gut microbiota to produce indole-
3-carboxaldehyde, 3-indolepropionic acid, and indoleacrylic acid. Our results showed that Lactobacillus abundance decreased in old CRs, leading 
to a decrease in AhR ligands in the plasma. Down-regulation of the Toll-like receptor TLR1:TLR2 and Toll-like receptor 3 signaling pathways and 
up-regulation of vitamin D biosynthetic process pathway suggested that activity of DCs decreased, which may lead to a decrease in IL-27 
expression and an increase in IL-21 expression. The decrease in microbial tryptophan metabolites may affect intestinal mucosal barrier integrity, 
allowing gut pathogens (such as Salmonella and Sarcina) to invade the host. Thus, these changes can induce the occurrence of inflammation and 
various gut diseases. Increased FFAs can lead to inflammation and accumulation of CARs, which may induce various metabolic diseases in aged 
CRs. CRs: Chinese rhesus macaques; AhR: Aryl hydrocarbon receptor; DCs: Dendritic cells; FFA: Free fatty acids; CAR: Acyl carnitine.
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leading to a decrease in AhR ligands (indoleacrylic acid, 
3-indolepropionic acid, and indole-3-carboxaldehyde) in the 
plasma and down-regulation of the Toll-like receptor TLR1: 
TLR2 and Toll-like receptor 3 signaling pathways. Furthermore, 
IL-21 levels in the blood of aged CRs showed an increase. Based 
on these changes, we  hypothesized that the decrease in 
Lactobacillus may eventually lead to an increase in IL-21 by 
affecting AhR and DCs. In addition, up-regulation of the 
vitamin D biosynthetic process pathway may affect antigen 
processing and presentation. As a result, host defenses against 
bacteria and viruses are reduced, which may result in gut and 
oral pathogen invasion (such as Salmonella, Sarcina, Filifactor, 
Treponema, Selenomonas, and Veillonella), leading to various 
gut and oral diseases.

Studies have shown that a lack of tryptophan can affect 
intestinal mucosal homeostasis, resulting in impaired intestinal 
immunity and altered gut microbial communities (Gao et al., 
2018). Decreased tryptophan suggests that the intestinal 
mucosal barrier integrity was likely impaired in the aged CRs. 
Symptoms of intestinal barrier dysfunction and low-grade 
inflammation are common in metabolic diseases (Everard and 
Cani, 2013). Indeed, the increase in FFA and CAR accumulation 
indicated abnormal fatty acid metabolism, and the decrease in 
heparin, 2-HPPA CPD, and DHA-EE indicated cardiovascular 
disease in the aged CRs.

In conclusion, we applied transcriptomics, metagenomics, and 
metabolomics to study host–microbe interactions in aged CRs. 
Based on this multi-omics approach, we identified many potential 
links among differential microbiota, metabolites, and genes, 
indicating that aged CRs will likely experience multiple metabolic 
problems, immune disorders, and gut and oral diseases. Notably, 
we  found that tryptophan metabolism is critical for the 
physiological health of aged CRs. Therefore, precise health 
management and care of aged CRs should be  considered. 
Although the sample size was not large, our research showed that 
the multi-omics approach is robust and can reveal host–microbe 
interactions in non-human primates in the rapidly evolving fields 
of species conservation and molecular ecology. Thus, this 
approach could be applied to address species conservation and 
molecular ecology in other species.
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