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REVIEW Open Access

Multi-omics approaches to disease
Yehudit Hasin1,3, Marcus Seldin1 and Aldons Lusis1,2,3*

Abstract

High-throughput technologies have revolutionized

medical research. The advent of genotyping arrays

enabled large-scale genome-wide association studies

and methods for examining global transcript levels,

which gave rise to the field of “integrative genetics”.

Other omics technologies, such as proteomics and

metabolomics, are now often incorporated into the

everyday methodology of biological researchers. In

this review, we provide an overview of such omics

technologies and focus on methods for their

integration across multiple omics layers. As compared

to studies of a single omics type, multi-omics offers

the opportunity to understand the flow of information

that underlies disease.

Introduction
The addition of “omics” to a molecular term implies a

comprehensive, or global, assessment of a set of mole-

cules (http://omics.org/). The first omics discipline to

appear, genomics, focused on the study of entire ge-

nomes as opposed to “genetics” that interrogated indi-

vidual variants or single genes. Genomic studies

provided a very useful framework for mapping and

studying specific genetic variants contributing to both

mendelian and complex diseases. The omics field has

been driven largely by technological advances that have

made possible cost-efficient, high-throughput analysis of

biologic molecules. For example, the “expression array”,

based on hybridization of cDNA to arrays of oligo-

nucleotide capture probes, was developed in the late

1990s. With refinement, array technologies proved cap-

able of quantifying the levels of all protein coding tran-

scripts in a particular tissue. The ability to survey global

gene expression patterns quickly found application in
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many fields of biology, including the analysis of disease.

In the early 2000s, array technologies also made it pos-

sible to map loci that control gene expression, termed

expression quantitative trait loci (eQTL), which have

proved invaluable in the interpretation of genome-wide

association studies (GWAS) and the modeling of biologic

networks. Since then, many other omics technologies

have been developed that are capable of interrogation of

entire pools of transcripts, proteins, and metabolites, as

well as the genome (Box 1).

In the past decade, high-throughput genotyping, com-

bined with the development of a high quality reference

map of the human genome, rigorous statistical tools, and

large coordinated cohorts of thousands of patients, has

enabled the mapping of thousands of genetic variants,

both rare and common, contributing to disease [1–3].

However, as our power to identify genetic variants associ-

ated with complex disease increased several realizations

were reached that have shaped subsequent approaches to

elucidating the causes of disease. First, the loci that have

been identified so far generally explain only a fraction of

the heritable component for specific diseases. Second,

while Mendelian diseases generally result from changes in

coding regions of genes, common diseases usually result

from changes in gene regulation. Third, the same genetic

variants often contribute to different final outcomes, de-

pending on the environment and genetic background.

Taken together, these realizations provided a rationale for

the development of systems biology technologies that in-

volve the integration of different omics data types to iden-

tify molecular patterns associated with disease.

Each type of omics data, on its own, typically provides

a list of differences associated with the disease. These

data can be useful both as markers of the disease process

and to give insight as to which biological pathways or

processes are different between the disease and control

groups. However, analysis of only one data type is lim-

ited to correlations, mostly reflecting reactive processes

rather than causative ones. Integration of different omics

data types is often used to elucidate potential causative

changes that lead to disease, or the treatment targets,

that can be then tested in further molecular studies.
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In this review, we focus on the integration of mul-

tiple types of omics data (“multi-omics” or “vertical

omics”) as applied to research on human disease. This

review is divided into three sections. First, we outline

considerations that apply to experimental design and

collection of omics data. Second, we discuss general

frameworks for integration of omics data in disease

research and outline analytic strategies. Finally, we

speculate about the future directions of multi-omics

approaches.

Box 1. Omics data types

Genomics is the most mature of the omics fields. In the realm of medical research, genomics focuses on identifying genetic variants associated
with disease, response to treatment, or future patient prognosis. GWAS is a successful approach that has been used to identify thousands of
genetic variants associated with complex diseases (GWAS catalog https://www.ebi.ac.uk/gwas/home) in multiple human populations. In such
studies, thousands of individuals are genotyped for more than a million genetic markers, and statistically significant differences in minor allele
frequencies between cases and controls are considered evidence of association. GWAS studies provide an invaluable contribution to our
understanding of complex phenotypes. Associated technologies include genotype arrays [111–114], NGS for whole-genome sequencing [115, 116],
and exome sequencing [117].
Epigenomics focuses on genome-wide characterization of reversible modifications of DNA or DNA-associated proteins, such as DNA methylation
or histone acetylation. Covalent modifications of DNA and histones are major regulators of gene transcription and subsequently of cellular fate
[118]. Those modifications can be influenced both by genetic and environmental factors, can be long lasting, and are sometimes heritable [119–121].
While the role of epigenetic modifications as mediators of transgenerational environmental effects remains controversial [122, 123], their importance in
biological processes and disease development is evident from many epigenome-wide association studies that have been reported. For example,
differentially methylated regions of DNA can be used as indicators of disease status for metabolic syndrome [124, 125], cardiovascular disease [126],
cancer [127], and many other pathophysiologic states [128]. Epigenetic signatures are often tissue-specific [129], and several large consortia are focusing
on establishing comprehensive epigenomic maps in multiple human tissues (Roadmap Epigenomics (http://www.roadmapepigenomics.org/) and
International Human Epigenome Consortium (http://ihec-epigenomes.org/)). Thus, in addition to insight gained from identifying epigenetic
modifications correlating with diseases, data generated by these studies has great potential to enhance our functional interpretation of genetic variants
residing in those regions or of epigenetic markers associated with disease independently of genetic variation ([130] and other Roadmap Epigenomics
publications). Associated technology includes assessment of DNA modifications using NGS [130].
Transcriptomics examines RNA levels genome-wide, both qualitatively (which transcripts are present, identification of novel splice sites, RNA
editing sites) and quantitatively (how much of each transcript is expressed). The central dogma of biology viewed RNA as a molecular intermediate
between DNA and proteins, which are considered the primary functional read-out of DNA. Other examples of RNA function, such as structural (e.g.,
ribosomal complexes), or regulatory (e.g., Xist in ChrX inactivation) have often been regarded as odd exceptions to the general rule. The advent of
large transcriptomic studies in the past decade has shown that while only ~3% of the genome encodes proteins, up to 80% of the genome is
transcribed [131]. RNA-Seq studies identified thousands of novel isoforms and showed a larger than previously appreciated complexity of the
protein-coding transcriptome [132]. However, an even more significant contribution of these studies was the development of the non-coding RNA
field. It is now clear that thousands of long non-coding RNAs transcribed in mammalian cells (http://www.gencodegenes.org/) play essential roles
in many physiological processes, for example, brown adipose differentiation [133], endocrine regulation [134], and neuron development [135].
Dysregulation of long non-coding RNAs had been implicated in various diseases, such as myocardial infarction [136], diabetes [137, 138], cancer
[139], and others [140]. In addition to long non-coding RNA, NGS allows interrogation of short RNAs (microRNAs, piwi-interacting RNAs, and small
nuclear RNAs) and identification of circular RNAs, a novel player in the family of RNAs [141]. Much like long non-coding RNAs, a growing body of
evidence points to dysregulation of short and circular RNAs in disease [142–144] and the potential use thereof as biomarkers or as therapeutic
targets. Associated technologies include probe-based arrays [145, 146] and RNA-Seq [147, 148].
Proteomics is used to quantify peptide abundance, modification, and interaction. The analysis and quantification of proteins has been revolutionized
by MS-based methods and, recently, these have been adapted for high-throughput analyses of thousands of proteins in cells or body fluids [149, 150].
Interactions between proteins can be detected by classic unbiased methods such as phage display and yeast two-hybrid assays. Affinity purification
methods, in which one molecule is isolated using an antibody or a genetic tag, can also be used. MS is then used to identify any associated proteins.
Such affinity methods, sometimes coupled with chemical crosslinking, have been adapted to examine global interactions between proteins and nucleic
acids (e.g., ChIP-Seq). Finally, the functions of a large fraction of proteins are mediated by post-translational modifications such as proteolysis,
glycosylation, phosphorylation, nitrosylation, and ubiquitination [151, 152]. Such modifications play key roles in intracellular signaling, control of enzyme
activity, protein turnover and transport, and maintaining overall cell structure [153]. MS can be used to directly measure such covalent modifications by
defining the corresponding shift in the mass of the protein (in comparison to the unmodified peptide). There are efforts to develop genome-level
analyses of such modifications [154]. Associated technologies include MS-based approaches to investigate global proteome interactions and quantification
of post-translational modifications [155, 156].
Metabolomics simultaneously quantifies multiple small molecule types, such as amino acids, fatty acids, carbohydrates, or other products of
cellular metabolic functions. Metabolite levels and relative ratios reflect metabolic function, and out of normal range perturbations are often
indicative of disease. Quantitative measures of metabolite levels have made possible the discovery of novel genetic loci regulating small molecules, or
their relative ratios, in plasma and other tissues [157–160]. Additionally, metabolomics in combination with modeling has been used extensively to study
metabolite flux. Associated technologies include MS-based approaches to quantify both relative and targeted small molecule abundances [161–166].
Microbiomics is a fast-growing field in which all the microorganisms of a given community are investigated together. Human skin, mucosal
surfaces, and the gut are colonized by microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota (and their genes
constituting the microbiome). The human microbiome is enormously complex; for example, the gut contains roughly 100 trillion bacteria from 1000
different species. There are substantial variations in microbiota composition between individuals resulting from seed during birth and development,
diet and other environmental factors, drugs, and age [33]. Many studies have implicated perturbations in gut bacteria in a variety of disorders,
including diabetes, obesity, cancer, colitis, heart disease, and autism. The microbiome can be profiled by amplifying and then sequencing certain
hypervariable regions of the bacterial 16S rRNA genes followed by clustering the sequences into operational taxonomic units. Shotgun metagenomics
sequencing, in which total DNA is sequenced, can provide additional resolution for distinguishing genetically close microbial species. Several analytic
tools have been developed for analyzing NGS data from targeted 16S or metagenomics analysis, such as QIIME (quantitative insights into microbial
ecology) [167]. These allow accurate quantitative determination of taxa that can be correlated with disease or other phenotypes of interest [168].
Associated technologies include NGS application for 16S ribosomal abundance and metagenomics quantification [169–172].
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Considerations for the design of omics studies
Compared to single omics interrogations (Box 1, Fig. 1),

multi-omics can provide researchers with a greater un-

derstanding of the flow of information, from the original

cause of disease (genetic, environmental, or developmen-

tal) to the functional consequences or relevant interac-

tions [4, 5]. Omics studies, by their nature, rely on large

numbers of comparisons, tailored statistical analyses,

and a considerable investment of time, skilled man-

power, and money. Therefore, careful planning and exe-

cution are required. In this section, we discuss general

experimental parameters that should be considered

when planning an omics study.

Complexity of disease etiology

An important consideration in the design of a multi-

omic study is the nature of the disorder. Simple diseases,

arising from single gene mutations, involve few etio-

logical factors, and those factors typically play determin-

istic roles in disease development, although the severity

or progression of many diseases is affected by “modifier

genes” or environmental factors. For example, the most

common cause of cystic fibrosis is a single chloride

channel mutation, enabling disease-related work to focus

on the function of this gene [6]. Thus, concentrated

omics efforts at specific time points, focusing on imme-

diate molecular changes induced by the causative factor,

are expected to produce sufficient insight to promote

understanding of potential therapeutic strategies. Note

that the prominent etiological factor does not have to be

genetic and could, for example, be an infectious agent.

The etiology of complex diseases is far more intricate

and is not centered on one specific factor. Different

combinations of a variety of factors could converge into

phenotypically similar states. Moreover, in the absence

of a clear deterministic factor that induces the disease,

results from a single layer of data are always associative

and, because reactive effects usually outnumber the

causative effects in biologic cascades, should be inter-

preted as such. Additionally, given that most common,

complex diseases develop over time and involve both en-

vironmental and genetic factors, full mechanistic insight

will require coordinated sets of several omics data at

multiple time points, collected from many disease rele-

vant tissues.

Downstream analysis, sample sizes, and power

Omics approaches generate data to provide biological

insight based on statistical inference from datasets that

are typically large. As such, the power to detect associa-

tions or the flow of information strongly depends on ef-

fect size, heterogeneity of the background noise, and

sample size, with the latter often being the only param-

eter controlled by researchers. Unfortunately, human

studies are affected by a multitude of confounding fac-

tors that are difficult or impossible to control for (e.g.,

diet and lifestyle choices). Thus, the ability of omics ap-

proaches to produce meaningful insight into human dis-

ease is very much dependent on available sample sizes,

and in many settings an underpowered study may not

only be a shot in the dark, missing true signals, but it is

also more likely to produce false positive results. This

issue is well illustrated in the earlier days of candidate

gene studies for complex diseases, where lack of appreci-

ation of these factors led to many publications of non-

reproducible genetic associations. An initial power cal-

culation to ensure sufficient sample size and variation in

outcomes is increasingly necessary in large-scale studies.

Another potential pitfall of omics approaches is insuf-

ficient attention to data analysis requirements, before

and during data collection. General analytical pipelines

for each type of omics data are available (Box 1); how-

ever, most omics fields have not yet developed an agreed

gold standard. Moreover, these datasets are often large

and complex, and require tailoring of the general statis-

tical approach to the specific dataset. An important
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Fig. 1 Multiple omics data types and approaches to disease

research. Layers depict different types of omics data (Box 1). Omics

data are collected on the entire pool of molecules, represented as

circles. Except for the genome, all data layers reflect both genetic

regulation and environment, which may affect each individual

molecule to a different extent. The thin red arrows represent

potential interactions or correlations detected between molecules in

different layers—for example, the red transcript can be correlated to

multiple proteins. Within layer interactions, although prevalent, are

not depicted. Thicker arrows indicate different potential starting

points or conceptual frameworks for consolidating multiple omics

data to understand disease. The genome first approach implies that

one starts from associated locus, while the phenotype first approach

implies any other layer as the starting point. The environment first

approach (not shown) examines environmental perturbations
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aspect of all omics study designs, to make sure that the

collected data meet analysis requirements, is to envision

the main goal of analysis and the analytical approach,

before collecting the data. For example, a common con-

sideration when planning RNA-Seq experiments would

be the allocation of financial resources to balance the

number of samples with depth of coverage. To identify

differentially expressed genes between the cases and

controls, the power provided by more samples is gener-

ally preferable to the increased accuracy provided by

higher depth of sequencing. However, if the main pur-

pose of the analysis is to identify new transcripts, or

examine allele-specific expression, the higher depth of

coverage is desirable [7–9] (https://genome.ucsc.edu/

ENCODE/protocols/dataStandards/RNA_standards_v1_

2011_May.pdf ). In addition to financial limitations, data

analysis should guide data collection to avoid or

minimize technical artifacts, such as batch effects that

could be introduced during all steps of sample process-

ing and data acquisition [10–13]. In large studies, some

technical artifacts cannot be avoided, and in these cases

it is crucial to understand to what extent those artifacts

limit our ability to draw conclusions from observations,

and possibly introduce controls that would be able to

quantify its effect.

Human studies and animal models of disease

Both human and animal model omics studies provide

important insight into disease. Humans are the main

intended beneficiary of medical research, and naturally

findings from human studies have greater translational

potential than animal models. Several human centric

consortia have produced a large body of transcriptomics

and epigenomics data in multiple tissues, for example,

the Roadmap Epigenomics Project (http://www.roadma-

pepigenomics.org/; Box 1) and GTEx (http://www.gtex-

portal.org/home/) analyzed epigenomic signatures and

transcriptomics in dozens of human tissues and cell

types. In addition, several large biobanks have been cre-

ated to collect, store, and analyze thousands of human

samples related to diseases. For example, the National

Institute of Health and Care in Finland developed a net-

work of biobanks across the country [14] to collect spec-

imens and measurements from patients with different

diseases. The UK biobank [15] collects samples and

physiologic measures and follows 500,000 people with

respect to their activity. These samples can be character-

ized with various omics approaches and used to identify

molecular changes that occur during disease, or prior to

it when prospective data are available.

While providing useful insight, human omics studies

suffer from several limitations that can be addressed in

animal studies only, provided the appropriate animal

model of the disease is used. One could argue that

primary human cell lines represent a suitable platform

to explore disease without the need for animal models,

and indeed cell lines have been used quite extensively to

dissect detailed individual mechanistic pathways [16].

But their use is limited by the complex nature and con-

vergence of multiple cell types causing most complex

diseases. The advantages of using animal models include

reproducibility, control of environmental factors, acces-

sibility of relevant tissues, accurate phenotyping, avail-

ability of a virtually unlimited number of exact biological

replicates, and the ability to experimentally follow up on

hypotheses. Animal studies have been essential for

examining the effects of environmental stressors such as

responses to variation in diet, which often provide

mechanistic insight into the relationship between omics

data and the response to a stressor. Additionally, renew-

able populations of animal models, such as inbred strains

of rats or mice, can be interrogated repeatedly and omics

studies of such populations have led to the development

of powerful datasets containing detailed omic, physio-

logical, and pathological data collected under a variety of

conditions [17–19]. Comparison of omics data between

human and animal models can help validate biological

relevance of the model itself, as was used in a recent study

of Alzheimer’s disease (AD) [20]. Yet, animal models also

have limitations. Many of the gene-specific models are

limited to one genetic background, mouse models may

not recapitulate the human biology of complex disease,

and some manifestations of human disease can be difficult

to test in the mouse model.

Approaches to integrative analysis of multiple
omics data
Multi-omics approaches have been applied to a wide

range of biological problems and we have grouped these

into three categories, “genome first”, “phenotype first”,

and “environment first”, depending on the initial focus

of the investigation. Thus, the genome first approach

seeks to determine the mechanisms by which GWAS

loci contribute to disease. The phenotype first approach

seeks to understand the pathways contributing to disease

without centering the investigation on a particular locus.

And the environment first approach examines the envir-

onment as a primary variable, asking how it perturbs

pathways or interacts with genetic variation. We then

discuss briefly some statistical issues around data inte-

gration across omics layers and network modeling.

The genome first approach

In the absence of somatic mutations, primary DNA se-

quence remains unaltered throughout life and is not influ-

enced by environment or development. Thus, for disease-

associated genetic variants, it is assumed that a specific

variant contributes to, and is not a consequence of,
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disease. Such variants constitute a very powerful anchor

point for mechanistic studies of disease etiology and mod-

eling interactions of other omics layers. GWASs often

identify loci harboring the causal variants, but lack suffi-

cient power to distinguish them from nearby variants that

are associated with disease only by virtue of their linkage

to the causative variant. Moreover, the identified loci typ-

ically contain multiple genes, which from a genomic point

of view could equally contribute to disease. Thus, al-

though GWAS results may be immediately useful for risk

prediction purposes, they do not directly implicate a par-

ticular gene or pathway, let alone suggest a therapeutic

target. Locus-centered integration of additional omics

layers can help to identify causal single nucleotide poly-

morphisms (SNPs) and genes at GWAS loci and then to

examine how these perturb pathways leading to disease.

Analyses of causal variants at GWAS loci focused ori-

ginally on coding regions, but it has become clear that

for many common diseases regulatory variation explains

most of the risk burden [21]. Thus, transcriptomics,

employing either expression arrays or RNA-Seq (Box 1),

has proven to be particularly useful for identifying causal

genes at GWAS loci [16, 22–24]. A number of statistical

methods have been developed for examining causality

based on eQTL at GWAS loci, including conditional

analysis and mediation analysis (Fig. 2). Large datasets of
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Fig. 2 Usage of omics applications to prioritize GWAS variants. Locus zoom plot for a complex GWAS locus shows several candidate genes could

be causal. Heatmap using various omics approaches for evidence supporting or refuting candidate causal genes. Beyond literature queries for

candidates, various omics technologies and databases can be used to identify causal genes, including: searching for expression in relevant tissues

[173–175], summary data-based Mendelian randomization (SMR) [176], mediation analysis [177], conditional analysis [23], correlation analyses,

searching for overlapping pQTLs [178, 179], and/or implementing epigenetic data to narrow candidates (discussed for FTO locus [16])
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eQTLs are now available for a number of tissues in

humans and animal models [17, 22, 25, 26].

Identification of causal DNA variants affecting gene

expression is complicated as a variety of elements,

within the gene and hundreds of kilobases away from

the gene, can contribute. Results from the ENCODE

(Encyclopedia of DNA elements) and RoadMap Consor-

tia have been particularly useful in this regard for defin-

ing enhancer and promoters in a variety of tissues in

mice and humans (Box 1, Fig. 3). Once the causal vari-

ants or gene have been established, other omics layers

can help identify the downstream interactions or path-

ways. As discussed further below, transcript levels often

exhibit poor correlation with protein levels and thus

proteomics data are expected to be more proximal to

disease mechanisms. Moreover, proteomics techniques

such as yeast two-hybrid screens or “pulldown analyses”

can be used to identify interacting pathways contributing

to disease [27]. For certain disorders, metabolomics can

also be used to bridge genotype to phenotype [28].

A good example of a genome first approach is the

study by Claussnitzer and colleagues [16] that involved

analysis of the FTO locus that harbors the strongest as-

sociation with obesity (Fig. 3). To identify the cell type

in which the causal variant acts, they examined chroma-

tin state maps of the region across 127 cell types that

were previously profiled by the Roadmap Epigenomics

Project (Box 1). A long enhancer active in mesenchymal

a FTO GWAS locus d Functional mechanismFTO IRX3 IRX5

Normal haplotype

Risk haplotype

Chromatin capturing

Computational prediction

of rs1421085 as the

causative SNP

Correlation and

enrichment

analysis

Tissue specific inhibition of IRX3

In vitro assays of IRX3 and IRX5

Lipid storage

Lipid catabolism

Mitochondrial function

Adipocyte differentiation
rs1421085  TT→CC

CRISPR–Cas9 editing

b Epigenome

c Transcriptome

Fig. 3 Genome first approach at FTO GWAS locus. Claussnitzer et al [16] combined genomics, epigenomics, transcriptomics, and phylogenetic

analysis to identify the functional element, the causative SNP, and the downstream genes mediating the genetic effect at the FTO locus in

obesity. Circles represent genes in the locus and yellow circles represent genes implicated by the respective omics data. a Genomics: the FTO

locus, containing several genes (circles), harbors the most significant obesity-associated haplotype in humans. SNPs that are in linkage disequilibrium

with the risk allele are color coded—blue represents the non-risk (normal) haplotype and red the risk haplotype. b Epigenomics: publically available

epigenomic maps and functional assays were used to narrow down the original associated region to 10 kb containing an adipose-specific enhancer.

Chromatin capturing (Hi-C) was used to identify genes interacting with this enhancer. c Transcriptomics: this technique was used to identify which of

the candidate genes are differentially expressed between the risk and normal haplotypes, identifying IRX3 and IRX5 as the likely downstream targets. In

addition, conservation analysis suggested that rs1421085 (SNP that disrupts an ARID5B binding motif) is the causative SNP at the FTO locus. CRISPR-

Cas9 editing of rs1421085 from background (TT) to risk allele (CC) was sufficient to explain the observed differences in expression of IRX3 and IRX5.

d Functional mechanism: correlation and enrichment analysis were then used to identify potentially altered pathways that were then confirmed by

in vitro and in vivo studies
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adipocyte progenitors was shown to differ in activity be-

tween risk and non-risk haplotype. They then surveyed

long-range three-dimensional chromatin (Hi-C) interac-

tions involving the enhancer and identified two genes,

IRX3 and IRX5, the expression of which correlated with

the risk haplotype across 20 risk-allele and 18 non-risk-

allele carriers. To identify the affected biologic processes,

Claussnitzer and colleagues examined correlations be-

tween the expression of IRX3 and IRX5 with other genes

in adipose tissue from a cohort of ten individuals. Sub-

stantial enrichment for genes involved in mitochondrial

functions and lipid metabolism was observed, which

suggests possible roles in thermogenesis. Further work

using trans-eQTL analysis of the FTO locus suggested

an effect on genes involved in adipocyte browning.

Adipocyte size and mitochondrial DNA content were

then studied for 24 risk alleles and 34 non-risk alleles

and shown to differ significantly, consistent with an

adipocyte-autonomous effect on energy balance. Clauss-

nitzer and colleagues confirmed the roles of IRX2 and

IRX5 using experimental manipulation in primary adipo-

cytes and in mice. Finally, the causal variant at the FTO

locus was predicted using cross-species conservation

and targeted editing with CRISPR-Cas9 identified a sin-

gle nucleotide variant that disrupts ARID5B repressor

binding.

The phenotype first approach

A different way to utilize omics data to augment our un-

derstanding of disease is to simply test for correlations

between disease, or factors associated with disease, and

omics-based data. Once different entities of omics data

are found to correlate with a particular phenotype, they

can be fitted into a logical framework that indicates the

affected pathways and provide insight into the role of

different factors in disease development.

For example, Gjoneska et al. [20] used transcriptomic

and epigenomic data to show that genomic and environ-

mental contributions to AD act through different cell types.

The authors first identified groups of genes that reflect

transient or sustained changes in gene expression and cell

populations during AD development. Consistent with the

pathophysiology of AD, the transcriptomic data showed a

sustained increase in immune-related genes, while synaptic

and learning functions showed a sustained decrease. The

authors then used chromatin immunoprecipitation and

next-generation sequencing (NGS) to profile seven different

epigenetic modifications that mark distinct functional chro-

matin states. They were able to identify thousands of pro-

moters and enhancers that showed significantly different

chromatin states in AD versus control. Next, the authors

showed that these epigenetic changes correspond to the ob-

served changes in gene expression, and used enrichment

analysis to identify five transcription factor motifs enriched

in the activated promoters and enhancers and two in the

repressed elements. Finally, the authors used available

GWAS data to see whether genetic variants associated with

AD overlap any of the functional regions they identified.

Notably, they found that AD-associated genetic variants are

significantly enriched in the immune function-related en-

hancers but not promoters or neuronal function-related en-

hancers. This led the authors to suggest that the genetic

predisposition to AD acts mostly through dysregulation of

immune functions, whereas epigenetic changes in the neur-

onal cells are mostly environmentally driven.

In another example, Lundby and colleagues [29] used

quantitative tissue-specific interaction proteomics, com-

bined with data from GWAS studies, to identify a net-

work of genes involved in cardiac arrhythmias. The

authors began by selecting five genes underlying Men-

delian forms of long QT syndrome, and immunoprecipi-

tated the corresponding proteins from lysates of mouse

hearts. Using mass spectrometry (MS), they then identi-

fied 584 proteins that co-precipitated with the five target

proteins, reflecting potential protein–protein interac-

tions. Notably, many of these 584 proteins were previ-

ously shown to interact with ion channels, further

validating the physiological relevance of this experiment.

They then compared this list of proteins with the genes

located in 35 GWAS loci for common forms of QT-

interval variation, and identified 12 genes that over-

lapped between the two sets. This study provides a

mechanistic link between specific genes in some of the

GWAS loci to the genotype in question, which suggests

a causative link in the locus.

The environment first approach

In this approach, multi-omics analyses are used to inves-

tigate the mechanistic links to disease using an environ-

mental factor such as diet as the variable. To accurately

assess environmental or control factors such as the diet

in humans is very difficult and so animal models have

proven particularly valuable for examining the impact of

the environment on disease. Here, we give three exam-

ples of multi-omic study designs used to examine the

impact of the environment on disease.

One kind of study design is to examine multiple envir-

onmental conditions to determine how these perturb

physiologic, molecular, and clinical phenotypes. For ex-

ample, Solon-Biet and colleagues [30] explored the con-

tribution of 25 different diets to the overall health and

longevity of over 800 mice. They compared the inter-

action between the ratio of macronutrients with a myr-

iad of cardiometabolic traits (such as lifespan, serum

profiles, hepatic mitochondrial activity, blood pressure,

and glucose tolerance) in order to elucidate specific diet-

ary compositions associated with improved health. The

ratio of protein to carbohydrate in the diet was shown to
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have profound effects on health parameters later in life,

offering mechanistic insight into how this is achieved.

The second study design seeks to understand the in-

teractions between genetics and the environment. For

example, Parks and coworkers [31, 32] recently studied

the effects of a high fat, high sucrose diet across about

100 different inbred strains of mice. By examining global

gene expression in multiple tissues and metabolites in

plasma, they were able to identify pathways and genes

contributing to diet-induced obesity and diabetes. In the

case of dietary factors, the gut microbiome introduces

an additional layer of complexity as it is highly respon-

sive to dietary challenges and also contributes signifi-

cantly to host physiology and disease. Recent multi-omic

studies [31, 33, 34] have revealed an impact of gut

microbiota on host responses to dietary challenge and

on epigenetic programming.

The third type of study design involves statistical mod-

eling of metabolite fluxes in response to specific sub-

strates. For example, the integration of bibliographic,

metabolomic, and genomic data have been used to re-

construct the dynamic range of metabolome flow of or-

ganisms, first performed in Escherichia coli [35] and

since extended to yeast [36, 37] and to individual tissues

in mice [38] and humans [39]. Other applications have

explored various connections between metabolome

models and other layers of information, including the

transcriptome [40] and proteome [41–43]. Refine-

ment of these techniques and subsequent application to

larger population-wide datasets will likely lead to eluci-

dation of novel key regulatory nodes in metabolite

control.

Integration of data across multi-omics layers

A variety of approaches can be used to integrate data

across multiple omics layers depending on the study de-

sign [44]. Two frequently used approaches involve sim-

ple correlation or co-mapping. Thus, if two omics

elements share a common driver, or if one perturbs the

other, they will exhibit correlation or association (Fig. 4).

A number of specialized statistical approaches that often

rely on conditioning have been developed. In these ap-

proaches a statistical model is used to assess whether

each element of the model—for example, a SNP and ex-

pression change—contributes to the disease independ-

ently versus one being the function of the other. For

example, a regression-based method termed “mediation

analysis” was developed to integrate SNP and gene

expression data, treating the gene expression as the me-

diator in the causal mechanism from SNPs to disease

[45, 46]. Similar approaches have been applied to other

omics layers [46, 47]. More broadly, multi-layer omics

can be modeled as networks, based on a data-driven ap-

proach or with the support of prior knowledge of

molecular networks. A practical consideration in multi-

omic studies is the correlation of identities of the same ob-

jects across omics layers, known as ID conversion. This is

performed using pathway databases such as KEGG and

cross-reference tables [47]. Ideally, the multi-omics data-

sets will be collected on the same set of samples, but this

is not always possible; GWAS and expression data are fre-

quently collected from different subjects. In such cases, it

is possible to infer genetic signatures (eQTL) or pheno-

types based on genotypes [48–50].

Investigating the quantitative rules that govern the

flow of information from one layer to another is also im-

portant when modeling multiple data types. For ex-

ample, one of the fundamental assumptions behind

many of the RNA co-expression networks is that fluctu-

ations in RNA abundance are mirrored by proteins.

However, while the tools for effective interrogation of

transcriptome are widely available and commonly used,

effective interrogation of proteomes at the population

level is a relatively new possibility (Box 1). A number of

studies have now shown that while levels of many pro-

teins are strongly correlated with their transcript levels,

with coincident eQTL and protein QTL (pQTL), the

correlations for most protein–transcript pairs are mod-

est [51–58]. The observed discordance of transcript and

protein levels is likely to be explained by regulation of

translation, post-translation modifications, and protein

turnover. Together these studies suggest that RNA may

be a good predictor of abundance of only some proteins,

identifying groups of genes that confer to this rule and

those that do not. In the context of disease oriented re-

search, such studies constitute an important step for cre-

ating an analytical framework that will later be applied

to interpretation of disease-specific datasets. In addition,

especially in context of limited availability of human

samples, such studies are useful for choosing among

possible experimental approaches.

A key concept of modern biology is that genes and

their products participate in complex, interconnected

networks, rather than linear pathways [59]. One way to

model such networks is as graphs consisting of elements

that exhibit specific interactions with other elements

[60–64]. Such networks were first constructed based on

metabolic pathways, with the metabolites corresponding

to the nodes and the enzymatic conversions to the

edges [65, 66]. Subsequently, networks were modeled

based on co-expression across a series of perturbations

with the genes encoding the transcripts corresponding

to the nodes and the correlations to the edges [67–69].

In the case of proteins, edges can be based on physical

interactions, such as those identified from global yeast

two-hybrid analyses or a series of “pulldowns” [27].

Networks can also be formed based on genomic inter-

actions captured by HiC data [70, 71], and physical
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interactions can also be measured across different

layers, such as in ChIP-Seq, which quantifies DNA

binding by specific proteins.

For studies of disease, co-expression networks can be

constructed based on variations in gene expression that

occur among control and affected individuals separately

[72–74]. Comparison of network architecture between

control and disease groups allows the identification of

closely connected nodes (“modules”) most correlated with

disease status. In general, co-expression or interaction net-

works are “undirected” in the sense that the causal nature

of the interactions is unknown. Interaction networks can

be experimentally tested, although the high number of

suggestive interactions identified in each study makes in-

discriminate testing prohibitive. If genetic data, such as

GWAS loci for disease or eQTLs for genes, are available it

may be possible to infer causality using DNA as an anchor

[75–77]. Such integration of gen- etic information with

network modeling has been used to highlight pathways

that contribute to disease and to identify “key drivers” in

biologic processes [72–74, 78]. For example, Marbach and

colleagues [79] combined genomics, epigenomics, and

transcriptomics to elucidate tissue-specific regulatory cir-

cuits in 394 human cell types. They then overlaid the

GWAS results of diseases onto tissue-specific regulatory

networks in the disease-relevant tissues and identified

modules particularly enriched for genetic variants in each

disease. In another example, Zhang and coworkers [64]

examined transcript levels from brains of individuals with

late onset AD and analyzed co-expression and Bayesian

causal modeling to identify modules associated with dis-

ease and key driver genes important in disease regulatory

pathways. Together, these studies illustrate how network

analysis can be used to narrow down the focus of disease

research into specific functional aspects of particular cell

types or tissues, considerably facilitating downstream

mechanistic efforts and hypothesis generation.
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Fig. 4 The flow of biologic information from liver DNA methylation

to liver transcripts, proteins, metabolites, and clinical traits. A panel

of 90 different inbred strains of mice were examined for DNA

methylation levels in liver using bisulfite sequencing. CpGs with

hypervariable methylation were then tested for association with

clinical traits such as a obesity and diabetes, b liver metabolite

levels, c liver protein levels, and d liver transcript levels. Each dot is a

significant association at the corresponding Bonferroni thresholds

across CpGs with the clinical traits and metabolite, protein, and

transcript levels in liver. The genomic positions of hypervariable

CpGs are plotted on the x-axis and the positions of genes encoding

the proteins or transcripts are plotted on the y-axis. The positions of

clinical traits and metabolites on the y-axis are arbitrary. The

diagonal line of dots observed to be associated with methylation in

the protein and transcript data represent local eQTL and pQTL. The

vertical lines represent “hotspots” where many proteins or transcripts

are associated with CpG methylation at a particular locus. Figure

taken with permission from [180], Elsevier
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Current challenges and future directions
Reference populations and phenotyping

Insights gained from omics approaches to disease are

mostly comparative. We compare omics data from

healthy and diseased individuals and assume that this

difference is directly related to disease. However, in

complex phenotypes both “healthy” and “disease” groups

are heterogeneous with respect to many confounding

factors such as population structure, cell type compos-

ition bias in sample ascertainment, batch effects, and

other unknown factors.

One strategy to overcome the heterogeneity associated

with any human population is the “reductionist ap-

proach”, which aims to match as closely as possible

groups of patients and controls to eliminate many of the

environmental factors from this comparison. The prob-

lem with this approach is two-fold. First, we do not

know about every possible confounding factor, and thus

we can only account for known sources of variation (for

example, sex, BMI, age, and diet in metabolic disease).

And second, insight is limited to the variable factors in-

cluded in the study, which might not apply when consid-

ering the whole spectrum of disease population or might

be entirely secondary to a factor that was excluded. In

contrast, an integrative omics approach often relies on a

“holistic” view, which attempts to interrogate a suffi-

ciently large number of individuals and incorporate the

many sources of variability into statistical models. The

differences observed between disease and healthy state

are then compared to identify factors that have a larger

contribution to the disease. Thus, a crucial aspect for

success of omics studies is the collection of large data-

sets that accurately capture sources of variance in the

background population (or “healthy” individuals). Col-

lection of such data is becoming feasible. The increasing

popularity of lifestyle tracking devices and social media

has created an unprecedented opportunity for studying

environmental factors that contribute to disease devel-

opment and progression on a large scale, and further in-

tegration with omics data may provide additional

guidance for personalization of treatment. A recent

study used an integrative omics approach in personal-

ized nutrition. Zeevi et al. [80] used combinatorial ana-

lysis of questionnaire data, microbiome data, plasma

parameters, and a meal diary among 800 individuals to

predict postprandial glycemic index, which was used to

provide accurate information on dietary regimens to im-

prove metabolic homeostasis.

The power of omics approaches, and their greatest

challenge, will be the ability to integrate multiple axes of

variance into background models, rather than research-

ing age, sex, time, and population specific instances.

Thus, we expect future application of omics technologies

to focus on understudied groups, particularly in the sex

specificity context, to fill substantial gaps in our know-

ledge and lead to the development of more informative

models of biological context of disease. Sex is one of the

major determinants of biological function, and most dis-

eases show some extent of sex dimorphism [81]. Thus,

any personalized treatment approaches will have to take

sex into account. Indeed, the National Institutes of

Health has recognized that need recently and explicitly

drives biomedical research towards sex-balanced studies

(http://grants.nih.gov/grants/guide/notice-files/NOT-OD-

15-102.html).

Human populations that can be interrogated at mul-

tiple omics levels or examined under a variety of envir-

onmental conditions are proving particularly powerful.

For example, the MuTher study [82], consisting of sev-

eral hundred female twins from the UK, has been evalu-

ated globally at the genome, transcriptome, metabolome,

and microbiome levels. Data from this study have

yielded a variety of important conclusions, including in-

sights into the genetic control of molecular traits, novel

pathways involved in metabolic syndrome, and the herit-

ability of gut microbiota [78]. Twin studies are particu-

larly powerful in their ability to accurately estimate

heritability of traits. Another human reference popula-

tion is the Metabolic Syndrome In Man (METSIM) co-

hort of about 10,000 Finnish men aged 45–65 years

from the Kuopio region in Finland. As with the MuTher

population, METSIM individuals have been characterized

clinically for a variety of metabolic and cardiovascular

traits at the genomic, transcriptomic, and metabolomics

levels [83–85]. The METSIM population is especially ap-

pealing given the broad spectrum of metabolic measure-

ments and subsequent follow-ups.

Technological advances and resolution

While great technological progress has been made, we

believe routine implementation of omics data on a popu-

lation scale will likely require further improvements in

data acquisition, analysis, and cost-effectiveness. One

area in particular which has gained substantial attention

recently is the role of the gut and other microbes in the

maintenance of homeostasis. The microbiome has been

shown to alter many aspects of host physiology, from

obesity [86, 87] to cognition [88]. Improvements in

MS acquisition and analysis platforms for bacterial-

derived compounds will draw many additional links be-

tween microorganism composition/activity and overall

health status and provide more and more accurate pro-

teomics and protein modification data. Instrumentation

for global acquisition of proteomics data, comparable to

the resolution scale of RNA-Seq, will likely allow for de-

fined pathway interrogation and set the stage for com-

prehensive examination of vital cellular functions, such

as signaling pathways. Phosphoproteomics, in particular,
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has been utilized to elucidate novel signaling mecha-

nisms [66]. Beyond the phosphoproteome, omics ana-

lyses have drawn notable links between human disease

and the genetic control of global glycosylation [68], ubi-

quitination [67, 69], and many other protein modifica-

tions. Continued improvements in these approaches will

further our understanding of protein functions.

Recent technological advances have also allowed for

NGS to be performed on single cells [89], an area

which has received considerable attention [90]. RNA-

Seq using a single-cell approach has shown substantial

heterogeneity of cell types in various tissues and eluci-

dated novel cell populations [91, 92]. Beyond sequen-

cing the transcriptome of single cells, this technology

has been extended to the genome [93] and DNA

methylome [94–96]. Bisulfite sequencing of single cells

has shown substantial variations in the pattern of DNA

methylation across cells residing in the same tissues,

presenting a unique opportunity to explore combina-

torial roles for differing cell types presented with a

similar “environmental exposure”. Single cell analysis

also allows quantification and identification of the

omics changes that are observed at the tissue level that

are attributable to changes in cell type composition,

rather than changes in the respective omics profile of

specific cell types—an important aspect of disease

physiology.

Analytical challenges

One obvious advantage of large omics datasets is their

enduring availability—once the data are collected, they

can be reanalyzed with multiple approaches over and

over again. Thus, development of statistical methods to

extract more information from existent data types is an

important part of the omics field. While every omics

field presents specific challenges in terms of technical ar-

tifacts, a common analytical challenge to all omics fields

is distinguishing causal changes from reactive ones in

the context of disease. This is particularly difficult

because of the correlative nature of each dataset, and

potentially impossible if relying on one omics data type

collected at one time point, such as the expression in

tissues in healthy and diseased individuals postmortem.

Development of approaches to differentiate causal

changes versus correlative changes should address two

questions: first, identifying the variation that causes or

drives the association with phenotype; and second, eluci-

dating whether that variation precedes the trait or

occurs as a result of it. Notably, genomic changes associ-

ated with disease are presumed to precede it, and there-

fore the question of causality in GWAS loci comes down

to identifying the precise variant driving the correlation.

Several approaches have been developed to identify

drivers of the correlation signals in genomic or

transcriptomic data [11, 97, 98]. However, when the

drivers of correlation are identified, with the exception

of genomics, differentiating causality from correlation

based on omics analysis remains an open question. We

envision that development of better statistical methods,

overlaying of multiple coordinated data types, prospect-

ive studies in humans, and time-course studies in animal

models will help narrow the candidates to sufficiently

small numbers that can efficiently be tested in cellular

and animal models. Yet, the final proof of causation that

relates a particular change to a particular phenotype is

likely, for the foreseeable future, to rely on molecular

studies in vivo and in vitro.

Conceptual shift

The future of medical research envisions personalized

treatments, prospective tracking of individual health in-

dicators, and a focus on preventive measures that inte-

grate into our way of life. A proof of concept study [99]

shows that prospective tracking of health with multiple

omics approaches could highlight indicators of disease

prior to the development of disease, and that beneficial

changes in lifestyle might help to prevent it. Further-

more, applications of omics technologies within a clin-

ical setting can be used in personalized medicine, guided

by genome sequence. A poster-child example of such

has been implemented through the Vanderbilt PREDICT

project [100], whereby genotyping information is gath-

ered and referenced to patient data throughout the treat-

ment process to identify individual variants that affect

clinical outcomes.

As the cost of omics analyses continues to decrease,

more types of high throughput data can guide individu-

alized treatment regimens and be integrated into the

clinic. However, such undertaking also poses significant

challenges. The ever-growing amount and sophistication

of our knowledge, combined with the sheer quantity of

data and technical expertise required for comprehensive

collection and analysis of multi-omics data, are far from

trivial. No one research group on their own can handle

multi-scale omics data generation, development of ana-

lytical methodology, adaptation of those methods to spe-

cific disease, and functional follow-up, let alone

repeating this process for multiple diseases and integrat-

ing between them. To be efficient and translatable in the

clinic, such undertakings necessitate coordinated efforts

of many groups, each providing its own expertise or re-

source, as reflected by the formation of large consortia.

Some consortia efforts (e.g., ENCODE) focus on investi-

gating a series of omic data on coordinated sets of

samples, providing invaluable insight into the basic

biological properties reflected by these data, and devel-

opment of rigorous analytical frameworks that can be

then applied or adapted to other datasets. Other
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consortia may focus on tissue specificity [101], particular

disease, or resource development.

Effective and sensible use of publicly available data

requires a standard, easily communicable terminology

and methodology in all aspects of data collections and

analysis—sometimes even at the expense of precision

or optimization. Common usage of omics technologies

necessitates standardization to allow sufficient integra-

tion across studies, an area which becomes increasingly

difficult with greater variability and complexity of

measurement. For example, RNA-Seq expression stud-

ies are only comparable if the same genome version,

transcript annotation, and quantification tools are used

for all datasets, while new versions of these are pub-

lished on a regular basis. For this reason, consortia pro-

vide both a large body of data but also detailed analysis

pipelines that can be replicated for other datasets with

minimal effort. Standardization becomes particularly

challenging when measuring various phenotypes and

relating from one study to another. Suggestions have

been made to apply standardization across measured

phenomes. For example, various high-throughput bio-

logic assays have been developed to screen mutagenized

mice [102–104] or zebrafish [105]. Such assays can be

thought of as “subphenotypes” of disease, likely to be

much less genetically complex (and, therefore, easier to

dissect) than the disease itself. Additional efforts have

been made to apply a “phenomics” approach to under-

stand human disease [106]. We believe that further im-

provement in streamlining the analysis of specific data

types, and development of a gold standard for analysis

flow, will facilitate new discoveries and shorten the

time taken from the generation of data to publication

and translation to clinics. Notably, this facet of omics re-

search is particularly vulnerable not only to technical

problems (e.g., use of different protocols and analysis pipe-

lines, changes in data ID numbers, lack of standard no-

menclature, etc.), but also to social behavior that drives

cutting edge research. A glaring example of this psycho-

logical gap was recently demonstrated by the “data para-

sites” editorial in a prominent medical journal [107], and

the prompt stormy reaction in scientific and social outlets

that followed [108–110]. This incident highlights that suc-

cessful application of the omics approach does not depend

solely on technical factors but requires a serious concep-

tual shift in research paradigm for many researchers and

clinicians, and potentially in our approach to medical and

scientific training and performance evaluation.
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