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Multi-omics and machine learning reveal
context-specific gene regulatory activities of
PML::RARA in acute promyelocytic leukemia

William Villiers1, Audrey Kelly2, Xiaohan He1, James Kaufman-Cook1,
Abdurrahman Elbasir3, Halima Bensmail4, Paul Lavender 2, Richard Dillon 1,5,
Borbála Mifsud 6,7 & Cameron S. Osborne 1

The PML::RARA fusion protein is the hallmark driver of Acute Promyelocytic
Leukemia (APL) anddisrupts retinoic acid signaling, leading towide-scale gene
expression changes and uncontrolled proliferation of myeloid precursor cells.
While known to be recruited to binding sites across the genome, its impact on
gene regulation and expression is under-explored. Using integrated multi-
omics datasets, we characterize the influence of PML::RARA binding on gene
expression and regulation in an inducible PML::RARA cell line model and APL
patient ex vivo samples. We find that genes whose regulatory elements recruit
PML::RARA are not uniformly transcriptionally repressed, as commonly sug-
gested, but also may be upregulated or remain unchanged. We develop a
computational machine learning implementation called Regulatory Element
Behavior Extraction Learning to deconvolute the complex, local transcription
factor binding site environment at PML::RARA bound positions to reveal dis-
tinct signatures that modulate how PML::RARA directs the transcriptional
response.

Rearrangement at t(15;17)(q24;q21) between the Promyelocytic
Leukemia (PML) and Retinoic Acid Receptor Alpha (RARA) genes
results in the generation of a PML::RARA fusion gene, whose
expression is the primary cause of acute promyelocytic leukemia
(APL)1,2. Under normal physiologic conditions, wild-type RARA
protein acts as a transcription factor/nuclear receptor controlling
myeloid cell differentiation through the granulocytic lineage3. The
binding of retinoic acid to RARA results in dimerization and sub-
sequent activation of genome-wide retinoic acid-responsive ele-
ments (RARE), directing expression programs required for cell
differentiation4. The PML::RARA fusion protein directly disrupts
RARA signaling, leading to a differentiation block and proliferative
drive5.

Most focus on PML::RARA function centers on its dominant-
negative role over canonical RARA action. PML::RARA retains the DNA-
binding properties of the RARA transcription factor and the dimer-
ization/oligomerization domain of the PML moiety, increasing DNA-
binding capacity and co-factor recruitment potential6. PML::RARA can
bind directly to gene promoters, where it can repress transcription
through recruitment of co-repressors such as SMRT (silencing med-
iator of retinoid and thyroid hormone receptor), N-CoR (nuclear
receptor corepressor), and RXR (retinoid X receptor), in addition
to histone deacetylases/methyltransferases to silence gene
transcription6–9. While RARE sites are suggested to be the prominent
targets of PML::RARA, the oligomerization potential of PML::RARA
extends the DNA-binding repertoire and allows complex DNA-binding
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configurations10. The PML: PML oligomerization ability also provides
the potential for interactions with other transcription factors such as
PU.1, SP1, and GATA2, adding additional dimensions of DNA-binding
through recruitment of other DNA-binding proteins11,12. A full catalog
of PML::RARA binding partners and their transcriptional effects is
incomplete. Intriguingly and in contrast to its known repressive role,
PML::RARA has been reported to directly activate MYB gene expres-
sion, suggesting divergent consequences of PML::RARA recruitment13.
Indeed, more recently this non-canonical activity has been suggested
to be more widespread14. Yet it is unclear how and why the con-
sequence of PML::RARA recruitment is modulated.

Multiple groups have employed the inducible APLmodel cell line,
U937-PR9, to better understand the early transformative events that
occur following PML::RARA expression. In one study, PML::RARA
binding positions were mapped by ChIP-seq, which highlighted that
over 80% of PML::RARA binding positions were positioned outside the
proximal promoter15. This may imply that PML::RARA is also recruited
to distal regulatory elements, such as enhancers. The gene targets and
contributions to APL pathogenesis of these non-promoter PML::RARA
binding elements remain underexplored. Others also examined
PML::RARA recruitment in the same experimental model, using a ChIP-
chip strategy12. Significantly, there was very little agreement between
the reproducible PML::RARA binding positions within these two stu-
dies, which suggests that further PML::RARA binding positions remain
to be mapped.

In this study, we interrogate the impact of PML::RARA-mediated
transformation bymeasuring the transcriptional response byRNA-seq,
the genome-wide distribution of PML::RARA binding by Cut&Run,
chromatin occupancy by ATAC-seq, and long-range interactions by
promoter capture Hi-C. Through integration of these datasets and the
distillation of machine-learned patterns using Regulatory Element
Behavior Extraction Learning (REBEL), we identify complex pathways
and transcription factor binding environments that support differing
transcriptional outcomes in response to PML::RARA recruitment and
are recapitulated for at least some crucial myeloid proliferation and
differentiation genes in APL patient samples.

Results
PML::RARA induction instigates expression changes for
thousands of genes
In this study, we investigated early transcription and gene regulatory
events that occur in response to PML::RARA expression, through the
integration of multi-omics measurements in U937-PR9 cells, a mono-
cytic cell line that harbors a zinc-inducible PML::RARA fusion
transgene16 (Fig. 1a). The cell line was induced with zinc sulfate and
incubated for five hours before being assayed for transcription, fusion
protein binding, long-range promoter interaction, and chromatin
occupancy. These conditions led to a PML::RARA protein increase that
was approximately five-fold greater than levels detected in NB4 cells, a
line with a constitutive PML::RARA rearrangement, and 1.4 to 2.5-fold
higher than levels detected in three primary APL patients (Supple-
mentary Fig. 1a).

Wefirst examined thegene expression response to zinc induction.
In agreement with PML::RARA protein expression quantitation, there
was a strong induction of PML::RARA fusion transcripts (Supplemen-
tary Fig. 1b). Comparing uninduced and zinc-induced, highly repro-
ducible replicate libraries, we identified 2314 differentially expressed
genes (DEG), distributed roughly equally between up and down-
regulated genes (Fig. 1b and Supplementary Fig. 1c–f). These expres-
sion patterns were similar yet distinct from published datasets from
the parental U937 cell line that lacks the PML::RARA transgene, and the
NB4 cell line that contains a constitutively active t(15;17) PML::RARA
rearrangement17,18 (Supplementary Fig. 1c). Amongst the most highly
differentially expressed genes in our datasetswere those that had roles
regulating zinc homeostasis, likely in response to the induction

treatment. Downregulated genes showed strong gene ontology
enrichment for immune cell activation genes driving cell differentia-
tion (Fig. 1c). These genes included SPI1, a master regulator of myeloid
differentiation, and key myeloid differentiation driver genes CEBPA,
CEBPB, CEBPE, SP1, and ID2. Upregulated genes were enriched for
cancer pathways, cytokine production, and cell activation, and inclu-
ded the key CEBP antagonist, BACH2, as well as cell cycle progression
genes, CCNA1, CCNE2, CDKN2B, and CDKN1A. Examination of all dif-
ferentially expressed genes demonstrated a robust enrichment for
proliferative signaling pathways such as NFKB, MAPK, and FOXO sig-
naling, and pathways prominent in acute myeloid leukemia and other
cancers (Fig. 1d). Together, these gene expression changes are con-
sistent with patterns that are detected in APL.

Transcriptional responses vary for genes whose promoters are
bound by PML::RARA
We next examined patterns of PML::RARA fusion protein binding in
response to zinc induction. Similar experiments have been carried out
previously by ChIP-chip and ChIP-seq in two separate studies that
identified PML::RARA binding sites by overlapping PML and RARA
binding signals12,15. Notably, there was little overlap of PML::RARA
binding sites between these studies (Supplementary Fig. 2a). We
applied the Cut&Run method to identify PML::RARA binding sites due
to its high signal-to-noise ratio and ability to accommodate antibodies
not necessarily suited for ChIP19. In addition to an anti-RARA antibody,
we also used one specific for the PML::RARA fusion protein. Both
antibodies detected a strong, reproducible induction of binding upon
zinc activation (Fig. 2a and Supplementary Fig. 2b–f), however, only
the anti-RARA antibody detected reproducible peaks in the uninduced
cells. We detected 1576 and 8712 peaks in the uninduced and induced
samples, respectively, with a 45% overlap (Supplementary Fig. 2g). In
contrast, by using the anti-PML::RARA antibody, we identified 99 and
15,412 peaks in the uninduced and induced samples, respectively
(Supplementary Fig. 2h). The peaks detected in the uninduced cells
were considerably weaker than those in the induced cells and may
represent a thresholding artifact (Supplementary Fig. 2i). PML::RARA
peaks in the induced sample overlappedwith 86%of the inducedRARA
peaks, but markedly less so (31%) in the uninduced samples (Supple-
mentary Fig. 2j, k). Using the anti-PML::RARA antibody, we detected
91% of the peaks detected by Martens et al., 64% of peaks detected by
Wanget al. and anadditional 10,902peaks (SupplementaryFig. 2a).We
also profiled PML::RARAbinding in NB4 cells by Cut&Tag20, identifying
20,072 PML::RARA binding sites (Supplementary Fig. 2l). Sixty-seven
percent of the PML::RARAbinding sites identified in inducedU937-PR9
cells were detected in NB4 cells. The strong overlap indicates that
higher PML::RARA expression in U937-PR9 cells does not lead to off-
target recruitment. Collectively, these results demonstrate high spe-
cificity for the fusion protein by the anti-PML::RARA antibody, confirm
the vastmajority of previously identified PML::RARA binding sites, and
identify thousands of additional sites.

We assessed the positions of all PML::RARA binding sites relative
to genes. Nearly half of the sites (47%, 6727genes)were located at gene
promoters, with the remaining sites split between intronic (27%) and
intergenic regions (24%) (Fig. 2b). Binding sites associated with pro-
moters were typically stronger and wider than non-promoter peaks
(Supplementary Fig. 2m, n).

Given its widely reported role as a transcriptional repressor, we
anticipated that PML::RARA binding at promoters would be frequently
associated with a drop in expression levels in the induced cells. How-
ever, upon the integration of our RNA-seq and Cut&Run datasets, we
were struck by unexpected observations; firstly, 80% of genes whose
promoters bound PML::RARA did not significantly change their
expression, which suggests that PML::RARA binding has no con-
sequence on the transcriptional output ofmost genes (Fig. 2c, d). This
observation was not due to the stringent thresholding of DEGs, since
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relaxation of the stringency only minimally increased the number of
PML::RARA bound DEGs (Supplementary Fig. 2o). We contemplated
that the 5-h zinc induction may not provide sufficient time for the
steady-state mRNA levels of some genes to change. We drew com-
parisons of the NB4 PML::RARA binding profile with the U937-PR9
cells, as NB4 cells contain constitutively active PML::RARA and had

consistent binding(Supplementary Fig. 2l)15. Using publicly available
NB4 RNA-seq18, we compared expression levels between the two cell
lines, focusing only on the genes thatwere firstly bound by PML::RARA
in induced U937-PR9 cells yet did not significantly change expression
upon induction, and secondly, are also bound by PML::RARA in the
NB4 cell line (5311 gene promoters; Supplementary Fig. 2l). This
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Fig. 1 | PML::RARA induction instigates expression changes for thousands of
genes. a Schematic depicting the cell line model and datasets collected in this
study. U937-PR9 cells (gold) have a zinc inducible promoter at a PML::RARA fusion
gene, addition of ZnSO4 to these cells for five hours leads to high expression of
PML::RARA (light blue cell). For each induced and uninduced experiment, RNA-seq,
Cut&Run, Capture Hi-C, and ATAC-seq libraries were made. b Volcano plot dis-
playing the 2314 significantly DEGs, based on an FDR adjusted p-value cut off < =
0.05, showing downregulated (gold) and upregulated (blue) genes. Genes impli-
cated in zinc homeostasis are shown (green). Numbers of upregulated and

downregulated genes are shown in the inset pie chart. Significant DEGs were
determined using Limma’s linear modeling. c Bar plot showing the gene ontology
enrichment of the up (blue) and down (gold) regulated genes. Higher −log10
enrichment scores indicate greater ontology enrichments. d Pathway enrichment
of all DEGs. The size of the dot represents the number of genes within the given
pathway, and the shade of red represents the significance of the DEG enrichment
for the givenpathway (–log10enrichmentp valuedeterminedbypathfindR internal
algorithm and adjusted using Bonferroni correction). DEG=Differentially Expres-
sed Gene. Source data are provided as a Source data file.

Fig. 2 | Varying transcriptional responses of genes whose promoters bind
PML::RARA. a Genomic tracks of PML::RARA binding profiles at two key myeloid
genes: SPI1 (top) and CEBPE (bottom). Normalized PML::RARA read density in
uninduced (orange) and induced (blue) U937-PR9 cells are shown. Blue indicates
the replicate #1 PML::RARA induced profile and gold indicates the replicate #1
PML::RARA uninduced (background) profile. Y-axis represents the read count
normalized by library size. The genomic coordinates are indicated along the x-axis.
Gene bodies and exons are indicated by connecting blue blocks. b Pie chart
showing the genomic distributions of all 15,412 PML::RARA peaks within pro-
moters = blue, intergenic regions = light green, intronic regions = gray, exons =
green and 3’ untranslated regions (3’ UTR) = orange. c Venn diagram overlapping
the 6242 PML::RARA-promoter bound genes (blue) with upregulated (green) and

downregulated (red) genes. The significance of each overlap is represented as the
p-value using a χ2 test.dRankedplot showing the expression level distributionof all
6242 PML::RARA-bound genes in the PML::RARA-induced U937-PR9 cells, as com-
pared to uninduced expression. Genes are ordered according to their expression
level in uninduced cells. The expression of each gene in the uninduced cells is
represented by the central orange line. The PML::RARA-induced expression of each
gene is indicated by green, gray, and red dots indicating upregulation, no expres-
sional change, and downregulation, respectively. Expressional change is based on
genes having an adjusted p-value < =0.05. The side bar plot shows the proportion
of PML::RARA-bound genes that are upregulated, have no expressional change or
downregulated. Source data are provided as a Source data file.
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analysis showed no significant difference in expression levels for 85%
of genes, suggesting that short exposure to the fusion protein inU937-
PR9 cells is unlikely to account for a lack of response in the expression
of these genes (Supplementary Fig. 2p, q). We also compared the level
of gene expression in our RNA-seq datasets with those generated by
others, whohave recently carried out a timecourse of zinc induction in
U937-PR9 cells21. Again, we noted that 59% of PML::RARA-bound genes
that showed no change in our datasets were expressed at similar levels
even after 24-h (Supplementary Fig. 2r). These results suggest that
PML::RARA binding at promoters of many genes does not lead to a
significant change in gene expression.

Secondly, we noted that 42% of the 1235 differentially expressed
PML::RARA-bound genes were upregulated (Fig. 2c, d), consistent with
recent findings14. Examination of promoter H3K9/K14 acetylation, a
marker of gene activity, showed that levels are increased for upregu-
lated genes, in contrast to the PML::RARA-bound genes whose
expression decreased (Supplementary Fig. 2s). PML::RARA peaks were
both stronger and wider at the promoters of up and downregulated
genes, compared to those at stably expressed genes. (Supplementary
Fig. 2t, u). We noted that downregulated genes had the strongest
PML::RARA binding, however comparing the expressional change of
down- and upregulated PML::RARA bound genes highlighted that the
strength of binding did not consistently reflect a transcriptional
change (Supplementary Fig. 2v). Together these data demonstrate an
expanded and diverse functional consequence of PML::RARA binding
at promoters.

Long-range promoter interactions are gained and lost upon
PML::RARA induction
Transcription is regulated through promoter interactions with distal
elements such as enhancers and silencers and we contemplated that
such engagements couldmodulate the role of PML::RARA recruitment
at promoters. We applied promoter capture Hi-C to uninduced and
zinc-induced U937-PR9 cells to map how genome-wide long-range
regulatory interactions change with PML::RARA induction22. There
were significant overlaps of interactions across all replicates, regard-
less of induction status, indicating high reproducibility of long-range
interactions (Supplementary Fig. 3a, b). We pooled each replicate
together and called significant interactions to create a consensus
interaction set for each condition (Fig. 3a). We identified 185,494 and
211,582 statistically significant interactions in the uninduced and zinc-
induced experiments, respectively, with on average 13.7 and 14.6
interactions detected per gene promoter (Fig. 3b). Generally, wenoted
a correlation between expression level and the number of interac-
tions (Fig. 3c).

To focus on the changes to long-range contacts that occur with
the induction of PML::RARA, we compared each uninduced and
induced capture Hi-C library pairs to identify differential interactions.
From these analyses, we identified 60,442 differential interactions that
were present in at least two replicate experiments, which were split
evenly between those that were gained in the induced state (30,039)
and those that were lost (30,403) and were distributed across 10,910
genes (Supplementary Fig. 3c, d). Each promoter had a median of two
differential interactions (Supplementary Fig. 3e). The multiple differ-
ential interactions of a gene were likely to be uniformly gained or lost;
only 11% of genes contained both gained and lost interactions (Fig. 3d).
This uniform pattern suggests that few genes appear to undergo
‘rewiring’ of contacts, replacing some contacts with others.

Integration of the differential interaction data with gene expres-
sion analysis revealed that 60% of differentially expressed genes
engaged in differential interactions (Fig. 3e, f). By partitioning the data
across the gained/lost and upregulated/downregulated axes, we
observed that genes with gained interactions were twicemore likely to
be upregulated than downregulated (Fig. 3e, g). Similarly, loss of
interactions was twice more likely to be associated with a loss of gene

expression (Fig. 3f, g). In contrast, genes with no change in expression
did not show any bias in gained versus lost differential interactions
(Supplementary Fig. 3f). Moreover, there was a greater enrichment for
H3K9/K14ac, a marker of active enhancers23, at the gained interacting
partners of upregulated genes and lost interacting partners of down-
regulated genes, compared to elements involved in stable interactions
(Fig. 3h). These results suggest that promoter engagement/disen-
gagement with enhancers, rather than silencers, might be a stronger
driver of expression patterns.

Next, we integrated the promoter interaction dataset with
PML::RARA binding and noted that 74% of PML::RARA-occupied sites
were positioned in fragments that engage in interactions in uninduced
and/or induced cells (Supplementary Fig. 3g). Of these, 60% were
differentially interacting, split evenly between interaction gains and
losses (Supplementary Fig. 3h, i). It suggests that induction of
PML::RARA leads to significant alterations in regulatory interactions
with divergent consequences (Fig. 3i, j).

Transcription factor motif analysis shows no distinctive
enrichment pattern
Our results showed that the transcriptional consequence of
PML::RARA binding at promoters was variable, yet this did not corre-
late with defined patterns of long-range interaction. We proposed that
the local transcription factor binding site environment may be
instrumental in directing the transcriptional outcome and aimed to
examine the binding site environment at promoters of PML::RARA-
boundgenes and their long-range interacting partners. Firstly, to focus
the analysis on sequences within fragments with regulatory potential,
we generated ATAC-seq libraries to map regions accessible to tran-
scription factors across the genome in uninduced and induced cells
and identified 90,332 regions across our datasets (Supplementary
Fig. 4a), distributed predominantly at promoters (18%), introns (35%)
and intergenic regions (43%) (Supplementary Fig. 4b). We next carried
out a differential chromatin accessibility analysis, examining the dif-
ference of read deposition between paired uninduced and zinc-
induced samples at ATAC-seq peaks and identified 6376 significant
differences (padj < = 0.1), with the vast majority (>99%) decreasing in
chromatin accessibility upon zinc induction (Fig. 4a), although peaks
were rarely completely extinguished (Fig. 4b). ATAC-seq peaks in
promoter regions were particularly prone to change upon induction
(Supplementary Fig. 4b, c). In all, 3596 gene promoters were asso-
ciated with one or more closing ATAC-seq peaks. Over 97% of
PML::RARA peaks were localized centrally at pre-existing ATAC-seq
peaks, suggesting that the fusion protein is recruited to sites where
other factors are already bound (Fig. 4c and Supplementary Fig. 4d).
ATAC-seq peaks that underwent a peak size reduction upon
PML::RARA induction were more likely to be associated with stronger
PML::RARA binding than stable ATAC-seq peaks (Supplementary
Fig. 4e). We considered that differences in ATAC-seq peak stability at
PML::RARA binding promoters may be reflected in different gene
expression responses. While not entirely correlated, genes with
PML::RARA bound promoters and differential ATAC-seq peaks were
more likely to be downregulated than upregulated (Supplementary
Fig. 4f). Differentially expressed genes with PML::RARA-bound pro-
moters and stable ATAC-seq peaks did not display this skew (Supple-
mentary Fig. 4g). Examination of the H3K9/K14ac signal at these sites
revealed that genes with increased expression also gain promoter
acetylation, in contrast to genes with decreased expression, which
typically undergo no such change (Supplementary Fig. 4h). These
results corroborate that promoter recruitment of PML::RARA does not
uniformly lead to a loss of acetylation and expression, as is widely
reported. It implies that other, contextual factors have an impact on
the transcription output.

Next, we segregated the promoters and interacting partner ele-
ments associated with PML::RARA binding into six categories, based
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upon their transcriptional response (up- and downregulated and no
change) and long-range interaction changes (gained and lost), and
carried out differential motif searches, focusing on 400bp surround-
ing the ATAC-seq peak apex (Fig. 5a). In each category, we found a
subtle enrichment for certain transcription factors compared to ele-
mentswithin other groups, however, it accounted for only a fraction of

the elements (Supplementary Fig. 5a).Wedid not identify any single TF
thatwas consistently associated exclusivelywith a single transcription/
long-range interaction category.

We also compared the collective transcription factor binding site
(TFBS) composition of each element across all categories to determine
whether there are consistent similarities that segregate the different
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classes of elements. Visualizationby tSNE showed therewas effectively
no distinction between the composition of motifs across the different
categories (Fig. 5b). This suggested that either the local motif envir-
onment at PML::RARA-associated elements has little contribution in
directing its role, or that the patterns are overly complex to observe
through a general motif comparison.

Machine learning algorithms identify distinct TF motif compo-
sitions that define responses to PML::RARA binding
Machine learning algorithms arewell suited for the integration of large
and complex NGS datasets24. In particular, the eXtreme Gradient
Boosting (XGBoost) model has shown promise at deconvoluting
complex patterns with high interpretability25. We aimed to train

Fig. 3 | Gains and losses of long-range interactions uponPML::RARA induction.
a Overlap of significant (CHiCAGO score>5) interactions identified in PML::RARA-
induced (cyan) and uninduced (orange) U937-PR9 cells. b The number of sig-
nificant interactions per baited promoter across uninduced (orange) and
PML::RARA induced (cyan) interactions (from three biological replicates across
19,023 genes). Y-axis is log2 scale. cThe number of significant interactions per gene
(from three biological replicates across 19,023 genes), separated into expression
quartiles. Q1 = genes with log2CPM< −5.12, Q2 = genes with log2CPM expression
ranging from −5.12 to 1.7, Q3 = genes with log2CPM expression ranging from 1.7 to
5.3, Q4= genes with log2CPM expression >5.3. The first four boxes refer to inter-
actions and expression levels in the uninduced cells (orange) and the second four
boxes refer to those in PML::RARA-inducedcells (blue).dOverlapof genes that gain
interactions (green) and genes that lose interactions (pink). eOverlap of genes that
gain interactions (teal) and genes whose expression is significantly increased
(green) or decreased (red). P refers to the significance of the overlap as determined
by χ2 test. NS = not significant. f Overlap of genes that lose interactions (pink) and
genes whose expression is significantly increased (green) or decreased (red). P
refers to the significance of the overlap as determined by χ2 test. NS = not sig-
nificant.g Log2 foldexpression change of induced vs uninduced cells for genes that
exclusively gain interactions (cyan), both gain and lose interactions (gray), and

exclusively lose interactions (orange). p represents the two-sided t-test p-value
comparing themean expression levels of the different categories. N = two RNA-seq
biological replicates. h Percentage of interacting non-promoter ends that overlap
with H3K9/K14ac ChIP-seq peaks. i PML::RARA binding sites and gained interaction
profiles at the PTGER4 gene, which is upregulated upon PML::RARA induction. The
top row shows the genes and their genomic coordinates. Second panel shows the
PML::RARA binding profile. Third panel shows capture Hi-C interaction read count
difference of induced vs uninduced cells. Each dot represents a HindIII fragment.
Enlarged dots indicate that the HindIII fragment has a significantly greater number
of reads in the PML::RARA induced sample and is considered a gained interaction.
The fourth panel shows an arc plot, connecting the PTGER4 gene with all HindIII
fragments with significantly differential interactions. j Similar landscape plot as
(i) but representing the SKI gene locus which loses interactions and is down-
regulated, indicated by orange. All boxplots were plotted with identical para-
meters: minima and maxima are indicated either as the lowest and highest outliers
or as the lower and upper whiskers if the values are within −1.5 and 1.5x the inter-
quartile range from the lower and upper quartiles, respectively. The box bounds
correspond to the first and third quartiles. The center indicates the median—all
outliers are plotted. Source data are provided as a Source data file.

Fig. 4 | PML::RARA expression induces widespread reduction of open chro-
matin regions. a Volcano plot showing the differential ATAC-seq peaks comparing
PML::RARA-induced cells to uninduced cells. Each dot represents an ATAC-seq
peak. Peaks significantly reduced in size are colored orange and significantly
increasing in size are blue. Significance threshold is adjusted p-value < = 0.1.
b Landscape plot showing an example of a differential ‘closing’ ATAC-seq peak at

the BHLHE40 promoter. ATAC read coverage profile in uninduced (orange) and
induced (blue) replicate #1 samples are shown.Reads are normalizedby library size.
c Venn diagram showing overlap of the 15,412 PML::RARA binding sites with the
90,322 ATAC-seq peaks and the subset of 6376 closing ATAC-seq peaks. Source
data are provided as a Source data file.
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XGBoostmodels to predict the regulatory category a genomic element
is involved in based on its TFBS composition (Fig. 5a). We trained each
model on 80% of the dataset, then set it to predict the remaining 20%
of data. Initially, models were trained using pairwise comparisons
across all categories (one vs one) and attained predictive scores
reaching an Area Under the Curve (AUC) score of 0.79, indicating that

the elemental motif landscape can be highly predictive (Supplemen-
tary Fig. 5b). We subsequently generated models that compared each
category to an equal-sized mixture of all other categories (one vs all),
to determine if a general distinctive pattern could be learnt. Predictive
scores were lower than for the pairwise comparisons, ranging from
AUC scores of 0.55 to 0.70. Our results suggest that patterns can be

Article https://doi.org/10.1038/s41467-023-36262-0

Nature Communications |          (2023) 14:724 8



learned and highlight that TFBS signatures can uniquely define a
category (Fig. 5c).

To identify the TFBSs that facilitated the model to correctly pre-
dict an outcome, we applied the SHapely Additive Explanations
(SHAPELY) algorithm to each one-vs-all model26. SHAPELY calculates
the weighted contributions of predictive features for each element,
giving a score for each TFBS.We re-examined the t-SNE representation
in Fig. 5b, this time supplying the SHAPELY weighting scores, rather
than the absolute number of each TFBS. In contrast to the mixed
pattern that was observed without machine learning, we found a
strong separationof each transcription/interaction category, with little
overlap (Fig. 5d).

We next classified 57 spatially distinct clusters, ranging from three
to seventeen clusters per transcription/interaction category (Fig. 5e).
Interrogation of the top defining drivers in each cluster revealed that
either the presence or absence of a TFBS could be predictive (Sup-
plementary Fig. 5c). On average, the highest contributing TFBS
accounted for only 10% of the prediction, suggesting that the combi-
nation of features required are highly complex (Supplementary
Fig. 5d). For example, the top five features driving the lost interaction/
downregulated cluster #3 predictions were motifs ZFX, ZAC1, ZNF71,
ZNF41, and SREBP1 (Supplementary Fig. 5e). The presence of a ZFX
binding site was the most contributing to the prediction, yet still only
accounted for 6% of the prediction. Mapping of ZFX binding sites
demonstrated a widely distributed pattern across all clusters (Sup-
plementary Fig. 5f). The SHAPELY interpreted distribution of ZFX
creates a focus on cluster #3, although still excludes 70% of the ele-
ments within the cluster as having a ZFX binding site (Supplementary
Fig. 5g). It demonstrates that the simple presenceor absenceof amotif
is insufficient to distinguish a cluster from others; the machine learnt
pattern likely applies additional weight that considers factors such as
combinatorial TFBS and numbers of motifs.

We next considered the relationships between the transcription
factors that potentially bind the collection of motifs within a cluster.
Focusing on the TFs that bind the top-15 present, SHAPELY weighted
motifs within each cluster, we saw that each cluster contained binding
sites for TFs that are known to interact, in some instances forming
interconnected protein interaction networks (Fig. 5f). Such transcrip-
tion factors within these elementsmay function cooperatively to exert
transcriptional control.

Lastly, we examined commonalities that connect genes within a
single cluster. Analyses revealed individual clusters displayed enrich-
ments for specific signaling pathways. For instance, four clusters
within the upregulated/ gained interaction category were enriched for
genes that are the targets for IL-2 signaling (Fig. 5g). Within the
downregulated/lost interaction category, separate clusters were

enriched for genes involved in NOTCH, MAPK, and MYC signaling
pathways (Fig. 5h). These observations are indicative of shared reg-
ulatory programmes of genes that may require coordinated
expression.

Characterization of expression and long-range interaction
patterns in APL patients
Finally, we consideredwhether the inducible U937-PR9 cell line system
can be a suitable model for primary APL by comparing its patterns of
long-range interaction and gene expression to data collected from two
patients harboring PML::RARA rearrangements. The global gene
expression profiles between the two patients exhibited a high degree
of correlation (r =0.91), and correlated highly with the PML::RARA
induced U937-PR9 cells (r = 0.85/0.82, Patient #1, Patient #2) (Fig. 6a
and Supplementary Fig. 6a). Restricted to genes whose promoters
bound PML::RARA, there was a drop in correlation between patients
(r =0.80) and between the patients and the cell line (r = 0.74,0.67,
Patient #1, Patient #2), indicating that expression patterns of
PML::RARA bound genes are more prone to divergence (Supplemen-
tary Fig. 6a, b).

We next compared the patterns of long-range interactions in the
patients and induced cell line. Therewas a significant overlap across all
interaction profiles, with a 61 to 75% overlap between the two patients
and a 52 to 49%overlap for patient #1 and patient #2 compared against
the cell line, respectively (Supplementary Fig. 6c–e).We observed that
2956 of the gained interactions identified in the U937-PR9 cell line
model were established interactions in both patients, which was sig-
nificantly greater than expected by chance (Fig. 6b). The overlapping
gained interactions involved 2421 genes, most of which showed a very
strong expression correlation between the patients and cell lines
(r =0.87) (Fig. 6c, d). Highly correlative genes includedmany that have
roles in cell proliferation, including PTGER4,VIM,CCNA1,AHR, TGFBR2,
MYB, MYBL1, DUSP6, CHD2, PAG1, FYN, and NFAT5 (Fig. 6e–j and Sup-
plementary Fig. 6f), all of which were upregulated after PML::RARA
binding. These comparisons highlight that genes upregulated by
PML::RARA-dependent chromatin remodeling remain engaged and
highly expressed in patients.

Generally, we observed that genes with the highest degree of
expression similarity between the induced cell line and the patient
samples were significantly more likely to exhibit similar long-range
interactions than those with the lowest concordance (Supplemen-
tary Fig. 6g–l). There were however examples where the expression
levels and long-range interaction profile similarities were recapitu-
lated in only one of the two patient samples (Supplementary
Fig. 6k). We also identified genes that had discordant gene expres-
sion levels across patients and cell line yet exhibited highly similar

Fig. 5 | Machine learning algorithms identify distinct TF motif compositions
that define responses to PML::RARA binding. a Classification of PML::RARA-
associated fragments into six gene interaction/expression categories. Transcrip-
tion factor motif analysis for both interacting fragments is carried out across
400 bp in the center of the ATAC-seq peaks. The motif composition for each
fragment is used to develop machine learning models. b tSNE plot visualizing the
clustering of ATAC-seq peaks based on motif composition similarities without
machine learning interpretation. Each dot represents an ATAC-seq peak and is
colored according to the interaction/expression category to which the peak-
containing fragment belongs (pink, lost/downregulated; brown, lost/no change;
purple, lost/upregulated; blue, gained/downregulated; teal, gained/no change;
green, gained/upregulated). c Bar plot showing the AUC scores for each one-vs-all
machine learning model. Dashed line (0.5) represents random predictions, and
scores above that indicate predictive power. AUC=Area Under the Curve. d tSNE
plot visualizing clustering of ATAC-seq peaks based on the SHAPELY weighting
derived from machine learning. Each dot is colored according to the interaction/
expression category to which the fragment containing the ATAC-seq peak belongs.
e Identification of ATAC-seq peak clusters based on the SHAPELY weighting scores

derived from machine learning. Each cluster is assigned a color using DBSCAN
identified clusters; those points not assigned to a cluster are removed from the
plot. f Protein–protein Interaction network of TFs, which bind the top 15 predictive
motifs in a downregulated/lost interaction cluster (#5 and #3, blue and red,
respectively) and in an upregulated/gained interaction cluster (#6 and #3, pink and
orange, respectively). Circles are TFs and lines show known and predicted physical
interactions between them as identified by the STRING database. PML and RARA
are denoted as stars. Eachplot centers around the tSNE plot highlighting clusters to
which each network refers. g Bar plot (left) indicating the numbers of genes asso-
ciated with each of the 11 downregulated/lost interaction clusters identified from
(e). Venn diagram (right) showing the overlap of genes within the five largest
clusters. For two clusters (#3 and #4), the top three enriched pathways are shown.
h Bar plot (left) indicating the numbers of genes associated with each of the ten
upregulated/gained interaction clusters identified from (e). Venn diagram (right)
showing the overlap of genes within the five largest clusters. For two clusters (#3
and #4), the top three enriched pathways are shown. Source data are provided as a
Source data file.
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interaction profiles (Supplementary Fig. 6l). Taken together, our
results indicate that many but not all expression and long-range
interaction profiles are matched between the cell line model and
primary patient samples. Similar expression outputs are frequently
a predictor of shared regulatory inputs, although this relationship is
not universal.

Lastly, we used the long-range interactions and transcription
datasets collected from the two APL patients, supplemented with
ATAC-seq datasets derived from additional patients, to generate
machine-learnt models in comparison with publicly available datasets
produced from CD34 + haematopoietic progenitor cells derived from
healthy individuals. Following training executed under the same
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conditions as modeling in the U937-PR9 cells, we generated models
that could correctly predict the activities and behaviors of interacting
fragments within different functional outcome classes, with AUC ran-
ging between 0.51 and 0.64 (Fig. 7a, b). Clustering based upon the
associated SHAPELY weighting demonstrated an effective segregation
between clusters of functional categories of elements (Fig. 7c, d).
Consistent with the U937-PR9 modeling, the most influential TFBS
based upon the SHAPELY weighting showed evidence of physical
interactions, and the associated genes within the clusters demon-
strated functional enrichments that are relevant to both CD34 +
progenitor (e.g., stem cell maintenance) and APL biology (e.g., neu-
trophils and antigen processing/presentation) (Fig. 7e–h). These ana-
lyses demonstrate a wider applicability of machine-led model
generation, beyond the cell line system, to infer functionality of reg-
ulatory elements across other experimental systems.

Discussion
In this study, we have applied a multi-omics strategy to characterize
the gene expression and regulation consequences of fusion protein
formation in APL, using an inducible cell line model. While other
groups previously have used overlapping PML and RARA binding
profiles from ChIP-seq and ChIP-chip experiments to characterize
PML::RARA fusion protein recruitment, our approach employs a
PML::RARA fusion-specific antibody using Cut&Run. It delivers a con-
siderably more comprehensive dataset, which is also paired with gene
expression and long-range interaction analysis. A recent study also
examined the impact of PML::RARA binding on long-range regulatory
interactions, although it lacked experimental replicates, thereby con-
founding interpretability21. Our study design is supported by inter-
related, replicated datasets that support statistically validated analysis.

The most focus of PML::RARA action in APL centers on its con-
tribution to a myeloid differentiation block, however, the aggressive-
ness of the disease stems from heightened proliferation. Our findings
suggest that PML::RARAmay play a direct role in driving these events.
Strikingly, over 40% of differentially expressed, PML::RARA-bound
genes were upregulated. Promoter recruitment of PML::RARA has
previously been associated with increased transcription of the MYB
gene13. During the preparationof thismanuscript, a report determined
that PML::RARA association is required for high expression levels
across hundreds of genes in NB4 cells14. Our findings support this
observation and demonstrate that this phenomenon is widespread
and include many genes with cell proliferation functions. Equally
notable was that 80% of PML::RARA-recruiting genes do not sig-
nificantly alter their expression output, which implies that PML::RARA
requires a conducive binding environment to exert any transcriptional
effect, or potentially additional signaling inputs that are not provided
in our experimental system.

Integration of the multi-omics datasets reveals gene targets of
PML::RARA that are likely to have clinical implications for APL. For
instance, in the U937-PR9 cell line we identified several coagulation-

associated genes (ANXA2, ANXA7, VIM, F3, IL1B, and IL1RAP) as upre-
gulated binding targets of PML::RARA, which was corroborated by
patient sample RNA-seq and preliminary PML::RARA binding profiling
by CUT&Tag. The high expression of these genes is directly implicated
in the disruption of coagulation cascades in disease27. Coagulopathy
and hemorrhagic events still pose major challenges for APL in the
clinic28. Our data support a hypothesis that such risks could arise
through intrinsic properties within blast cells, through PML::RARA
dependant mechanisms29.

Divergent consequences of PML::RARA binding imply that dif-
ferentmechanisms are invoked.We noted that therewas a general bias
toward upregulated genes gaining long-range interactions, and
downregulated genes losing interactions, which implies that enhancer
engagement anddisengagementplays a role inmodulating PML::RARA
induced expression changes. Yet a significant minority of genes lose
interactions with distal elements with increased expression or gain
interactions with decreased expression, which may reflect the parti-
cipation of repressing elements such as silencers in some cases.

PML::RARA is recruited to pre-existing ATAC-seq peaks, which
suggests that it moves to sites that are already occupied by other
transcription factors. It is not clearwhether it binds in addition toother
factors or displaces them. A third of PML::RARA binding sites occur at
ATAC-seq peaks that undergo a size reduction but do not extinguish
completely. Peak reconfiguration does not map on to a specific tran-
scriptional outcome, nor is it associated with a particular transcription
factor binding site signature. While ATAC-seq peaks are typically
considered a marker of gene activity, an alteration to peak intensity
may sometimes reflect the changing composition of the resident fac-
tors without an obligatory change in expression.

Since the divergent transcriptional outcomes of PML::RARA
binding could not be distinguished based on a specified pattern of
long-range interaction or chromatin occupancy changes, nor singly
enriched transcription factor binding sites, we applied the machine
learning strategy to uncover convoluted patterns of defining tran-
scription factor binding sites. REBEL uncovered clear discrimination of
TFBS patterns within promoters and distal interacting regions into
multiple sub-clusters for each functional outcome. Many of the most
highly predictive TFBS such as SP1, MYB, and SMAD4 have been
implicated in APL and appear to influence PML::RARA behavior
through intricate combinations30–32. Both promoters and distal inter-
acting elements populate and are only marginally segregated within
the sub-clusters, implying that the machine is unable to fully discern
these types of elements by TFBS composition. It is remarkable how
complex is the pattern needed to cluster elements. Permutations are
difficult to detect by eye but clearly can highlight some defined TF
interaction networks and signaling pathways. Particularly for the
modeling based upon CD34 + cell and APL patient blast cell compar-
isons, it emphasized both transcription factors and gene ontology
functional enrichments that are meaningful for those cell populations
and can contribute to further biological understandings. We did not

Fig. 6 | Patterns of expression and long-range interactions in APL patients.
a Heatmap showing the Pearson correlation coefficients of global gene expression
across the two APL patients and the induced/uninduced U937-PR9 cell line repli-
cates. b Bar plot showing the number of regions overlapping with the 30,039
gained interactions identified in the U937-PR9 cell line model. The light blue bar
illustrates the expected overlap of the gained regions as expected by chance, error
bars indicate the range of 20,000 Monte Carlo Simulations. P indicates a sig-
nificantly greater number of overlaps by chance, as determined by χ2 test. The data
used to subsample consisted of five independent interaction datasets—for each
simulation a random set of interactions of the same size as the comparison set was
taken. Mean error bars for each set of simulations are 2750, 2810, 3246, and 3980
for Patient #1, Patient #2, induced U937, and uninduced U937 datasets, respec-
tively. c Venn diagram showing the overlap of interactions in the patient samples
that correspond to gained interactions in the cell line model. The intersection

contains 2956 fragments that interact with 1357 genes. d Scatter plot showing the
mean expression correlation of the 1357 genes, comparing patients and induced
U937-PR9 cells. Pearson correlation coefficient = 0.87. Positions of six genes relat-
ing to (e) are shown (blue dots). e–j Interaction landscape plots of six genes: AHR,
VIM,TGFBR2, PTGER4,MYB, andCCNA1. The toppanel in eachplot shows the gained
interactions after PML::RARA induction in the U937-PR9 cells, large blue dots
indicate regions with a significant differential (gained) interaction, as determined
by GOTHiC (ihw < =0.01). The blue inverted peak tracks show the binding profiles
of PML::RARA in U937-PR9 cells. Arc plots show the interactions for the induced
U937-PR9 cells (blue), Patient #1 (light green), and Patient #2 (dark green). The
colored arcs connect significant interactions to the gene promoter. Significant
interactions are displayed as a red dot, and non-significant interactions as a blue
dot. Each dot represents a unique HindIII fragment. Source data are provided as a
Source data file.
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include relative TFBS spatial information into our model, due to the
limited dataset size on which to train such a complex model. Its
inclusion in an expanded study may further refine patterns. The rich-
ness of NGS datasets has to date been underexploited.With the wealth
of publicly available datasets, these methods can be widely applied

across experimental systems and cell types to comprehend complex
transcriptional responses.

Cell lines are used widely to study disease, but it is often
undetermined whether they faithfully recapitulate those that they
are meant to model. Our study indicates that the gene regulation
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and expression landscape for many genes in U937-PR9 cells are
largely preserved in patients. Yet discrepancies do exist, so a degree
of caution is advisable. The complicated karyotype and mutational
burden of U937-PR9 cells is likely to underlie these differences.
Largely, expression output equivalence is a strong predictor for
corresponding long-range contacts, but this is not universal.
Therefore, individual assessment of expression and interaction is
needed on a gene-by-gene basis to gauge the suitability of the cell
line as a model. It’s notable that expression and long-range inter-
action divergences exist between the patients for a small number of
genes. Such discrepancies between individuals may contribute to
different responses to treatments and may ultimately assist the
stratification of disease.

Methods
Patient samples
Patient samples were collected from the Haematology Unit, Guy’s
Hospital, London, UK. Each sample contained >90% blast cells and
were used for RNA extraction and capture Hi-C library preparation.
Samples of fresh peripheral blood were donated at diagnosis with
written informed consent in accordance with the Declaration of Hel-
sinki and with approval from the London—Westminster Research
Ethics Committee. (IRAS project ID: 220344, REX reference 06/
Q0702/140).

Cell culture
U937-PR9 and NB4 cells were cultured in RPMI 1640 (Thermo Fisher,
A10491), supplemented with 10% fetal bovine serum (Thermo Fisher,
10082147), and incubated at 37 °C, 5% CO2. For the zinc induction of
U937-PR9 cells, ZnSO4 (Sigma, Z0251) was dissolved in sterile water as
a stock solution at 100mM. ZnSO4 was added directly to the culture
medium at a final concentration of 100μM and incubated at 37 °C for
5 h, as described previously15. For the non-induced U937-PR9 cells,
sterile water was added instead of ZnSO4 and incubated under the
same conditions.

RNA extraction and RNA-seq library preparation
RNA was extracted from U937-PR9 cells using Trizol reagent (Life
Technologies). Libraries were prepared using the Illumina SureSelect
Strand-Specific RNA Library Prep kit following the manufacturer’s
instructions and sequenced using an Illumina HiSeq 2500 instrument
for paired-end sequencing.

Software parameters
For most data processing default parameters were used, unless stated
otherwise.

RNA-seq analysis
Reads were trimmed of adapters and low-quality reads using
Trimmomatic33 and aligned to the hg19 genome using STAR 2-pass
aligner as outlined previously34. Gene counts were generated using
Feature Counts from the Rsubread R package35 and normalized using
the voom normalization approach for differential analysis36. Differ-
ential analysis comparing uninduced and induced U937-PR9 cells was
performed using limma36. Differentially expressed genes were con-
sidered if they had an adjusted (Benjamin Hochberg) p-value < =0.05.
For correlative analysis, log2 counts per million reads were used.

PML::RARA fusion transcript quantitation
PML::RARA transcript levels within U937-PR9, APL patient, and pub-
licly available NB4 RNA-seq datasets were quantified using Arriba37.
Briefly, raw fastq files were aligned to the hg19 genomeusing the STAR
aligner with custom parameters specific to retain chimeric reads. The
chimeric BAM files were then used as input to Arriba using default
parameters. The number of PML::RARA spanning reads for each sam-
ple were extracted and normalized by the number of total reads for
that sample (chimeric transcripts/total reads × 1e6).

Western blotting
Whole cell extracts were prepared with M-PER Mammalian Protein
Extraction Reagent (Thermo Scientific) supplemented with protease
inhibitors (Roche). Protein concentrations were determined using the
Bradford assay (Bio-Rad Protein Assay) calibrated with a BSA standard
curve. NuPAGE 4–12% Bis-Tris gradient polyacrylamide gels (Thermo
Scientific) were used for SDS-PAGE. Blotting was performed using
0.2 µm nitrocellulose membrane (GE Healthcare). The primary anti-
bodies used were: anti-RARA (Diagenode C15310155—same as for
Cut&Run) 1:5000 dilution in 5% BSA, and anti-GAPDH (MerckMillipore
CB1001) 1:10,000 dilution in 5% BSA. Either goat anti-rabbit IgG-HRP
(Thermo Scientific) or goat anti-mouse IgG-DyLight 680 (Thermo
Scientific) was used as the secondary antibody (1:5000 dilution).
Chemiluminescent and fluorescent signal detection were performed
using the iBright Imaging system (Thermo Scientific). Semi-
quantitative analysis of blotting signal was performed using Image
Lab (BioRad) software with PML::RARA protein expression normalized
to GAPDH. Full blots are provided in the Supplementary Data.

Hi-C library generation
Hi-C library generation was carried out as described previously22. For
each condition and each replicate, 20 million cells were fixed in 2%
formaldehyde for 5min, cells were incubated on ice for 30min in
25mL of ice-cold lysis buffer. After overnight digestion with HindIII at
37 °C, DNA ends were labeled with biotin-14–dATP (Life Technologies)

Fig. 7 | Interrogation of the machine learning architecture applied to the APL
patient vs CD34 +model. a tSNE plot visualizing the clustering of ATAC-seq peaks
based on motif composition similarities without machine learning interpretation.
Each dot represents an ATAC-seq peak derived from CD34+ and APL patient
samples and are colored according to the differential interaction/expression
category to which the peak-containing fragment belongs: (pink, gained/upregu-
lated in CD34 + cells; brown, gained/no change in CD34 + cells; purple, gained/
downregulated in CD34 + cells; blue, gained/downregulated in APL patients; teal,
gained/no change in APL patients; green, gained/upregulated in APL patients. bBar
plot showing the AUC scores for each APL patient vs CD34 +machine learning
model. Dashed line (0.5) represents random predictions, and scores above that
indicate predictive power. AUC = area under the curve. c tSNE plot visualizing
clustering of ATAC-seq peaks based on the SHAPELY weighting derived from the
APL patient vs CD34 +machine learning models. Each dot is colored according to
the differential interaction/expression category to which the fragment containing
the ATAC-seq peak belongs. d Identification of ATAC-seq peak clusters based on
the SHAPELY weighting derived from machine learning. Each cluster is assigned a

unique color using DBSCAN identified clusters; those points not assigned to a
cluster are removed from the plot. e, f Protein–protein interaction network of TFs,
which bind the top-15 predictive motifs in the gained/upregulated in APL patients
cluster (#1, #2, and #5, green, purple, and blue, respectively) and in gained/upre-
gulated in CD34+ cells cluster (#3, #4, and #6, orange, yellow, and pink, respec-
tively). Circles are TFs and lines show known and predicted physical interactions
between them, as identifiedby the STRINGdatabase. PML andRARA aredenoted as
stars. Each plot centers around the tSNE plot highlighting clusters to which each
network refers. g, h Three-way Venn diagrams showing the overlap of genes
associated with the fragments within the three clusters depicted in (e, f) for the
gained/upregulated in APL patients cluster (#1, #2, and #5, green, purple, and blue,
respectively) and in gained/upregulated in CD34+ cells cluster (#3, #4, and #6,
orange, yellow, and pink, respectively). The top enriched gene ontologies—deter-
mined using the EnrichR online tools reported enrichments—associated with each
gene set is highlighted with an arrow—only those with an adjusted p value < = 0.05
are shown. Source data are provided as a Source data file.
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using a Klenow end-filling reaction. Biotinylated DNA ends were then
ligated together in an overnight ligation step using T4 DNA ligase
(Invitrogen). After phenol: chloroform/ethanol purification DNA was
quantified using Qubit, with a maximum of 40μg taken forward. DNA
was sheared to a peak concentration of around 400bp, using the
manufacturer’s instructions (Covaris). Sheared DNA was then end-
repaired, polyadenine tailed, and double size selected using AMPure
XP beads to isolate DNA ranging from 250 to 550bp in size. Ligation
fragments marked by biotin were immobilized using MyOne Strepta-
vidin C1 DynaBeads (Invitrogen) and ligated to paired-end adapters
(Illumina). Hi-C libraries were then amplified using PE PCR 1.0 and PE
PCR 2.0 primers (Illumina) with eight PCR amplification cycles.

Biotinylated RNA bait library design
Biotinylated 120-mer RNA baits were designed as previously
described22. Briefly, to target both ends ofHindIII restriction fragments
that overlap Ensembl promoters of protein-coding, noncoding, anti-
sense, snRNA, miRNA, and snoRNA transcripts. A target sequence was
valid if its GC content ranged between 25 and 65% and the sequence
contained no more than two consecutive Ns and was within 330 bp of
theHindIII restriction fragment terminus. The full bait list is supplied in
the source data file.

Promoter capture Hi-C
Capture Hi-C of promoters was carried out with SureSelect target
enrichment, using the custom-designed biotinylated RNA bait library
and custom paired-end blockers according to the manufacturer’s
instructions (Agilent Technologies). After library enrichment, a post-
capturePCR amplification stepwas carried out using PE PCR 1.0 and PE
PCR 2.0 primers with four PCR amplification cycles. CHi-C libraries
were sequenced on the Illumina HiSeq 2000 platform for paired-end
sequencing.

Promoter capture Hi-C analysis
Paired-end fastq files were processed through the HiCUP pipeline38.
Briefly, Hi-C junctions are identified between read-pairs, and each side
of the interaction are mapped to their HindIII digested regions on the
hg19 genome, duplicate and artefactual reads are then filtered out.

Significant interactions were called on both individual and
merged replicate HiCUP bam files using CHiCAGO39. Briefly, CHiCAGO
calls interactions by creating a background model based on random
‘Brownian collisions’ between chromatin fragments and technical
components within the data and computes p-values based on the
expected true positive rates. P-values are adjusted taking into con-
sideration interaction distances (lower numbers of interactions are
expectedover longer distances). Interaction scores are then computed
by −log transforming these adjusted p-values. Any interaction with a
final CHiCAGO score > = 5 was considered as a significant interaction.
Across CHi-C libraries, interactions were considered replicated or
overlapping if they fell within 4 kb of the interacting fragment.

Differential CHi-C interactions were called using the statistical
frameworkofGOTHiC40. Here, each replicate pair (PML::RARA induced
vs Control) was directly compared. For each interaction, the prob-
ability of observing a given number of read pairs by chance ismodeled
where the expected values are the number of reads observed in the
control condition. For multiple testing correction, we used Indepen-
dentHypothesisWeighting (IHWv.1.6.0)with an FDR cut off < = 0.01. A
consensus differential interaction set was created by combining
interactions that were present in at least two replicates.

Omni ATAC-seq
ATAC-seq libraries for zinc-induced and non-induced libraries were
generated following the protocol outlined previously41. Briefly, 5 × 105

cells were re-suspended in ATAC-Resuspension buffer (0.1% NP40,
0.1% Tween-20, and 0.01% Digitonin). Isolated nuclei were then

incubated in a transposition mixture containing 100nM final trans-
posase at 37 °C for 30min. DNA was extracted and purified using the
Zymo DNA Clean and Concentrator-5 Kit. Libraries were pre-amplified
with five cycles using NEBNext Master Mix, additional cycles were
determined by SYBR Green qPCR. DNA was purified (Zymo) after
amplification and quantitated using the NEBNext quant kit by qPCR.
Paired-end libraries were sequenced on the Illumina HiSeq 2000
platform.

Omni ATAC-seq analysis
Reads were trimmed of adapters and low-quality reads using
Trimmomatic33 and aligned to the hg19 genome using Bowtie2. PCR
duplicates were removed using Samtools and blacklisted reads were
removed. Peaks were called using Macs2 peak caller, with a q-value
threshold of 0.01.

For the differential ATAC analysis, DiffBind (Deseq2) was used. A
merged set of all peaks from both replicates were used as bins to call
peaks. Any binwith anFDR adjusted p-value < = 0.1was considered as a
significant differential ATAC-seq peak.

Cut&Run nuclei isolation
After five hours of incubation, induced and non-induced U937-PR9
cells were washed in fresh RPMI/(10% FBS) medium. Cells were then
treated with a hypertonic solution and mild detergent (IGEPAL) fol-
lowed by clarification through a sucrose gradient to isolate nuclei.
Cut&Run was then performed on isolated nuclei as described19. In
brief, nuclei were re-suspended in Cut&Runwash buffer and incubated
with 4 µg antibody (PML::RARA, ab43152, Abcam; RARA, C15310155,
Diagenode) for 12 h at 4 °C. Nuclei were then washed in Cut&Runwash
buffer and incubatedwith PA-MNase for two hours at 4 °C. Nuclei were
washed again in Cut&Run wash buffer, then incubated with CaCl2 for
20minutes at 0 °C to activate the PA-MNase. Stop buffer containing
20mM EDTA was added to cells to stop the CaCl2 induced PA-MNase
activity. Nuclei were then incubated at 37 °C with RNase, allowing PA-
MNase cut DNA fragments to diffuse into the supernatant. DNA was
precipitated using phenol: chloroform/ethanol. Libraries were then
prepared using the NEBNext DNA Library prep master mix set and
multiplex oligos for Illumina (New England Biolabs). Library quality
was assessed using Tapestation E220 high sensitivity (Agilent), and
qPCRquantitationwasperformedusingNEB libraryquant kit. Libraries
were sequenced using an Illumina HiSeq 2500 instrument for single-
end sequencing.

Cut&Tag
Cut&Tag was performed on NB4 cells using the ActiveMotif Cut&Tag-
IT kit, based on ref. 20, using the same PML::RARA antibody as used for
Cut&Run (ab43152). Libraries were sequenced on an Illumina MiSeq
instrument for paired-end sequencing.

Cut&Run/Tag analysis
Reads were trimmed of adapters and low-quality reads using
Trimmomatic33 and aligned to the hg19 genome using Bowtie2. PCR
duplicates were removed using Samtools and blacklisted reads were
removed using Bedtools. Peaks were called using the SEACR peak
calling algorithm, which is designed for accurate peak calling of
Cut&Run experiments. Paired control experiments were used as
background and the ‘norm union’ settings were used as thresholding.
We identified reproducible peaks across replicates using the Irrepro-
ducible Discovery Rate (IDR) according to ENCODE guidelines with an
IDR <0.05 threshold. All experiments were carried out in duplicate.

RARA, PML, and H3K9/K14ac U937-PR9 ChIP-seq
Raw fastq files (2 x RARA, 4 x PML, and 4 x H3K9/K14ac) were down-
loaded from GEO accession GSE1888615. Reads were trimmed of
adapters and low-quality reads usingTrimmomatic33 and aligned to the
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hg19 genome using Bowtie2. PCR duplicates were removed using
Samtools, blacklisted reads were removed, and peaks were called
using Macs2 peak caller using the paired uninduced experiment as
background, with a q-value threshold of 0.01. The 3315 consensus
RARA/PML peaks used for overlapping the Cut&Run data was created
by taking any RARA peak that overlapped with one of the two PML
dataset peaks. We identified reproducible peaks across replicates
using the Irreproducible Discovery Rate (IDR) according to ENCODE
guidelines with an IDR<0.05 threshold.

RARA ChIP-chip
Processed regions identified by Wang et al.12 were downloaded and
lifted over to the hg19 genome using the “BSgenome.Hsa-
piens.UCSC.hg19” and “import chain” R packages.

Functional enrichment
Gene Ontology analysis of up/downregulated genes was performed
using EnrichR and ontologies were taken from the GO Biological Pro-
cess database. Pathway analysis was performed on differentially
expressed genes using PathFindR. Here we used the adjusted p-value
and fold changes associated with each gene as weights for pathway
enrichment within the Kegg database.

Genome annotation
For the annotation/assignment of genomic features to datasets, we
used the TxDb.Hsapiens.UCSC.hg19.knownGene database. Here a
feature was assigned to a data point if the apex of the peak (Cut&Run
or ATAC-seq) overlapped with the given feature.

Motif enrichment
For the enrichment ofmotifs atATAC-seq peaks associatedwith the six
categorical outcomes, we used the Homer motif suite of tools. Homer
uses a differential motif enrichment algorithm, so for each enrichment
calculation, we used a background of sampled ATAC-seq peaks from a
mix of all the other peaks in the categories not being compared. We
used parameters ‘findMotifsGenome.pl’with ‘-size −200,200’ to center
peaks to a 400bp region and ‘-bg’ to set our background of peaks.

Data preparation for XGBoost
For eachATAC-seqpeak in eachof the six categories, themotif binding
site repertoirewas identified using Homer ‘annotatePeaks.pl’ using the
‘-size −200,200’ parameter. Here we counted the number of binding
sites on each fragment for each of the 436 motifs in the Homer data-
base, centered around a 400bp region. This gave us a 436 x n frag-
ments matrix which we applied column-wise log10 transformation.

For ‘one vs one’ pairwise comparisons, dataset sizes were ran-
domly balanced towards the smaller dataset.

For ‘one vs all’ comparisons, the ‘all’ dataset was created from
subsampling an equal number of interactions from all other cate-
gories, keeping the comparison balanced.

Datapreparation for theAPLpatient vs CD34+XGBoostmodels
A consensus ATAC-seq peak set was created by merging all Macs2
called peaks from two in-house APL patients and two publicly available
GEO CD34+ datasets (GSE96772). Each raw sequencing file was pro-
cessed according to the ATAC-seq methods section.

Differentially expressed genes were generated by comparing the
two APL patient sample RNA-seq and two CD34+ RNA-seq files from
GEO (GSE96772). The sameLimma frameworkwas used asdescribed in
the RNA-seq methods section. Genes with an FDR adjusted p-value
<0.01 were considered different.

Differential interactions (DI’s) were generated using GOTHiC
comparing each APL patient to each publicly available CD34 +CHiC
dataset (Array express: E-MTAB-10701). Consistent DI’s were

considered if present in at least two comparisons and in the same
direction.

ATAC-seq peaks were then assigned to each of the six expres-
sional categories: gained/upregulated in CD34 + cells; gained/no
change in CD34 + cells; gained/downregulated in CD34 + cells; gained/
downregulated in APL patients; gained/no change in APL patients;
gained/upregulated in APL patients. Peaks were gained assigned a
motif repertoire using HOMER—as described above.

XGBoost
Hyperparameter tuning for optimal model performance was per-
formed using the MLR package, focusing on ‘min child weight’ and
‘max depth’. A grid search was applied to cycle through 400 unique
combinations of the 2 hyperparameters keeping other parameters
fixed. Constant parameters were as follows: subsample = 0.8, colsam-
ple by tree = 0.8, eta = 0.1, and gamma= 1. The training was performed
on 80% of the data and tested on 20% of the data, with five-fold cross-
validation. Optimal parameters giving the best AUC scores after the
grid search were then used to train and test on five unique subsets of
each category to encompass 100% of the data. This gave, for each of
the six categories, five model outputs which were used for explorative
analysis by SHAPELY.

SHAPELY analysis
For each of the six categories and their five models, data points were
kept if themodel predicted correctly. SHAPELYwas then applied to the
data matrix, giving a weighted contribution of predictive features for
each motif. SHAPELY weighting were assigned to clusters using
DBSCAN42.

Statistics and reproducibility
Using the PROPER R package we determined that with two repli-
cates we have 80% power to detect differential gene expression for
those genes that are expressed at a level of at least 10 reads per
library. For RNA-seq, we used the variance derived from replicates
to identify reproducible differences between conditions. For
Cut&Run and ATAC-seq experiments we used the irreproducible
discovery rate (IDR) to identify reproducible signals. The number of
reproducible peaks determined that two replicates were
sufficient43. RNAseq, Cut&Run, Cut&Tag, and ATAC-seq libraries
were carried outwith two biological replicates. For the capture Hi-C,
the cell line libraries were performed with three biological repli-
cates and the patient sample libraries were performed in duplicate
(two different patients). In capture Hi-C experiments we only kept
differential interactions present in both replicates. We used five-
fold cross validation for machine learning models. No data were
excluded from analysis. Experiments were not randomized. The
investigators were not blinded to allocation during experiments
and outcome assessment. The statistical tests used for each figure
are supplied in Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data for RNA-seq, Cut&Run, Cut&Tag, ATAC-seq, and
promoter capture Hi-C for the cell lines and ex vivo patient samples
have been deposited in the GEO database under the series GSE173755.
Publicly available datasets used in this study are: GSE18886 (U937-PR9
ChIP-seq), GSE96772 (CD34+ RNA-seq and ATAC-seq), GSE137662
(U937-PR9 time course RNA-seq) and E-MTAB-10701 (CD34 +Capture
Hi-C). Source data are provided with this paper and publicly available
at: https://doi.org/10.5281/zenodo.7467566.
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Code availability
The custom code associated with this study is publicly available at
https://github.com/borimifsud/REBEL.
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