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Abstract

Motivation: Gene set analysis has revolutionized the interpretation of high-throughput transcrip-

tomic data. Nowadays, with comprehensive studies that measure multiple -omics from the same

sample, powerful tools for the integrative analysis of multi-omics datasets are required.

Results: Here, we present GeneTrail2, a web service allowing the integrated analysis of transcrip-

tomic, miRNomic, genomic and proteomic datasets. It offers multiple statistical tests, a large num-

ber of predefined reference sets, as well as a comprehensive collection of biological categories and

enables direct comparisons between the computed results. We used GeneTrail2 to explore patho-

genic mechanisms of Wilms tumors. We not only succeeded in revealing signaling cascades that

may contribute to the malignancy of blastemal subtype tumors but also identified potential bio-

markers for nephroblastoma with adverse prognosis. The presented use-case demonstrates that

GeneTrail2 is well equipped for the integrative analysis of comprehensive -omics data and may

help to shed light on complex pathogenic mechanisms in cancer and other diseases.

Availability and implementation: GeneTrail2 can be freely accessed under https://genetrail2.bioinf.

uni-sb.de.

Contact: dstoeckel@bioinf.uni-sb.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of high-throughput analysis technologies during the

last decades has revolutionized biology and medicine and has lead to

a tremendous increase in the amount of available, high-dimensional bio-

logical data. However, technologies like microarrays, next-generation

sequencing or mass spectrometry are highly sensitive to changes in the

experimental conditions or protocols, giving rise to technological noise

that must be carefully accounted for (Leek et al., 2010). Due to the

above reasons, the development of automated and robust statistical ana-

lysis methods for high-throughput data has become a necessity.

Enrichment methods are one fundamental class of analysis procedures

for the study of pathogenic mechanisms and the identification of deregu-

lated pathways and categories. Widely-applied enrichment methods are

Over Representation Analysis (ORA) (Drǎghici et al., 2003) and Gene

Set Enrichment Analysis (GSEA) (Subramanian et al., 2005). Other

approaches, e.g. Kim and Volsky (2005), Newton et al. (2007), Tian
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et al. (2005), employ straightforward averaging methods that, despite

their simplicity, offer competitive performance. Building upon such aver-

aging approaches, Efron and Tibshirani (2007) presented the maxmean

statistics. More specialized approaches, which complement the generally

applicable methods presented above, are e.g. topGO (Alexa et al., 2006)

and GO-Bayes (Zhang et al., 2010), which operate on the Gene

Ontology (GO) (Ashburner et al., 2000) and account for its hierarchical

structure. Another class of algorithms uses the topology of known bio-

logical networks to improve the computed enrichments. Examples are

GGEA (Geistlinger et al., 2011) and EnrichNet (Glaab et al., 2012).

Due to the popularity of enrichment methods, many implemen-

tations are available, both as stand-alone applications and as web

services. Some focus on a certain database while others are limited

to one or two algorithms (Fig. 1). Examples for available tools are

the Broad Institute’s GSEA implementation (Subramanian et al.,

2005) or the GSEA-SNP (Holden et al., 2008) R package. Also a

wide variety of web services for enrichment analysis exists, which

we discussed briefly in Supplementary Note S1. Moreover, a com-

prehensive collection of enrichment tools can be found in the

OMICtools database (Henry et al., 2014). Extensive reviews on en-

richment methods (Ackermann and Strimmer, 2009; Efron and

Tibshirani, 2007; Huang et al., 2009; Hung et al., 2011; Khatri

et al., 2012; Naeem et al., 2012) have been published and reveal

that no real gold standard exists. This is due to the fact that each of

the proposed methods is based on differing definitions of enriched

categories (differing null hypotheses), making their results incom-

parable in general. Instead of using a single ‘magic bullet’, an appro-

priate algorithm needs to be chosen carefully for each individual

research task.

Finally, as heterogenous datasets, e.g. datasets comprised of gen-

omic variations, miRNA and mRNA expression measurements,

are becoming increasingly common, integrative platforms for

enrichment analyses are needed. Unfortunately, only few such tools

are readily available. Examples are miRTrail (Laczny et al., 2012),

which links mRNA, miRNA and disease phentotypes, Genevar (Yang

et al., 2010), focusing on the association between SNPs and eQTLs,

or RAMONA using a Bayesian Model for linking arbitrary -omics to

ontology terms (Sass et al., 2014).

In this study, we present GeneTrail2, a new web server for the ana-

lysis of multi-omics datasets, with which we provide one of the most

comprehensive tools for enrichment analysis. For human alone, it fea-

tures over 46 000 categories collected from over 30 databases including

KEGG, Reactome, GO, WikiPathways, DrugBank, Pfam, miRWalk

and miRDB (cf. Supplementary Table S12). It natively supports tran-

scriptomics, miRNomics, proteomics, and genomics data and can con-

vert between 32 common identifier types. In total, we implemented 13

identifier-level statistics, 10 set-level statistics (see Section 2.3), two P-

value computation strategies and eight P-value adjustment methods.

Data from all major -omics are supported, making it possible to ana-

lyze and explore heterogeneous datasets in an interactive fashion using

GeneTrail2’s web interface. The web interface is built on top of mod-

ern web technologies with special attention to usability. Non-expert

users can quickly perform comprehensive analyses using the predefined

workflow, which is complemented with thorough documentation.

Moreover, the interface enables users to integrate enrichments obtained

from multiple -omics using the integrated mapping procedures and our

side-by-side view. For further analysis tasks, we offer a deep integration

into existing applications like the network visualization tool BiNA

(Gerasch et al., 2014) or the NetworkTrail (Stöckel et al., 2013) web

service. Another key feature of GeneTrail2 is its RESTful API, through

which power users can script the web service. This scripting interface

allows the seamless integration of GeneTrail2 into workflow systems

such as Galaxy (Goecks et al., 2010) or Taverna (Wolstencroft et al.,

2013). The backend of GeneTrail2 relies on highly optimized Cþþ
code leading to excellent computation times. GeneTrail2 can be ac-

cessed under https://genetrail2.bioinf.uni-sb.de.

We demonstrate the capabilities of GeneTrail2 by applying it to a

Wilms tumor expression dataset with the goal of identifying molecu-

lar determinants for the increased malignancy of certain Wilms tumor

subtypes. Further use cases are discussed on the website.

2 Methods

Since GeneTrail2 is a comprehensive software platform comprising

more than 31 000 lines of code, we start with a short introduction

to the architecture of our web service. Then, we present an example

workflow serving as guide through the available functionality and

implemented methods.

2.1 Architecture
GeneTrail2 is a complete rewrite of its predecessor, the GeneTrail

(Backes et al., 2007) web service, with the goal to provide more,

readily available identifier- and set-level statistics and to greatly in-

crease its flexibility. Furthermore, it supports user accounts and, for

increased reproducibility, fully automatic documentation of all used

parameters. To accommodate this, the new server is based on a

modular architecture (cf. Fig. 2) allowing to easily add new features,

exchange implementation details or perform general maintenance.

We implemented a user interface based on HTML5 and JavaEE

technology using the Thymeleaf template engine and JQuery. This

interface interacts with the web service using a RESTful API. This

API allows access to the complete functionality of GeneTrail2. It

offers interfaces for starting and managing computationally

Fig. 1. A comparison of selected enrichment tools. The number of supported

databases refers to the number of unique data sources from which categories

have been obtained. Databases are counted across all supported species and

-omics. The number of supported algorithms refers to the number of algo-

rithms offered for analysis. Related methods (e.g. network algorithms) have

been included. A tool was defined as supporting an -omics, if it provides dedi-

cated biological categories for this -omics type
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intensive analysis tasks as well as querying computed results.

Providing a RESTful API has the additional advantage that users

can write custom scripts in any programming language, e.g. for

batch processing.

All compute-intensive tasks were implemented using highly opti-

mized Cþþ code in order to achieve maximum performance. This

code relies on the Boost library for the implementation of probabil-

ity distributions and auxiliary algorithms. Eigen 3 is used for ma-

trix–vector algebra and the GMP library provides multi precision

integer and floating point operations.

2.2 Workflow
GeneTrail2 offers a considerable number of analysis workflows

(Fig. 3). Due to space constraints, we only discuss one common

scenario. First, the user uploads the data to be analyzed, e.g. a ma-

trix containing normalized expression measurements. Then, the data

can be divided into sample and reference sets in order to enable the

computation of identifier-level scores. After score computation, a

set-level statistic must be selected. The user can then choose bio-

logical categories that should be analyzed.

For each step the user can adjust the parameters of the employed

method. As this usually requires considerable expert knowledge, we

provide defaults that should be applicable for most use-cases and

that have been chosen conservatively in order to prevent false

discoveries.

2.3 Method overview
GeneTrail2 accepts the following simple, tab-delimited text files as

inputs: identifier lists, score lists and data matrices. In addition, it is

possible to analyze microarray expression datasets from the Gene

Expression Omnibus repository (Barrett et al., 2013) directly.

2.3.1 Identifier and organism estimation

A key challenge when dealing with uploaded data is the automatic

detection of the identifiers used in the dataset. We solved this prob-

lem by creating a MapDB-based database of supported identifiers,

against which user data are validated. In addition, the database sup-

ports mapping between different identifier types such as UniProt

Accessions and Entrez Gene Ids. Coupled with automated file type

detection, no user intervention should be required when uploading

data.

2.3.2 Identifier-level statistics

Whereas identifier lists and score lists can be directly used as input

for computing enrichments, expression matrices need to be

processed to (identifier-level) scores first. To this end, we provide a

comprehensive set of statistics (see Supplementary Note S2.1).

Among these are the fold-change, Wilcoxon test and a (regularized)

version of the t-test. If possible and applicable, paired versions of the

statistics are provided. For supporting count data we integrated the

DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010) and

RUVSeq (Risso et al., 2014) approaches.

Simple transformations such as absolute value, square, square

root or logarithm can be applied to computed scores.

2.3.3 Set-level statistics and categories

Once the input data have been prepared, one of the following set-

level statistics can be applied: the weighted and unweighted

Kolmogorov-Smirnov (KS) test, the Wilcoxon test, ORA, sum-,

mean-, median- and maxmean statistics, as well as the one and two

sample t-test. After choosing an algorithm, the user can select cate-

gories for which an enrichment should be computed. The categories

integrated into GeneTrail2 were collected from many, commonly

used biological databases (cf. Supplementary Table S12). Among

others, these databases cover signaling pathways, genomic features,

transcription factor (TF) targets, miRNA targets, drug targets and

(disease) phenotypes. In addition, user-defined categories can be up-

loaded in gene matrix transposed (Subramanian et al., 2005) format.

For ORA, it is also required to select a reference (background) set.

For human alone, we offer over 40 predefined reference sets (see

Supplementary Tables S13–S17) covering many experimental plat-

forms. If no applicable reference set is available, a custom set can be

uploaded.

2.3.4 P-value computation

For determining the significance levels of the computed set-level

scores, GeneTrail2 offers the gene set and the phenotype strategy.

While the gene set strategy is based on permuting the identifier-level

scores, the phenotype strategy randomly redistributes the measure-

ments between the sample and reference group. An advantage of the

gene set strategy is that it allows the direct computation of P-values

for some methods and thus avoids costly permutation tests (see

Fig. 3. Simplified flowchart of GeneTrail2. Round boxes depict start/end

states. Boxes with gray background represent input file types, whereas a

white background represents processing steps. Diamonds are decision nodes

Fig. 2. Architecture of GeneTrail2. Core algorithms are implemented as an

optimized Cþþ library based on Boost, Eigen 3 and GMP. On top of this li-

brary we implemented a JAX-RS-based RESTful API. The frontend is based

on the Thymeleaf template engine and JQuery. As application server we use

Apache Tomcat
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Supplementary Note S2.2). This leads to a higher resolution of the

computed P-values and very low computation times (see Section

2.4). For an in-depth discussion of the advantages and disadvantages

of the respective methods we refer the reader to Tian et al. (2005).

The phenotype strategy always requires that a permutation test is

performed. As new identifier-level scores must be derived for every

permutation, the method can only be used if a data matrix was

supplied.

Finally, a method for multiple testing correction must be chosen.

To this end, we provide a large set of correction methods (see

Supplementary Table S6) including the popular Benjamini–

Hochberg FDR adjustment (Benjamini and Hochberg, 1995).

2.3.5 Examining computed results

Enrichments can be visualized online or downloaded as compressed

archives and MS Excel tables. When viewing an enrichment online,

we provide detailed statistics about significant categories and their

members, which are fully sort- and searchable. Besides the trad-

itional list of significant categories, we also offer an inverse enrich-

ment view, which for every gene displays the significant categories it

is a member of. In addition, the user can select a set of enrichments

that can be viewed side-by-side, providing a compact and clearly

arranged overview. This allows to quickly detect similarities and dif-

ferences with respect to the detected categories. Here, two view

modes are available. While the union mode displays all categories

that are significant in at least one enrichment, the intersection mode

only displays categories that are significant in all enrichments.

Whereas the union is useful for detecting variability between related

enrichments, the intersection can be used to reduce the number of

false positives by computing and comparing two or more enrich-

ments using different algorithms. Using these modes, the user is able

to effectively balance the sensitivity and specificity of an analysis in

a straightforward manner. Combining the side-by-side view with

GeneTrail2’s mapping features allows for an integrated analysis of

gene lists obtained from different -omics. For example, given tran-

scriptomics and proteomics data, protein abundance scores can be

mapped onto the corresponding genes allowing to compute enrich-

ments using gene categories for both score lists. Via the union mode

it is possible to spot similarities and differences between the enrich-

ments obtained from both -omics.

2.4 Performance
The performance of basic tools such as enrichment methods is crit-

ical, as good performance significantly shortens the development

cycles of data analysis workflows. To this end, GeneTrail2 uses a

Cþþ implementation to guarantee optimal performance. In general,

the gene set strategy is one order of magnitude quicker to compute

than the phenotype strategy (see Table 1). The used set-level statis-

tics has little influence on the computation time. GeneTrail2 signifi-

cantly outperforms the Broad Institute GSEA application

(Subramanian et al., 2005) for both, the gene set and the phenotype

strategy.

3 Results

3.1 Case study: Wilms tumors
Wilms tumors (WTs), or nephroblastomas, are childhood renal

tumors. While in general WTs are associated with survival rates

>90%, some subtypes with much higher relapse rates are known

(Sredni et al., 2009). For proper risk-assessment and therapy

stratification it is thus crucial to identify and understand the differ-

ences in the pathogenic processes between the tumor subtypes.

We used GeneTrail2 to analyze a WT expression dataset in order

to determine key players influencing the malignancy of WTs. The

dataset consists of 40 mRNA and 47 miRNA expression profiles

from 47 tumor biopsies from 39 patients, containing four healthy

tissue samples as well as 17 blastemal, nine mixed type and 17 mis-

cellaneous tumor samples (cf. Supplementary Section S3.1). As our

dataset stems from a study following the SIOP protocol, patients

underwent chemotherapy before surgery and sample collection.

Approximately 25% of initial blastemal predominant tumors do not

respond to preoperative chemotherapy and have a poor prognosis.

Hence, special attention was put on identifying factors leading to an

increased resistance to chemotherapy in this blastemal subtype,

which accounts for 10% of all WTs. In the following, we refer to

those tumors as blastemal tumors.

We describe the results of our WT analysis as a learning process

that was guided by the computed enrichments, simple statistical ana-

lyses and the study of literature. For a review of the implemented en-

richment algorithms, we refer the reader to the available, extensive

literature (Ackermann and Strimmer, 2009; Efron and Tibshirani,

2007; Huang et al., 2009; Hung et al., 2011; Khatri et al., 2012;

Naeem et al., 2012).

3.1.1 Consensus of enrichment approaches

We used GeneTrail2 to examine the differences between blastemal

and non-blastemal tumors using the independent shrinkage t-test

(Opgen-Rhein and Strimmer, 2007) to compute scores for all genes

and miRNAs (see Supplementary Note S3.5). For P-value computa-

tion the gene set strategy with Benjamini–Hochberg adjustment was

chosen. In order to compare the implemented set-level statistics

based on our data, we applied all available set-level statistics exclud-

ing ORA to the score lists. The resulting enrichments are given in

Supplementary Tables S18 and S19 and under https://genetrail2.bio

inf.uni-sb.de/results.html?session¼a9e84e92-ea41-42ab-9ee7-

c0f8515f9234. We observed that, despite a considerable overlap,

the differences between the enrichments are substantial (cf.

Supplementary Fig. S1). For example, while the union of all enrich-

ments contains 1436 GO-Biological Process categories, only 343

categories are contained in their intersection. As expected, this effect

is especially pronounced for databases containing categories close to

the significance level, which may indicate that these categories were

only reported due to idiosyncrasies of the corresponding method.

Table 1. Performance data for enrichments computed on the

KEGG categories using the (unweighted) KS and mean set-level

statistics

Broad GSEA GeneTrail 2

KS

Gene set 400 s (6 7.3 s) 9.3 s* (6 0.15 s)

Phenotype 428.8 s (6 4.32 s) 84.5 s (6 0.6 s)

Mean

Gene set N/A 3 s (6 0.02 s)

Phenotype N/A 74.8 s (6 1.7 s)

For comparison the KS implementation of the Broad GSEA package was

used. Mean run times over five runs are given in seconds; standard deviations

are provided in parenthesis. In the comparison, the t-test was used as

scoring method, no P-value correction has been performed, and 10 000 iter-

ations were used for permutation tests. Results marked with a * used an

exact P-value computation method. Timings were obtained on an Intel Core

i7-3770 processor
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The number of significant categories per method can be found in

Table 2.

In order to focus on highly relevant processes, we only consider

categories consistently reported by at least seven of nine set-level

statistics, which can be easily achieved using our comparative en-

richment view. Further discussion only considers this intersection.

3.1.2 General observations

For mRNA the upregulation of categories like mRNA Processing,

Cell Cycle and DNA Replication suggest a clear increase in mitotic

activity in blastemal tumors. For miRNA, categories associated with

various cancer types, including HMDD-renal cell carcinoma, are

significantly enriched. The same is true for miRNA categories

involved in hormone regulation, immune response, apoptosis and

tumor suppression. None of the miRNA families is significant in all

enrichments; however, the families miR-302, miR-515, miR-30,

miR-17 and let-7 are significant for at least seven out of nine tests.

The miR-302 and miR-515 families are associated with the activa-

tion of the canonical WNT pathway (Anton et al., 2011). In add-

ition, the miR-17 family is known for its oncogenic role in cancer

and stem cell development (Mogilyansky and Rigoutsos, 2013).

3.1.3 Deregulation of let-7 via LIN28B and TRIM71

The let-7 miRNA family has previously been reported to play a vital

role in WT suppression (Urbach et al., 2014). However, many high

abundant family members are upregulated (see Supplementary Table

S3), which is unexpected due to let-7 miRNAs acting as tumor sup-

pressors. A possible explanation for this behavior may be provided by

TRIM71, which is among the top-scoring genes. TRIM71 degrades

LIN28B via ubiquitin-mediated proteosomal degradation (Lee et al.,

2014) (cf. Fig. 4). LIN28B in turn suppresses the maturation of pri-

let-7 miRNA. Hence, the upregulation of TRIM71 induces an upregu-

lation of the let-7 family, which, in theory, promotes cell differenti-

ation. However, Chang et al. (2012) found that TRIM71 can

promote rapid embryonic stem cell (ESC) proliferation in mice and re-

port that it represses the expression of CDKN1A, a cyclin-dependent

kinase inhibitor, which acts as a cell-cycle regulator. As high expres-

sion levels of TRIM71 are commonly observed in undifferentiated

cells, the authors conclude that TRIM71 is an important factor for

maintaining proliferation in stem cells. Urbach et al. (2014) report

that LIN28B is able to induce WTs under certain conditions and note

that in these tumors the cap mesenchymal (CM) specific stem cell

markers CITED1, EYA1 and SIX2 are upregulated. In general, this

trend is present in our data, however, we find that the marker’s ex-

pression is more consistent with TRIM71’s expression pattern (Fig. 5

and Supplementary Fig. S2). In summary, our initial results indicate

that miRNA and genes associated with stem cell fate play an essential

role in blastemal tumors.

3.1.4 Activation of cancer-related WNT signaling

Deregulation of the WNT signaling pathway is often prevalent in

cancer samples (Polakis, 2012). Indeed, our enrichment analysis

contains categories associated with the WNT pathway (see

Supplementary Table S5). This is consistent with its previously re-

ported central role in most WTs and especially in blastema-rich

WTs (Fukuzawa et al., 2009). The activation of the canonical

WNT pathway usually leads to degradation of the destruction

complex that, as long as it is functional, degrades the transcrip-

tional coactivator b-catenin. Thus, degradation of the destruction

complex leads to higher amounts of b-catenin in the cytoplasm

that is transported to the nucleus where it builds complexes with

TCF/LEF proteins. Degradation of the destruction complex lies at

the core of developmental processes, ESC self-renewal and differ-

entiation and changes the transcriptional landscape of the cell

dramatically.

3.1.5 TCF3 as potential WT master regulator

We argued that factors associated with stem cell fate and the canon-

ical WNT pathway play an essential role in blastemal tumors. A

well-known link between the WNT pathway and the core regulatory

Fig. 4. TRIM71 degrades LIN28B using ubiquitin-mediated proteosomal deg-

radation. LIN28B regulates the maturation of let-7 miRNAs (Piskounova et al.,

2011), which promote cell differentiation and act on TRIM71 and LIN28B via a

negative feedback loop (Marson et al., 2008). TRIM71 as well as AGO2 in com-

plex with miR-290/302 miRNAs repress CDKN1A expression leading to

increased proliferation (Lee et al., 2014). TCF3 acts on most of the above play-

ers (Marson et al., 2008), effectively amplifying the currently predominant sig-

nal in the feedback loop

Fig. 5. Expression of TRIM71 and LIN28B in comparison with the cap mesen-

chyme stem cell markers CITED1, EYA1 and SIX2. Samples are classified as

normal, necrotic (NE), regressive, epithelial (E), stromal (S), focal anaplasia

(FA), diffuse anaplasia (DA) and blastemal. The size of a colored bar repre-

sents the absolute expression strength of the associated gene

Table 2. Number of significantly enriched (P < 0.05) mRNA catego-

ries found by each enrichment method for the blastemal versus

non-blastemal scores

Two-sample t-test 3866 Sum 3406

One-sample t-test 3852 Weighted KS 2497

Two-sample Wilcoxon 3685 Maxmean 2057

KS 3518 Median 1989

Mean 3424
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circuitry of ESCs is TCF3 that together with the pluripotency factors

OCT4 (POU5F1), NANOG and SOX2 builds the set of ‘ESC master

regulators’ (Cole et al., 2008). If the WNT pathway is inactive,

TCF3 is mainly repressing pluripotency factors and promoting dif-

ferentiation, however, if the WNT pathway is activated, the repres-

sive complex converts to an activating complex, promoting

pluripotency (Cole et al., 2008). To study the influence of ESC mas-

ter regulators, we constructed a new set of gene categories that we

subjected to the KS test using the blastemal versus non-blastemal

scores as input. For each of the four transcription factors (TFs), we

defined two categories containing genes for which ‘strong evidence’

exists that they are regulated by the respective TF. In particular, we

add a gene to a category for a TF if the TF occupies a site in the

gene’s promoter region and the correlation between the TF’s and the

gene’s expression is >0.5 (positive category) or smaller than �0.5

(negative category). For the identification of the promoters occupied

by the master regulators, we used the mouse ESC ChIP-Chip dataset

of Cole et al. (2008) and the ChIP-Seq data set of Marson et al.

(2008). Using this procedure, we obtained more than 1500 genes,

including many other TFs and genes involved in ESC fate, influenced

by mainly TCF3 and OCT4. For a selection, see Supplementary

Table S4. Our KS enrichment (Supplementary Table S20, https://

genetrail2.bioinf.uni-sb.de/results.html?session¼cbc86903-4248-

47a2-b916-bc682924c242) revealed that genes positively regulated

by TCF3 (p � 10�40) and NANOG (p � 10�13) are strongly en-

riched, whereas genes negatively regulated by TCF3 (p � 10�40) are

strongly depleted. Conversely, genes positively regulated by OCT4

are strongly depleted, and genes negatively regulated by OCT4 are

strongly enriched. This is consistent with a correlation of TCF3 with

OCT4 of �0.7. SOX2 and NANOG both seem to be of lesser im-

portance in our data.

However, the four master regulators do not only regulate protein

coding genes. Marson et al. (2008) revealed that they are also ‘asso-

ciated with promoters for miRNAs that are preferentially expressed

in ESCs’. Examples are the miR-302, miR-515 and let-7 families

which we previously discussed (cf. Fig. 4). In addition, our data indi-

cate that TCF3 regulates the expression of the miR-17 cluster (all

correlations >0.5).

3.1.6 IGF2 as putative WNT activator

In the above section, we have outlined how the ESC regulatory cir-

cuitry is driven by TCF3 through the WNT pathway. However, the

mechanisms that activate WNT signaling still remain unclear.

Whereas certain genetic mutations occur with relatively low fre-

quency (� 30%), among them genes that may induce WNT signal-

ing, epigenetic lesions and especially loss of imprinting at the IGF2/

H19 locus have been found for 81% of all blastemal subtype WTs

(Wegert et al., 2015) leading to an overexpression of IGF2. In 2001,

Morali et al. (2001) showed that IGF2 can induce the expression

and import of b-catenin and TCF3 into the nucleus even in the ab-

sence of WNT proteins. This triggers a switchover from the epithe-

lial to mesenchymal cell state, which is in accordance with the

expression patterns of the CM stem cell markers shown in Figure 5.

In addition, TCF3 binding sites have been found in the IGF2 gene

(Cole et al., 2008). Remarkably, we observe an extreme correlation

of 0.9 between the TCF3 and IGF2 expression (see Supplementary

Fig. S3). This suggests that TCF3 in turn regulates IGF2 leading to a

self-sustaining feedback loop which is likely to be causal for the

stem cell character of, e.g. blastemal tumors.

4 Discussion

We presented GeneTrail2, a platform for the enrichment analysis of

multi-omics datasets. GeneTrail2 was designed to offer users a max-

imal amount of flexibility while keeping the common workflow ac-

cessible to non-expert users. This is achieved by offering a user

friendly, well-documented web interface. In turn, scripting capabil-

ities allow expert users to conduct fully automated large-scale ana-

lyses and the integration into third-party applications. To further

this flexibility, we provide, to the best of our knowledge, the largest

number of enrichment algorithms (Fig. 1) available in a web service.

This was motivated by the lack of gold standards for enrichment

analysis and enables researchers to choose the appropriate tool for

the task at hand. Through our comparative enrichment view, we

additionally offer a straightforward way for balancing the sensitivity

and specificity of analyses. Furthermore, we integrated an extensive

collection of biological databases allowing to choose appropriate

prior knowledge for a research task. Owing to today’s capabilities

and ubiquity of high-throughput measurement techniques, we im-

plemented support for the analysis of multi-omics datasets.

Moreover, the modular structure of GeneTrail2 ensures that new al-

gorithms, databases, organisms and identifiers can easily be added.

This allows to track the current state-of-the-art and continuously

improve GeneTrail2.

We demonstrated GeneTrail2’s capabilities by applying it to a

Wilms tumor mRNA/miRNA expression dataset. Here, the major

goal was to determine key molecular features that result in lower

susceptibility to preoperative chemotherapy of blastemal subtype

tumors. We were able to identify a substantial amount of highly sig-

nificant, cancer-associated categories that were deregulated in this

subtype. The unusual expression profiles of the let-7 miRNA family

lead to LIN28B, which is well studied in the context of WTs, and in

turn to its upstream regulator TRIM71. We discussed the role of

TRIM71 and in particular its function as a stem cell regulator and

we observed that its expression is consistent with the expression of

the CM stem cell markers EYA1, SIX2 and CITED1 (Fig. 5). These

first results indicated that stem cell regulators play a central role in

blastemal tumors. This is in agreement with the assumption that the

ability of WT cells to maintain stem cell character is a main deter-

minant for tumor malignancy. Furthermore, our results revealed an

upregulation of the canonical WNT pathway. Searching for a link

between WNT signaling and the regulatory circuitry of stem cells,

we arrived at the TF TCF3. To examine possible effects of a TCF3

deregulation, we searched for factors influenced by TCF3. We found

a large number of genes, including well-known oncogenes, with

TCF3 binding sites in their promoters and exceptionally high correl-

ations with TCF3 expression. Interestingly, IGF2 belongs to this

group of genes suggesting that TCF3 regulates IGF2. Loss of im-

printing at the H19/IGF2 locus is with an extreme rate of occurrence

of 80% the most abundant epigenetic lesion in WTs and leads to an

IGF2 overexpression that can activate the canonical WNT pathway

and, hence, trigger the epithelial to mesenchymal transition (EMT).

Our findings indicate that the resulting TCF3 activation closes a

self-sustaining feedback loop further boosting IGF2 production.

This offers a potential explanation on how malignant tumor cells

maintain their stem cell character. The genes discussed above clearly

separate WTs according to tumor malignancy and may hence be

promising candidates for prognostic biomarkers that may also be

valuable for therapy stratification.

The presented use case shows that GeneTrail2 is able to uncover

biologically informative signals in -omics data making it an import-

ant tool for the elucidation of pathogenic processes. The ability to
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compare multiple enrichment results from the same or different

-omics allows to identify differences and similarities between experi-

ments. These capabilities are central for modern in silico analyses

and set GeneTrail2 apart from other approaches.
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