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Abstract: There are currently no effective biomarkers for prognosis and optimal treatment selection
to improve non-small cell lung cancer (NSCLC) survival outcomes. This study further validated
a seven-gene panel for diagnosis and prognosis of NSCLC using RNA sequencing and proteomic
profiles of patient tumors. Within the seven-gene panel, ZNF71 expression combined with dendritic
cell activities defined NSCLC patient subgroups (n = 966) with distinct survival outcomes (p = 0.04,
Kaplan–Meier analysis). ZNF71 expression was significantly associated with the activities of natural
killer cells (p = 0.014) and natural killer T cells (p = 0.003) in NSCLC patient tumors (n = 1016) using
Chi-squared tests. Overexpression of ZNF71 resulted in decreased expression of multiple components
of the intracellular intrinsic and innate immune systems, including dsRNA and dsDNA sensors.
Multi-omics networks of ZNF71 and the intracellular intrinsic and innate immune systems were
computed as relevant to NSCLC tumorigenesis, proliferation, and survival using patient clinical
information and in-vitro CRISPR-Cas9/RNAi screening data. From these networks, pan-sensitive
and pan-resistant genes to 21 NCCN-recommended drugs for treating NSCLC were selected. Based
on the gene associations with patient survival and in-vitro CRISPR-Cas9, RNAi, and drug screening
data, MEK1/2 inhibitors PD-198306 and U-0126, VEGFR inhibitor ZM-306416, and IGF-1R inhibitor
PQ-401 were discovered as potential targeted therapy that may also induce an immune response for
treating NSCLC.

Keywords: non-small cell lung cancer; prognosis; diagnosis; CRISPR-Cas9/RNAi; drug screening;
targeted therapy

1. Introduction

Non-small cell lung cancer (NSCLC) has the second-highest cancer incidence rate
and the highest cancer mortality rate for both men and women [1]. The major histological
subtypes of NSCLC are lung adenocarcinoma (LUAD, 40% of NSCLC cases), squamous
cell carcinoma (LUSC, 25–30%), and large cell carcinoma (LCC, 5–10%). Each subtype
represents a distinct prognosis for patients and informs treatment options [2,3]. According
to the current NCCN standard of care [4], stage 1A NSCLC patients do not receive adjuvant
therapy after surgery. Osimertinib is recommended for stage 1B patients with EGFR exon 19
deletion or L858R. Adjuvant therapy is recommended for patients in stage 1B with high-risk
features, i.e., tumor size > 4 cm, poor differentiation, vascular invasion, wedge resection,
visceral pleural involvement, and unknown lymph node status, stage 2, and above. Patients
in stages 3 and 4 receive additional radiotherapy [5]. Programmed Death 1 (PD-1) and its
ligand PD-L1 compromise anti-tumor immunity while maintaining peripheral tolerance [6].
Anti-PD-L1 antibodies have revolutionized cancer immunotherapy, including NSCLC
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treatment [7]. NCCN guidelines [4] recently changed to establish adjuvant anti-PD-L1
immunotherapy (atezolizumab) after chemotherapy as the standard of care for stages
2/3A NSCLC patients with PD-L1 > 1%, following the FDA approval [8]. Yet, resectable
NSCLC has a 5-year mortality rate of 40% in stage 1, 66% in stage 2, and 85% in stage 3A
because of recurrence [9–13]. At present, there are no accurate prognostic tests that predict
post-surgical recurrence/metastasis or inform the clinical benefits of adjuvant therapies,
including chemotherapy and immunotherapy, in early-stage NSCLC patients—a significant
unmet clinical need.

We recently discovered a seven-gene (ABCC4, CCL19, CD27, DAG1, FUT7, SLC39A8,
and ZNF71) signature that accurately predicts the risk of recurrence/metastasis in retrospec-
tive analyses of 1500 early-stage NSCLC patients for all histological subtypes, including
clinical trials [14,15]. Employing novel artificial intelligence (AI) methods and confirmed
with qRT-PCR using frozen tumors (n = 331) [14], our assay also predicts the clinical benefits
of receiving adjuvant chemotherapy in both training and validation sets, including a clinical
trial JBR.10. Results from our seven-gene panel were corroborated in The Cancer Genome
Atlas (TCGA) cohort for risk stratification of early-stage NSCLC patients (n = 923) [15].
Within this seven-gene panel, CD27 is a target for immune checkpoint inhibitors (ICIs) [16],
and anti-CD27 mAb is being tested as an adjuvant immunotherapy in phase I/II clinical
trials for multiple tumor types with promising results [17,18]. Within the seven-gene panel,
ZNF71 protein expression quantified with AQUA produced robust patient stratification
in two separate NSCLC cohorts (n = 191) in tissue microarrays [14]. We previously re-
ported that the ZNF71 KRAB isoform was associated with epithelial-to-mesenchymal (EMT)
transition and poor prognosis in NSCLC patients [19].

ZNF71 is a member of a large family of KRAB zinc finger transcription factors, KRAB-
ZNFs, which due to the presence of the KRAB domain function as transcriptional repressors.
One of the main roles ascribed to KRAB-ZNFs is the repression of retrotransposon class
repetitive elements (TEs) [20] that comprise up to 36% of the human genome [21]. Retro
TEs are remnants of ancient invaded viruses, which could produce dsRNA molecules
and RNA/DNA hybrids. Although the vast majority of TEs in the human genome are
inactivated by mutations, a small number of full-length functional elements including long
interspersed nuclear elements (LINEs) and human endogenous retroviruses (HERVs) are
capable of retrotransposition, mimicking viral infection. While normally silenced, they
could be reactivated in cancer or response to therapy [22,23]. The majority of cellular
dsRNA is the result of the TEs transcription [24]. Non-degraded dsRNAs are recognized by
specific proteins of the intracellular innate immune system also called pattern recognition
receptors (PRRs), such as MDA5/IFIH1 and others, ultimately leading to a Type I interferon
production [25]. Acting as specific dsRNA sensors downstream or in parallel with PRRs,
the OAS-RNase L and the PKR/EIF2AK2 pathways degrade endogenous and viral dsRNA
and block global cellular translation, respectively [26,27]. In addition, a growing number
of host restriction factors of the intrinsic immune system can be engaged in an anti-viral
response, including SAMHD1, TRIM5a, MX, and IFITM proteins [28].

Most human tumors display chromosomal instability (CIN) phenotype and aneu-
ploidy, which are often accompanied by the generation of micronuclei and the presence
of cytosolic dsDNA. Cytosolic dsDNA activates the cGAS-STING signaling pathway [29].
STING facilitates the activation of TBK1 kinase leading to its autophosphorylation on
S172 [30] and subsequent phosphorylation of the IRF3 transcription factor, which in turn
activates interferon response genes.

In this study, we sought to (1) further evaluate the diagnostic and prognostic implica-
tions of the seven-gene panel using both RNA-sequencing and proteomic profiles in diverse
NSCLC patient cohorts and examine the associated immune cell activities during NSCLC
tumorigenesis and progression; (2) investigate the functional involvement of ZNF71 KRAB
in innate immunity; (3) identify molecular networks mediated by ZNF71 relevant to innate
immunity in NSCLC tumors and normal adjacent lung tissues using a novel AI technology
based on Boolean implication networks; (4) discover pan-sensitive and pan-resistant genes



Int. J. Mol. Sci. 2022, 23, 14978 3 of 28

to a panel of 21 NCCN recommended drugs for treating NSCLC from the above identi-
fied molecular association networks; and (5) explore therapeutic compounds as new or
repositioning drugs for treating NSCLC for designed mechanisms of actions based on our
analysis of patient tumor profiles and in-vitro CRISPR-Cas9/RNAi and drug screening
data using Connectivity Map (CMap) [31,32].

2. Results
2.1. Further Validation of the Seven-Gene Signature in Prognosis for NSCLC

Our previous work [14] developed a prognostic and predictive seven-gene assay
including ABCC4, CCL19, CD27, DAG1, FUT7, SLC39A8, and ZNF71 for early-stage NSCLC.
In this study, we further explored the prognostic capacity of the seven-gene signature using
proteomic profiles in a Chinese LUAD cohort from Xu et al. [33] (n = 103) and TCGA-
NSCLC datasets (n = 923, TCGA-LUAD and TCGA-LUSC combined) of patient samples
with sufficient survival information. Immune cell-type activities associated with different
prognostic patient groups were investigated.

ABCC4, CCL19, CD27, DAG1, and SLC39A8 from the seven-gene assay were available
in log10 transformed proteomics data of Xu’s LUAD cohort [33]. A multivariate Cox model
was built based on these five genes to calculate the coefficients for the risk score. A stepwise
model selection that dropped the least significant variable in each iteration was used to
reach an optimal model. The final risk-score equation was shown in Figure 1A. A risk-score
cutoff point of −35 was found to stratify the patient samples with significantly different
survival outcomes. The Kaplan–Meier analysis results showed that the patients with a risk
score lower than −35 had significantly better survival outcomes than the patients with
a risk score higher than −35 in Xu’s LUAD proteomics data [33] (p = 0.0013, HR: 8.378
[1.774, 39.57]; Figure 1A).

Figure 1. Cont.
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Figure 1. The prognosis of the seven-gene panel using RNA sequencing and proteomic profiles
in NSCLC tumors. Kaplan–Meier analysis and log2 ratio of xCell scores of the high-risk group
vs. the low-risk group using: (A) three-gene (ABCC4, SLC39A8, and DAG1) Cox model in LUAD
proteomics data; (B) RNA sequencing data of ABCC4 in TCGA-NSCLC; (C) proteomics data of
ABCC4 in LUAD [33]; (D) proteomics data of CCL19 in LUAD [33]; (E) proteomics data of DAG1 in
LUAD [33]; (F) RNA sequencing data of DAG1 in LUAD [33]; (G) RNA sequencing data of CD27 in
LUAD [33]; (H) proteomics data of SLC39A8 in LUAD [33]. Two sample t-tests were performed to
test the difference between the two groups (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

The Kaplan–Meier analysis results also showed significant stratifications for each of these
five genes (ABCC4, CCL19, CD27, DAG1, and SLC39A8) in RNA-sequencing/proteomic
profiling in Xu’s LUAD [33] or TCGA-NSCLC patient cohorts. Patients with a higher
expression of ABCC4 (cutoff = 10.45) in TCGA-NSCLC RNA-sequencing data survived
significantly longer than those with a lower expression of ABCC4 (Figure 1B). Patients with
a higher expression of ABCC4 (cutoff = 6.22; Figure 1C), CCL19 (cutoff = 6.31; Figure 1D),
DAG1 (cutoff = 6.72; Figure 1E), and SLC39A8 (cutoff = 6.48; Figure 1H) in log10 trans-
formed proteomics data in Xu’s LUAD cohort survived significantly longer than those
with a lower protein expression of these genes. Patients with a higher expression of DAG1
(cutoff = 3.9; Figure 1F) in Xu’s LUAD RNA sequencing data [33] survived significantly
longer than patients with a lower expression of DAG1. Patients with a higher expression
of CD27 (cutoff = 8.72; Figure 1G) in Xu’s LUAD RNA sequencing data [33] survived a
significantly shorter time than patients with a lower expression of CD27. ZNF71 and FUT7
did not have any protein expression measurements in Xu’s LUAD cohort [33]. In mRNA
expression profiles of the TCGA NSCLC and Xu’s LUAD [33] cohorts, ZNF71 and FUT7
were not significantly associated with patient survival outcomes.
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The xCell scores were computed for each patient sample in TCGA-NSCLC and Xu’s
LUAD [33] cohorts with the corresponding RNA sequencing data. For each significant
patient stratification in survival analysis, immune cell types with a significant difference
in activities (two-sample t-tests; p < 0.05) between high-risk and low-risk patient tumors
were identified. The log2 ratio of xCell scores between high-risk vs. low-risk tumors was
shown in Figure 1 for each stratification. A positive log2 (xCell score) indicates that cell
type activity varies more in high-risk tumors; a negative log2 (xCell score) indicates that
cell type activity varies more in low-risk tumors.

The log2 ratios of significantly different xCell scores between Xu’s LUAD tumors and
their paired non-cancerous adjacent tissues (NATs) [33] were also shown in Figure 2A. The
following cell types had more varied levels in NATs than in tumors: smooth muscle, CD4+
central memory T cells (Tcm), neutrophils, macrophages M2, and mast cells. The following
cell types had more varied levels in tumors than in NATs: basophils, lentivirus-induced
dendritic cells (IDC), pericytes, skeletal muscle, conventional dendritic cells (cDC), ly en-
dothelial cells, hepatocytes, natural killer T cells (NKT), activated dendritic cells (aDC), mv
endothelial cells, neurons, melanocytes, microenvironment score (the sum of all immune
and stromal cell types), plasmacytoid dendritic cells (pDC), mesangial cells, dendritic
cells, hematopoietic stem cells (HSC), endothelial cells, adipocytes, megakaryocytes, Tregs,
memory B-cells, erythrocytes, StromaScore (the sum of adipocytes, fibroblasts, and endothe-
lial cells), CD8+ T-cells, Th2 cells, plasma cells, macrophages M1, fibroblasts, sebocytes,
chondrocytes, epithelial cells, and astrocytes.

Figure 2. Classification of non-cancerous adjacent tissues (NATs) and lung adenocarcinoma (LUAD)
tumors with the seven-gene panel. (A) Log2 ratio of xCell scores of the LUAD tumor vs. NATs RNA
sequencing data. Two sample t-tests were performed to test the difference between the two groups
(*: p < 0.05; **: p < 0.01; ***: p < 0.001). Boxplots of available RNA sequencing gene expression (B) and
protein expression (D) in tumors and NATs of the 7-gene panel in LUAD patients [33]. Principal
component analysis (PCA) of RNA sequencing gene expression (C) and protein expression (E) in
separating NATs and LUAD tumors in patients.
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2.2. Diagnostic Implication of the Seven-Gene Signature in NSCLC

We examined the potential of using the seven-gene panel to separate NSCLC tumors
from NATs. Within the seven-gene panel, there were six genes (ABCC4, CD27, DAG1,
FUT7, CCL19, and ZNF71) available in the RNA sequencing data of Xu’s LUAD cohort [33]
(Figure 2B). The principal component analysis (PCA) using the mRNA expression of these
six genes to separate tumors and NATs in Xu’s LUAD cohort [33] is shown in Figure 2C.
There were five genes (ABCC4, CCL19, CD27, DAG1, and SLC39A8) available in Xu’s
LUAD proteomics data [33] (Figure 2D). The separation of LUAD tumors and NATs using
these five protein expression data is shown in Figure 2E. ABCC4 was expressed significantly
higher in LUAD tumors than NATs in RNA sequencing data (p < 0.05, two sample t-tests,
Figure 2B) but was expressed significantly higher in NATs than in tumors in proteomics
data (p < 0.001, two sample t-tests, Figure 2D). CCL19 was expressed significantly higher in
LUAD tumors than in NATs in both RNA sequencing and proteomics data (p < 0.05, two
sample t-tests, Figure 2B,D). CD27 was expressed significantly higher in LUAD tumors in
RNA sequencing data (p < 0.01, two sample t-tests, Figure 2B) but was not significantly
different in protein expression between LUAD tumors and NATs (Figure 2D). DAG1 and
SLC39A8 were expressed significantly higher in NATs in LUAD proteomics data (p < 0.001,
two sample t-tests, Figure 2D).

To evaluate the accuracy of using the seven-gene panel in classifying tumors from
NATs in Xu’s LUAD cohort [33], we applied seven commonly used machine-learning
classification algorithms. These algorithms included decision tree, k-nearest neighbor
(KNN), logistic regression, Naïve Bayes, random forests, support vector machine (SVM),
and radial basis function (RBF) network. Classification methods were performed in Weka
with 10-fold cross-validation. In LUAD RNA sequencing data [33], six genes (ABCC4,
CCL19, CD27, DAG1, FUT7, and ZNF71) with available mRNA expression data were used
in the classification. Random forests and RBF networks had the highest overall classification
accuracy of 0.86. The random forests classification had a sensitivity of 0.882, a specificity of
0.837, a ROC of 0.927, and an odds ratio of 38.44 in the 10-fold cross-validation of tumors
vs. NATs (n = 51). The RBF network had a sensitivity of 0.824, a specificity of 0.898, a ROC
of 0.896, and an odds ratio of 41.07 in the 10-fold cross-validation of tumors vs. NATs.
Three genes (ABCC4, DAG1, and SLC39A8) with available protein expression data were
used in the classification. SVM had the highest overall classification accuracy of 0.941, with
a sensitivity of 0.867, a specificity of 0.978, a ROC of 0.922, and an odds ratio of 286 in
classifying LUAD tumors from NATs (n = 103). Overall, the 7-gene panel generated high
accuracy in separating tumors from NATs using RNA-sequencing or proteomic profiles,
indicating its diagnostic implications in NSCLC. Detailed information on the classification
results is included in Tables S1 and S2 in Supplementary File S1.

2.3. ZNF71 Expression and Selected Immune Cells in NSCLC Prognosis

ZNF71 protein expression was not available in Xu’s LUAD cohort [33]. In our previous
study, ZNF71 protein expression quantified with AQUA was associated with a good
prognosis in NSCLC patients (n = 191) in tissue microarrays [14]. Although ZNF71 overall
mRNA expression was not associated with NSCLC patient survival outcomes, ZNF71 KRAB,
the transcriptional repression isoform, was an independent poor prognostic factor in early-
stage NSCLC [19]. Furthermore, ZNF71 KRAB was associated with EMT in NSCLC patient
tumors (n = 197) and epithelial cell lines (n = 117). ZNF71 protein expression positively
correlated with epithelial markers E-cadherin and Cytokeratin and negatively correlated
with mesenchymal markers ZEB1 and Vimentin in Western blots [15], consistent with the
association between ZNF71 protein expression and favorable patient prognosis [19]. Based
on the function of structurally relevant KRAB-ZNFs, we hypothesized that ZNF71 could be
involved in the suppression of endogenous transposable elements (TEs) expression, which
is often activated in cancer and can trigger an innate immune response.

Next, we tested if ZNF71 expression and specific immune cell activities have any
associations with NSCLC prognosis. The Kaplan–Meier analysis results showed that if
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we used the median value of ZNF71 mRNA expression as the cutoff to stratify TCGA-
NSCLC, the low-expression group and high-expression group did not have a significant
difference in the survival outcomes (Figure 3A). When we included the dendritic cell (DC)
xCell score and created a four quadrants stratification with the median of both ZNF71
mRNA expression and DC xCell score, i.e., high DC xCell score–low ZNF71 expression,
low DC xCell score–low ZNF71 expression, high DC xCell score–high ZNF71 expression,
and low DC xCell score–high ZNF71 expression, the Kaplan–Meier analysis results showed
a significant difference in survival among the four groups (log-rank p = 0.04, Figure 3B).
These results showed that patients with different ZNF71 expressions and DC activities had
distinct survival outcomes. Those with high DC xCell scores (representing more varied DC
levels) and low ZNF71 expression had the best survival outcomes, whereas those with low
DC xCell scores (representing less varied DC levels) and high ZNF71 expression had the
worse survival outcomes (Figure 3B). Out of all available cell types analyzed with xCell,
the DC xCell score is the only metric that can generate significant prognostic stratification
when combined with ZNF71 gene expression in TCGA NSCLC patients. Furthermore, the
ZNF71 expression level had significant associations with the xCell scores of natural killer
(NK) cells and NKT in TCGA NSCLC patient tumors (p < 0.01, χ2 tests, Figure 3C). These
results are consistent with a proposed model that tumor-derived substances trigger the
early generation of IFN-β by host CD11c+ DCs. The cross-presentation of tumor-derived
antigens is then stimulated by this IFN-β acting on the CD8α+ DC subset, resulting in
the cross-priming of CD8+ T cells specific for the tumor antigen. These reactivated T
lymphocytes may then move toward the tumor and cause more tumor cell death [34].

Figure 3. Association of ZNF71 and xCell scores of selected immune cells. Prognostic implications of
ZNF71 and xCell scores of dendritic cells in TCGA NSCLC patient tumors. (A) Kaplan–Meier analysis
of TCGA-NSCLC patients stratified by the median value of ZNF71 mRNA expression. (B) Kaplan–
Meier analysis of TCGA-NSCLC patients stratified by the median value of ZNF71 mRNA expression
and the median value of dendritic cells (DC) xCell scores. (C) χ2 test results of ZNF71 expression vs.
xCell scores of NK cells and NKT in TCGA-NSCLC patient tumors.
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2.4. Overexpression of ZNF71 KRAB, KRAB-Less Isoforms Suppresses Innate Immune Response

To investigate the potential function of ZNF71 in intracellular immune response,
we overexpressed its KRAB and KRAB-less isoforms in lung adenocarcinoma A549 cells
(Figure 4). The latter is missing the KRAB domain (as a result of spliced-out exon 3) and
encodes an approximately 55kDa protein. Interestingly, ZNF71 overexpression led to the
downregulation of STING and its downstream effector S172-phosphorylated TBK1, while
the total TBK1 level was not decreased. Similarly, we observed downregulation of OAS1,
while RNase L expression was not significantly changed. Two viral restriction factors
were either downregulated, TRIM5a, or inactivated by phosphorylation, SAMHD1 pT592
(Figure 4). These data suggest that overexpression of ZNF71 results in decreased expression
of multiple components of the intracellular intrinsic and innate immune systems, including
dsRNA and dsDNA sensors. Although direct targets of ZNF71 have not been identified
yet, these results are consistent with a hypothesis that ZNF71 suppresses the transcription
of genomic TEs.

Figure 4. ZNF71 suppresses components of the innate and intrinsic immune response. Western
blotting of control RFP, ZNF71 KRAB, and KRABless isoforms overexpression, as well as of several
markers of intracellular innate and intrinsic immune systems in A549 cells. GAPDH is shown as the
loading control.

2.5. Gene Association Networks of ZNF71 and Intracellular Innate Response Genes

To explore gene interactions and pathways among ZNF71 and the intracellular intrinsic
and innate immune systems, multi-omics association networks involving ZNF71 and genes
examined in Western blot (Figure 4) were computed with the Boolean implication network
method in Xu’s LUAD cohort [33] containing both mRNA and protein expression profiles
in tumors and NATs. The intracellular innate immune response (IIIR) genes included
(1) interferons and their receptors: IFNA16, IFNA17, IFNA21, IFNA22P, IFNA4, IFNA5,
IFNAR1, IFNAR2, IFNE, IFNG, IFNG-AS1, IFNGR1, IFNGR2, IFNK, IFNL1, IFNL3, IFNLR1,
IFNW1; (2) the cGAS-STING pathway: CGAS, TMEM173/STING1, TBK1, IKBKB, IRF3, IRF7,
AIM2, maybe JUN, and MAP3K7; (3) the OAS-RNase L pathway: OAS1 and RNASEL;
(4) viral restriction factors: SAMHD1 and TRIM5; (5) cyclin-dependent kinase: CDK1; (6) the
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co-repressor for KRAB-ZNFs: TRIM28; and (7) the housekeeping glycolysis gene: PFKL. For
the seven-gene panel and the IIIR genes, the status of proliferation as measured in CRISPR-
Cas9/RNAi in NSCLC cell lines and differential expression analysis in each studied patient
cohort was included in Supplementary File S1 Table S3. First, direct mRNA co-expression
networks of ZNF71 and IIIR genes (p < 0.05, z tests) were found when (1) ZNF71 was up-
regulated in LUAD tumors (Figure 5A), (2) ZNF71 was up-regulated in NATs (Figure 5B),
and (3) ZNF71 was down-regulated in NATs (Figure 5C) in the analysis of RNA-sequencing
data from Xu et al. [33]. No significant direct gene co-expression relations were found
between ZNF71 and IIIR genes when ZNF71 was downregulated in LUAD tumors.

Figure 5. Direct gene co-expression networks of ZNF71 and intracellular innate immune response
(IIIR) genes in lung adenocarcinoma (LUAD) patient samples using RNA sequencing data. (A) Direct
gene associations of ZNF71 and IIIR genes when ZNF71 is upregulated in LUAD tumors. (B) Direct
gene associations of ZNF71 and IIIR genes when ZNF71 is upregulated in NATs. (C) Direct gene
associations of ZNF71 and IIIR genes when ZNF71 is downregulated in NATs.

The computed direct gene associations between ZNF71 and IIIR genes (Figure 5) did
not provide sufficient information to infer signaling pathways relevant to ZNF71-mediated
innate immune responses. Here, the computationally derived gene associations do not
represent the biological interactions one would expect to observe in genome-scale profiling
after ZNF71 overexpression/knockdown. To infer pathways and interactions between
ZNF71 and IIIR genes, we expanded the gene association networks as follows.

Second, we also identified indirect gene association networks between ZNF71 and IIIR
genes using RNA sequencing data from Xu et al. [33]. ZNF71 had co-expression associations
with IIIR genes (p < 0.05, z tests) through some intermediate genes. To form a manageable
size of networks, we filtered the intermediate genes with the following criteria: (1) the gene
was differentially expressed between LUAD tumors vs. NATs (p < 0.05, two-sample t-tests);
(2) the gene was a proliferation gene that had a significant effect (dependency score < −0.5)
on 50% or more NSCLC cell lines in RNAi or CRISPR-Cas9 screening data; (3) the gene was
a prognostic gene that can significantly stratify the patient survival in RNA sequencing data
of both TCGA-LUAD and Xu’s LUAD [33] patient cohorts. The indirect gene association
networks with intermediate genes that meet all three criteria were found when ZNF71 was
up-regulated in LUAD tumors (Figure 6A), when ZNF71 was down-regulated in NATs
(Figure 6B), and when ZNF71 was up-regulated in NATs (Figure 6C). Again, no significant
indirect gene co-expression relations were found between ZNF71 and IIIR genes when
ZNF71 was downregulated in LUAD tumors.
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Figure 6. Indirect gene co-expression networks of ZNF71 and intracellular innate immune response
(IIIR) genes in lung adenocarcinoma (LUAD) patient samples using RNA sequencing data. (A) Gene
associations of ZNF71 with IIIR genes through intermediate genes in LUAD tumors when ZNF71 is
upregulated. (B) Gene associations of ZNF71 with IIIR genes through intermediate genes in NATs
when ZNF71 is downregulated. (C) Gene associations of ZNF71 with IIIR genes through intermediate
genes in NATs when ZNF71 is upregulated. ZNF71 is in a rectangle.

Third, although ZNF71 was not available in LUAD proteomics data from Xu et al. [33],
ZNF71 mRNA expression had indirect associations with the protein expression of some
IIIR genes through intermediate genes. The indirect gene association networks of ZNF71
(mRNA expression) → intermediate genes (mRNA expression) → IIIR genes (protein
expression) were found in LUAD tumors when ZNF71 was up-regulated (Figure 7A) and
when ZNF71 was down-regulated (Figure 7C), in NATs when ZNF71 was up-regulated
(Figure 7B), and when ZNF71 was down-regulated (Figure 7D).



Int. J. Mol. Sci. 2022, 23, 14978 11 of 28

Figure 7. Multi-omics gene association networks of ZNF71 and intracellular innate immune response
(IIIR) genes in lung adenocarcinoma (LUAD) patient samples using RNA sequencing and proteomics
data. (A) Gene associations between ZNF71 and IIIR genes through intermediate genes in LUAD
tumors when ZNF71 is upregulated. (B) Gene associations between ZNF71 and IIIR genes through
intermediate genes in NATs when ZNF71 is upregulated. (C) Gene associations between ZNF71 and
IIIR genes through intermediate genes in LUAD tumors when ZNF71 is downregulated. (D) Gene
associations between ZNF71 and IIIR genes through intermediate genes in NATs when ZNF71
is downregulated.

We examined the pathways in ZNF71 co-expression networks with ToppGene. Genome-
scale ZNF71 co-expression networks containing all the genes with a significant association
(p < 0.05, z tests) with ZNF71 were constructed with the Boolean implication networks us-
ing RNA sequencing data in LUAD tumors and NATs from Xu et al. [33], respectively. For
each disease state, the significantly (p < 0.05) enriched pathways of the gene co-expression
networks when ZNF71 was upregulated or downregulated were compared. There were
30 common pathways between the networks when ZNF71 was upregulated or downreg-
ulated in NATs, focusing on DNA repair, RTK signaling, and transcriptional regulation
(Supplementary File S2). There were no common pathways between the networks when
ZNF71 was upregulated or downregulated in LUAD tumors. Of the 30 common pathways
in NATs, a generic transcription pathway (ToppGene ID: 1269650) and gene expression
(ToppGene ID: 1269649) were present in the pathways when ZNF71 was upregulated
in LAUD tumors; whereas membrane trafficking (ToppGene ID: 1269877) and vesicle-



Int. J. Mol. Sci. 2022, 23, 14978 12 of 28

mediated transport (ToppGene ID: 1269876) showed up in the pathways associated with a
ZNF71 downregulated network in LUAD tumors. Once we focused the gene co-expression
networks on ZNF71 and IIIR genes when ZNF71 was upregulated or downregulated,
21 common pathways relevant to immune response were found in LUAD tumors; two
common pathways, gene expression and generic transcription pathways, were found
in NATs. Detailed significantly (p < 0.05) enriched pathways associated with ZNF71
genome-wide co-expression networks, indirect networks of ZNF71 and IIIR genes without
any filtering criteria applied, and networks shown in Figures 6 and 7 are included in
Supplementary File S2.

2.6. Identification of Genes Associated with Drug Response

A total of 21 NCCN-recommended drugs for systemic or targeted therapy for treating
NSCLC were available in the Cancer Cell Line Encyclopedia (CCLE) drug screening data.
We sought to identify pan-sensitive and pan-resistant genes to these 21 drugs using CCLE
RNA sequencing and proteomics profiles in human NSCLC cell lines. The following
genes were included in the drug-sensitivity analysis: (1) the seven-gene panel, (2) selected
epithelial genes (CDH1, EPCAM, ESRP1, ESRP2, DDR1, CTNNB1, CD24, CLDN7, KRT8,
KRT19, and RAB25) and mesenchymal genes (ZEB1, VIM, and FN1), (3) IIIR genes (Figure 4),
and (4) all the genes in the ZNF71-IIIR gene association networks (Figures 5–7). Genes that
were expressed significantly higher (p < 0.05; two-sample t-tests) in sensitive NSCLC cell
lines for a specific drug were defined as sensitive genes. The epithelial and mesenchymal
genes were included because the ZNF71 KRAB isoform was associated with EMT, and a
14-gene EMT classifier containing these genes separated early-stage NSCLC patients into
distinct prognostic groups with disparate survival outcomes [19]. For a specific drug, genes
that were expressed significantly higher (p < 0.05; two-sample t-tests) in resistant NSCLC
cell lines were defined as resistant genes. In this study, we only selected the genes that
were pan-sensitive or pan-resistant (Tables 1 and 2). Pan-sensitive genes were the genes
that were identified as either sensitive or not resistant to all the studied 21 drugs. Similarly,
pan-resistant genes were the genes that were identified as either resistant or not sensitive
to all the studied 21 drugs. PRISM [35] and GDSC1/2 [36–38] drug screening data were
included in this analysis.

Table 1. Pan-sensitive and pan-resistant genes to 21 drugs using RNA sequencing data in CCLE
NSCLC cell lines (n = 135).

Drug Systemic/Targeted Therapy Pan-Sensitive Genes Pan-Resistant Genes

afatinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

CDT1, INCENP IL4I1, LRP1, FAM156B, DCUN1D4, ESPN,
PTPRJ, NMNAT2

alectinib ALK Rearrangement Positive CSNK2A3, DYNC1H1,
PSME1

UCP3, CDC45, THSD7A, ANKRD52, EIF2A,
FAM156B, KRT8, CFAP44

brigatinib ALK Rearrangement Positive MYOF, ABHD10, TMTC4

cabozantinib RET Rearrangement Positive CSNK2A3 RNASEL, TMTC4, SMC2, ASB7, CFAP44,
IL17RA, ZXDA, THSD7A

carboplatin Systemic ASB7, RAB1A

cisplatin Systemic ZNF507, CSNK2A3,
WDR17

ARHGAP12, CDC45, ESPN, EIF2A, IL17RA,
MYOF, TMTC4, NMNAT2, PTPRJ, KRT8

crizotinib
ALK Rearrangement Positive/ROS1
Rearrangement Positive/MET Exon

14 Skipping Mutation

RFC4, CSNK2A3, MCM2,
MDN1, CDT1, INCENP LRP1, IL17RA

dabrafenib BRAF V600E Mutation Positive
FBLN7, MAP2, CTNNB1,

RNF128, CSNK2A3,
WDR17, ZNF507

FAM156B, SLC39A8, SMC2, KRT8,
NMNAT2
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Table 1. Cont.

Drug Systemic/Targeted Therapy Pan-Sensitive Genes Pan-Resistant Genes

dacomitinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

CDT1 MAP3K7, DCUN1D4, LRP1, THOC5,
FAM156B, ANKRD52, THSD7A

docetaxel Systemic RFC4, ABCC5, FBLN7,
MAP2

SLC39A8, IL17RA, KRT8, RAB1A, THSD7A,
DCUN1D4, MYOF, NMNAT2

erlotinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

CSNK2A3, PSMB6, TGFB2 FAM156B, ASB7, TMTC4, NMNAT2

etoposide Systemic PSMB3, CDT1, DYNC1H1,
ZNF507 ESPN, NMNAT2, ZNF324B, IL17RA

gefitinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

BRMS1L, CCNA2, CDT1,
INCENP

IL4I1, ABHD10, FAM156B, MAP3K7,
DCUN1D4, NMNAT2, PTPRJ, KRT8

gemcitabine Systemic MDGA1, MDN1, ZNF507,
WDR17

KRT8, ANKRD52, ASB7, RAB1A, FAM156B,
IL17RA, DCUN1D4, IL4I1, LRP1, NMNAT2

lorlatinib ALK Rearrangement Positive/ROS1
Rearrangement Positive MDN1, PSMB6 ANKRD52, ESPN, RAB1A

osimertinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

ABCC5, MDGA1, TCF20,
MAP2, PSMB6 ASB7, DCUN1D4, THSD7A

paclitaxel Systemic INCENP, CDT1, MCM2,
TCF20

RAB1A, THOC5, ASB7, IL17RA, NMNAT2,
KRT8, LRP1, SLC39A8, THSD7A, UCP3

pemetrexed Systemic MCM2, CCNA2 EIF2A, IL17RA, MYOF, THSD7A, ZXDA,
ARHGAP12, LRP1

trametinib BRAF V600E Mutation Positive CTNNB1
RNASEL, IL17RA, ANKRD52, FAM156B,

AP2S1, ARHGAP12, SRRM2, UCP3, ZXDA,
TMTC4, DCUN1D4, NCOR1, RAB1A

vemurafenib BRAF V600E Mutation Positive RNASE L, IL17RA

vinorelbine Systemic ABCC5, DYNC1H1, IRX1,
TCF20

RAB1A, SLC39A8, KRT8, DCUN1D4,
PTPRJ, IL17RA, MYOF, NMNAT2

Table 2. Pan-sensitive and pan-resistant genes to 21 drugs using proteomics data in CCLE NSCLC
cell lines (n = 64).

Drug Systemic/Targeted Therapy Pan-Sensitive Genes Pan-Resistant Genes

afatinib EGFR Exon 19 Deletion or L858R/EGFR
S768I, L861Q, and/or G719X

DDX42, RFX7, FAT1,
CREBBP IL4I1, KRT8, CDCA4, DIXDC1

alectinib ALK Rearrangement Positive DDX42, ZNF507 CCNA2, KIF14, CDK1, DAG1,
ANKRD52, MAP3K7

brigatinib ALK Rearrangement Positive FAT1, PTPRJ, PSME1 TEN1, MAP3K7, FBLN7, CDK1

cabozantinib RET Rearrangement Positive KANSL1, CHL1, TGFB2
TJP1_G3V1L9, BPTF_E9PE19,

NSD1, SYNE2_Q8WXH0_5, RDX,
ANKRD52

carboplatin Systemic TJP1_G3V1L9

cisplatin Systemic MYCL, DDX42, BRMS1L,
KANSL1, ZNF507

BPTF_E9PE19, FBLN7, DIP2B,
MYOF, CDK1

crizotinib
ALK Rearrangement Positive/ROS1

Rearrangement Positive/MET Exon 14
Skipping Mutation

FAM208A, TOMM7,
KANSL1 DAG1
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Table 2. Cont.

Drug Systemic/Targeted Therapy Pan-Sensitive Genes Pan-Resistant Genes

dabrafenib BRAF V600E Mutation Positive BRMS1L, RBBP4, ZNF507,
DDX42, KANSL1

RDX, ANKRD52, DIP2B, CDK1,
DAG1, IL17RA

dacomitinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

PSME1, DDX42, GREB1,
RBBP4

MAP2_P11137_4, KRT8, CDC45,
CDCA4, IL4I1

docetaxel Systemic
TOMM7, CREBBP, TCF20,

DDX42, FAM208A,
THOC5, ZNF507

DYNC1H1, MYOF

erlotinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

RFX7, THOC5, CREBBP KIF14, CDCA4

etoposide Systemic CHL1, FAT1

gefitinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

DDX42, CREBBP, TCF20,
CHL1 CDCA4, IL4I1

gemcitabine Systemic DDX42, CREBBP, ZNF507,
RBBP4, TOMM7

DIP2B, ANKRD52, CDK1,
MAP2_P11137_4, IL17RA, SLC39A8

lorlatinib ALK Rearrangement Positive/ROS1
Rearrangement Positive ASB7, PSME1, PIR CCNA2, MYOF, CDK1, CDC45

osimertinib
EGFR Exon 19 Deletion or

L858R/EGFR S768I, L861Q, and/or
G719X

CDCA4, EIF4G3_B1AN89, IL4I1,
ADARB1, CDC45

paclitaxel Systemic CHL1, THOC5, ZNF507,
UCHL3 SLC39A8, DIXDC1, DIP2B, MYOF, IL17RA

pemetrexed Systemic THOC5 BPTF_E9PE19, RDX, DYNC1H1

trametinib BRAF V600E Mutation Positive CHL1, PSME1, TMTC4,
JOSD2, PTPRJ, RPS19 RDX, DAG1, IL17RA, MAP3K7

vemurafenib BRAF V600E Mutation Positive FAM208A KRT8

vinorelbine Systemic TCF20, UCHL3, RBBP4,
THOC5, ZNF507 TJP1_G3V1L9

2.7. Functional Pathways Associated with the ZNF71 Co-Expression Networks and Discovery of
Therapeutic Targets

To discover functional pathways and therapeutic targets to improve NSCLC treatment
outcomes, pan-sensitive (n = 23) and pan-resistant (n = 31) genes in RNA sequencing
data (Table 1) were used as CMap input candidate genes. The up-regulation of pan-
sensitive genes and down-regulation of pan-resistant genes are expected to enhance NSCLC
treatment response. Thus, the pan-sensitive genes and the pan-resistant genes were used
as the initial up- and down-regulated gene lists in the CMap, respectively. The following
steps were further applied to the gene lists to inhibit NSCLC proliferation, reverse EMT,
and induce immune response: (1) excluding proliferation genes that had a significant
effect (dependency score < −0.5) on at least 50% of NSCLC cell lines in both CRISPR-
Cas9 and RNAi from the up-regulated gene list; (2) excluding survival protective genes
(p < 0.05, HR < 1: univariate Cox model in RNA sequencing data of Xu’s LUAD cohort [33]
and TCGA-NSCLC data) from the down-regulated gene list; (3) excluding the hazard
genes (p < 0.05, HR > 1; univariate Cox model in RNA sequencing data of Xu’s LUAD
cohort [33] and TCGA-NSCLC data) from the up-regulated gene list; (4) excluding the
mesenchymal genes from the up-regulated gene list; (5) excluding epithelial genes from the
down-regulated gene list; and (6) adding CD27, PD1 (PDCD1), and PDL1 (CD274) in the
downregulated gene list.
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With the final up- and downregulated genes (Figure 8A) as CMap input, significantly
enriched (p < 0.05, connectivity score > 0.9) functional pathways (Supplementary File
S1 Table S4), compound sets (Supplementary File S1 Table S5), and 28 potential new
or repositioning drugs were identified. In addition to PDL1 and CD27, other immune
checkpoint inhibitors (ICIs) for treating advanced metastatic NSCLC include anti-PD-
1 nivolumab and anti-CTLA4 ipilimumab [39]. To confirm the compound inhibitory
effects on ICIs, we further checked if the compounds had a significant negative correlation
(p < 0.05, R < 0, Pearson’s correlation test) between drug concentration and mRNA or
protein expression of major ICIs for NSCLC treatment, including CD27, CTLA4, PD1
(PDCD1), and PDL1 (CD274) in the CCLE NSCLC cell lines (n = 135). EC50 of AS-703026 had
a significant negative correlation with PDL1protein expression in the PRISM drug screening
data (Figure 8B). The drug concentration [IC50, EC50, ln(IC50), or ln(EC50) value] of five
compounds, PD-198306, ZM-306416, selumetinib, PQ-401, and U-0126, had a significant
negative correlation with mRNA expression of CD27, CTLA4, or PD1, respectively, in the
PRISM drug screening data (Figure 8C–I).

Figure 8. Cont.
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Figure 8. Discovering repositioning drugs based on the selected genes: Selection of significant func-
tional pathways and repositioning drugs based on the selected genes (A). The Pearson correlations
of PDL1 (CD274) protein expression with AS-703026 EC50 excluding outliers (B), CTLA4 mRNA
expression with PD-198306 IC50 excluding outliers (C), PD-198306 ln(IC50) excluding outliers (D),
ZM-306416 ln(EC50) excluding outliers (E), and selumetinib ln(IC50) (F), CD27 mRNA expression
with PQ-401 ln(EC50) excluding outliers (G) and U-0126 ln(IC50) (H), PD1(PDCD1) mRNA expression
with PQ-401 ln(EC50) excluding outliers (I). Selected compounds that had a low average IC50 and
EC50 in the CCLE NSCLC cell lines (n= 64 [IC50]; n = 88 [EC50]) (J).

To investigate if the identified compounds can effectively inhibit the growth of NSCLC
cells, the average IC50 and EC50 values in the CCLE NSCLC cell lines (n = 135) of the drugs
available in PRISM were examined (Table 3). PD-0325901 (Figure 8J) and dasatinib had
small average IC50 and EC50 values in the PRISM drug screening data, implying their
potential to inhibit the growth of NSCLC cells with a safe dose.

Table 3. Average IC50 and EC50 values of the selected therapeutic compounds in the PRISM dataset.
Outliers (drug concentration value > 10) were removed in the calculation of average IC50 and
EC50 values.

Src_Set_Id Compound Average of
IC50

Count of IC50 (Count
of IC50 Outliers)

Average of
EC50

Count of EC50 (Count
of EC50 Outliers)

CP_MEK_INHIBITOR PD-0325901 0.748 64 (0) 0.386 88 (0)

CP_SRC_INHIBITOR dasatinib 0.555 92 (0) 0.504 155 (4)

MAP_KINASE_INHIBITOR PD-98059 4.977 4 (0) 0.607 56 (3)

LEUCINE_RICH_REPEA
T_KINASE_INHIBITOR indirubin 3.548 23 (0) 0.630 160 (7)
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Table 3. Cont.

Src_Set_Id Compound Average of
IC50

Count of IC50 (Count
of IC50 Outliers)

Average of
EC50

Count of EC50 (Count
of EC50 Outliers)

CP_MEK_INHIBITOR selumetinib 2.214 35 (0) 0.647 165 (7)

CP_MEK_INHIBITOR AS-703026 1.514 100 (2) 0.940 164 (8)

CP_SRC_INHIBITOR saracatinib 1.733 103 (0) 0.983 170 (6)

CP_IGF_1_INHIBITOR BMS-754807 1.744 97 (0) 1.022 168 (8)

CP_SRC_INHIBITOR ZM-306416 2.626 28 (0) 1.081 87 (1)

CP_SRC_INHIBITOR bosutinib 3.162 46 (0) 1.587 87 (0)

CP_MEK_INHIBITOR U-0126 4.533 77 (0) 1.868 177 (3)

CP_MEK_INHIBITOR PD-198306 3.164 67 (1) 2.034 92 (0)

CP_SRC_INHIBITOR PP-1 3.408 51 (0) 2.079 87 (0)

CP_IGF_1_INHIBITOR linsitinib 4.251 64 (1) 2.088 146 (9)

CP_MEK_INHIBITOR PD-184352 3.988 47 (1) 2.190 89 (0)

CP_MEK_INHIBITOR MEK1-2-
inhibitor 4.197 44 (7) 2.200 84 (1)

IGF-1_INHIBITOR PQ-401 5.344 30 (0) 2.204 79 (1)

CP_SRC_INHIBITOR PP-2 3.187 64 (0) 2.484 79 (1)

2.8. Potential Oncogenes and Tumor Suppressor Genes

To identify potential oncogenes and tumor suppressor genes among the seven-gene
panel, EMT genes, the intracellular innate immune response (IIIR) genes, and all the inter-
mediate genes in previously identified networks (Figures 5–7), genes that were differentially
expressed between tumors and NATs and were significantly associated with patient survival
in LUAD proteomics data (n = 103) were selected [33]. Genes that had significantly higher
protein expression (p < 0.05; two-sample t-tests) in tumors and were survival-hazardous
(p < 0.05, hazard ration [HR] > 1; univariate Cox proportional-hazards model) were identi-
fied as potential oncogenes. Genes that had significantly higher protein expression (p < 0.05;
two-sample t-tests) in NATs and were survival-protective (p < 0.05, HR < 1; univariate Cox
proportional-hazards model) were identified as potential tumor suppressor genes. The
identified potential oncogenes included EIF4G3, GAPVD1, IKBKB, MCM2, and RFC4. The
identified potential tumor suppressor genes included DAG1, SLC39A8, TMEM173/STING1,
RDX, TJP1, CTNNB1, and SMC3. Somatic copy number alterations and their correla-
tions with mRNA, protein, and phosphoprotein of the selected genes were extracted from
Xu et al. [33]. Detailed information is provided in Supplementary File S3.

3. Discussion

This study further validated the seven-gene panel in patient recurrence risk stratifi-
cation using proteomic profiles in early-stage NSCLC patients. In addition, we showed
that the seven-gene panel can accurately classify tumors from NATs on both RNA sequenc-
ing and proteomic platforms, suggesting its potential diagnostic implications for NSCLC.
These findings warrant further clinical studies on liquid biopsies in the early detection of
NSCLC. Blood-based assays for predicting NSCLC risk and metastasis are important for
thoracic surgeons in clinical decision-making, given that the current accepted benign rate
is 5% in surgery and 20–30% in biopsies [40]. Developing minimally invasive biomarker-
based assays will reduce unnecessary surgeries and biopsies on patients who do not have
lung cancer.

In this study, we further extended our previous findings on the prognostic implication
of the seven-gene signature for NSCLC patient survival using proteomics/RNA-Seq data of
Xu’s LUAD (n = 103) cohort and RNA-Seq data of TCGA-NSCLC patient cohort (n = 923).
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From the available expression data, we found that ABCC4 was positively associated with
patient survival in both Xu’s LUAD protein and TCGA-NSCLC RNA-Seq data. DAG1
was positively associated with patient survival at both mRNA and protein levels, while
CCL19 and SLC39A8 showed similar associations at the protein level in Xu’s LUAD
dataset. At the same time, CD27 mRNA expression was associated with worse patient
outcomes. It is noteworthy that the combined protein expression score of ABCC4, DAG1,
and SLC39A8 efficiently stratified patient outcome (p = 0.0013, HR: 8.378 [1.774, 39.57];
Figure 1A), suggesting that these three proteins could potentially be used as prognostic
markers in NSCLC. Furthermore, we showed that ABCC4, DAG1, and SLC39A8 proteins
are significantly downregulated in tumors compared to NATs (Figure 2), suggesting that
they may play the role of tumor suppressors.

Expression of ZNF71 was only available at the mRNA level in the TCGA dataset,
and we found only a trend for its negative association with patient survival (Figure 3A),
consistent with our previous results in RNA-Seq dataset GSE81089 of NSCLC tumors
(n = 197) [19]. Based on its structure-inferred function, we hypothesized that ZNF71 could
be involved in the suppression of endogenous transposable elements (TEs) expression,
which is often activated in cancer and can trigger an innate immune response. We found that
overexpression of ZNF71 in A549 lung adenocarcinoma cells resulted in the downregulation
of multiple components of the intracellular intrinsic and innate immune systems, including
dsRNA (OAS1) and dsDNA (STING, pTBK1) sensors and viral restriction factors (TRIM5,
SAMDH1) (Figure 4). Activation of dsRNA and dsDNA sensors often leads to induction
of type I interferons, which can later bridge to adaptive immune response. In particular,
type I interferons have been shown to influence the maturation and migration of DC
cells, which are important for the cross-priming of NK and CD8+ T cells in the tumor
microenvironment [34]. Therefore, we calculated the DC xCell score in the TCGA dataset
and combined it with ZNF71 expression levels. Interestingly, a high expression of ZNF71
and a low DC xCell score were associated with worse patient outcomes (Figure 3B). ZNF71
gene expression is positively associated with immune infiltration including DC and CD8+
T cells in TCGA NSCLC tumors as we previously reported [15]. These data indicate a
potential interplay between ZNF71 expression in NSCLC and anti-tumor immune response.
Thus, future studies should be aimed at the identification of ZNF71 targets and establishing
a mechanistic link between ZNF71, innate immune response, and ICI therapy outcomes.

To identify potential new and repositioning medication candidates, we developed
mechanisms of action to improve therapy response, extend patient survival, decrease
proliferation, and reverse EMT. Therapeutic targets were identified from pan-sensitive
genes and pan-resistant genes from the following list: (1) the seven-gene panel, (2) selected
epithelial genes and mesenchymal genes, (3) IIIR genes (Figure 4), and (4) all the genes in
the ZNF71-IIIR gene association networks (Figures 5–7). These genes are relevant to ZNF71.
Direct targets of ZNF71 will be identified from RNA-sequencing of NSCLC cell lines after
ZNF71 knockdown/overexpression, which is our ongoing research.

Several MEK1/2 inhibitors were selected as potential targeted therapy also with an
inhibitory effect on ICIs for treating NSCLC. Selumetinib is an FDA-approved drug to treat
neurofibromatosis type 1 with symptomatic, inoperable plexiform neurofibromas. It is also
a designated orphan drug for treating thyroid cancer. Selumetinib is being investigated
as a secondary therapy for treating late-stage, metastatic, Kras-mutant NSCLC in several
trials [41]. Compared with various combination therapies, chemo-, and immune therapy,
selumetinib does not have superior efficacy but does have a better safety profile in treating
NSCLC [42]. AS-703026 (pimasertib) has a clinical activity of phosphorylated extracellular
signal-regulated kinase (pERK) inhibition in peripheral blood mononuclear cells in patients
with locally advanced/metastatic melanoma, particularly BRAF- and NRAS-mutated
tumors at clinically relevant doses in a phase I study [43]. In a phase I trial of patients with
solid tumors, pimasertib inhibited pERK and the recommended phase II dose (RP2D) was
defined as 60 mg bid [44]. PD-198306, an orally active inhibitor of MEK1/2, acts as a potent
mitochondrial protonophore and uncouples oxidative phosphorylation [45]. PD-198306
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is being studied in rabies virus infection [46], neuropsychiatric disorders [47,48], breast
cancer [49], and osteoarthritis [50] research. Resulting from direct inhibition of MEK1
and MEK2, U-0126 inhibits endogenous promoters containing activator protein 1 (AP-1)
response elements but does not affect genes lacking an AP-1 response element in their
promoters [51]. U-0126 inhibits anchorage-independent growth of Ki-ras-transformed rat
fibroblasts by concurrently suppressing both ERK and mammalian targets of rapamycin
(mTOR)-p70(S6K) pathways, and sensitizes human breast cancer MDA-MB-231 and HBC-4
cells to anoikis [52].

Among other selected compounds with an in vitro inhibitory effect on ICIs, ZM-306416
is a VEGFR antagonist and a potent inhibitor of EGFR function [53]. As an inhibitor of
placental growth factor (PGF) receptor FLT1, ZM-306416 impaired trophoblast proliferation
and migration in fetal growth restriction [54]. PQ-401 is an IGF-1R inhibitor that induces
apoptosis and inhibits in vitro viability, proliferation, and mobility of U87MG glioma cells
and in vivo glioma tumor growth in a mouse xenograft model [55]. In a separate study,
PQ-401 inhibited osteosarcoma cell proliferation, migration, and colony formation in U2OS
and 143B lines [56]. Overall, the above analysis identified several compounds, including
PD-198306, U-0126, ZM-306416, and PQ-401, as potential targeted therapy that may also
induce immune response for treating NSCLC, which was not known before.

Dasatinib was reported as a potential repositioning drug for treating NSCLC in our
previous publication [15]. PD-0325901 was used to treat refractory NSCLC patients but
did not meet its primary endpoint in an open-label, phase II study [57]. Combinations
of indirubin and arylidene derivatives showed antimetastatic effects on human NSCLC
A549 and NCI-H460 cells [58]. Saracatinib, an orally available inhibitor of Src kinases, im-
proved progression-free survival in a subset of patients with advanced, platinum-pretreated
NSCLC in phase II clinical trial [59]. BMS-754807 alone reduced cell survival and wound
closure and enhanced apoptosis in human NSCLC A549 and NCI-H358 cells, particularly
in NSCLC cells expressing high levels of IGF-IR [60]. In addition, BMS-754807 enhanced
cisplatin and carboplatin in A549 cells [60]. A combination of trametinib and bosutinib can
synergistically suppress the growth of NSCLC by inhibiting both the mitogen-activated
protein kinase (MAPK) and proto-oncogene tyrosine-protein kinase (SRC) pathways, sug-
gesting the potential for treating NSCLC, especially in the treatment of erlotinib-resistant
NSCLC [61]. Maintenance therapy of adding linsitinib to erlotinib did not improve PFS or
OS in non-progressing NSCLC patients in phase II randomized trial [62]. In a separate phase
II study, adding linsitinib to erlotinib resulted in worse patient outcomes compared with
erlotinib alone, suggesting that biomarkers are needed to select responding patients [63].
Morphine, a µ-opioid receptor (MOR) agonist, promoted the growth of NSCLC H460 cells
both in vitro and in vivo; a higher morphine dosage shortens the survival time of patients
with lung cancer [64]. Treatment with the Src inhibitor protein phosphatase 1 (PP-1) and
the MOR antagonist methylnaltrexone (MNTX) decreased the phosphorylation induced
by morphine. Furthermore, the antiapoptotic impact of morphine on NSCLC cells was
reversed by MNTX, PP-1, and the PI3K/AKT inhibitor deguelin. Lapatinib (EGFR and
HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR TKI), ZD4054 or BQ-123 (ETAR
antagonist), GM6001 (matrix metalloprotease inhibitor), PP-2 (Src inhibitor) or Tiron (su-
peroxide scavenger) all inhibited the increase in EGFR and HER2 transactivation induced
by the addition of ET-1 to NSCLC cells [65]. These results indicate that our AI pipeline is
capable to select relevant compounds for further clinical studies.

Among the identified potential NSCLC oncogenes, a reduction in the germline copy
number of EIF4G3 is linked to breast cancer susceptibility in the Japanese population [66].
IkappaB kinase (IKK) promotes tumorigenesis via inhibiting forkhead FOXO3a which
can be reversed by FOXO3a [67]. Conditional suppression of IKBKB inhibits melanoma
tumor development in mice, and IKBKB-mediated NFkB activity is required in mutant Hras-
initiated tumorigenesis [68]. IKBKB also promotes osteosarcoma cancer progression [69].
Minichromosome maintenance proteins (MCMs) are essential in DNA replication, genomic
stability, and cell proliferation [70,71]. MCMs, in particular, MCM2 and MCM4, are po-
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tential biomarkers to identify high-risk NSCLC patients [72]. MCM2 was significantly
overexpressed in almost all human cancers/subtypes in TCGA and was associated with
tumor mutation burden, tumor stage, immune therapy response, immune infiltration, and
poor patient prognosis [73]. RFC4 is frequently overexpressed in colorectal cancer (CRC),
and RFC4 overexpression is associated with tumor progression and shorter patient survival,
possibly due to RFC4-mediated cell cycle arrest and the regulation of CRC cell prolifer-
ation [74]. RFC4, along with other genes and microRNAs, might promote osteosarcoma
initiation and development [75]. GAPVD1, a cytoplasmic trafficking factor, is involved in
the regulation of the mammalian circadian clock [76]. Mutations in GAPVD1 and other
genes, estrogen- and growth factor-dependent regulation are involved in both transcrip-
tional and post-transcriptional dysregulation of syndecan-4 in breast cancer [77]. Together,
our identified NSCLC oncogene genes are supported by the literature.

Among the identified potential tumor suppressor genes, DAG1 was co-deleted with
the Von Hippel Lindau (VHL) tumor suppressor gene in clear cell renal cell carcinoma [78].
In glioblastomas, DAG1 correlated with tumor grade, and the patient group with higher
expression of DAG1 survived for a shorter time than the patient group with lower ex-
pression of DAG1 [79]. These results suggest that DAG1 may have different functions
in tumor initiation and progression in different cancer types. SLC39A8 is responsible for
pasting zinc to the cytoplasm when zinc is depleted, for maintaining many critical biologi-
cal processes. SLC39A8 suppresses the progression of clear cell renal cell carcinoma [80].
TMEM173/STING1 was expressed higher in normal samples in lung adenocarcinoma, lung
squamous carcinoma, prostate adenocarcinoma, uterine corpus endometrial carcinoma,
but was expressed higher in tumor tissues in colorectal carcinoma, kidney renal clear cell
carcinoma, stomach adenocarcinoma, and thyroid adenocarcinoma [81]. MTA1-induced
inhibition of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells
leads to weakened cell junctions and changes in the adhesion, migration, and invasion
capabilities of cells, putatively promoting the invasion and metastasis of NSCLC [82].
β-catenin/CTNNB1 is an intracellular scaffold protein. Aberrant CTNNB1 signaling is
one of the fundamental processes in many human cancers [83,84]. Both gain-of-function
and loss-of-function CTNNB1 mutations are found in multiple human cancer types [85].
SMC3 haploinsufficiency accelerates lymphomagenesis in mice with constitutive BCL6
expression and is considered a putative tumor suppressor for germinal center B cells [86].
RDX knockdown increased the intracellular SN-38 concentration, indicating enhanced
anti-tumor activity, in human clear cell renal cell carcinoma Caki-1 cells [87]. To date, the
literature supports the tumor suppressor functions of DAG1, SLC39A8, TMEM173/STING1,
TJP1, CTNNB1, and SMC3, but not RDX.

4. Materials and Methods
4.1. Non-Small Cell Lung Cancer (NSCLC) Patient Cohorts

This study obtained NSCLC patient sample data from public resources including
Xu et al. [33] and The Cancer Genome Atlas (TCGA Research Network: https://www.
cancer.gov/tcga, accessed on 28 April 2021). The primary lung adenocarcinoma (LUAD)
cohort collected samples from 103 randomly selected treatment-naïve Chinese patients
between 2010 and 2016 from Xu et al. [33]. Proteomics data of 103 paired LUAD tumors
and non-cancerous adjacent tissues (NATs), and RNA sequencing data of 51 paired LUAD
tumors and 49 NATs were used in this study. RNA sequencing data of the TCGA NSCLC
patient cohort, i.e., TCGA-LUAD (n = 515) and TCGA-LUSC (n = 501), with patient clinical
information were downloaded from an openly accessible entry LinkedOmics (http://www.
linkedomics.org, accessed on 28 April 2021) [88].

4.2. xCell

The xCell (https://xcell.ucsf.edu/, accessed on 12 July 2022) tool [89] was used to
predict the levels for 64 immune and stroma cell types based on gene expression data. The
xCell scores for patient samples were calculated using single-sample gene set enrichment

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
http://www.linkedomics.org
http://www.linkedomics.org
https://xcell.ucsf.edu/
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analysis (ssGSEA) to analyze the immune microenvironment. Low xCell scores indicated
the cell type had similar levels across all samples, whereas high xCell scores indicated the
cell type had different levels across all samples

4.3. Weka

The Weka software (Version 3.8.6) [90] was utilized to conduct machine learning clas-
sifier approaches to differentiate between tumors and NATs with selected genes in Xu’s
LUAD RNA sequencing and proteomics data [33]. Commonly used machine learning clas-
sification methods, including decision tree, k-nearest neighbors (KNN), logistic regression,
naïve Bayes, random forests, support vector machine (SVM), and radial basis function
(RBF) network, were used. Ten-fold cross-validation was applied in each session.

4.4. Cell Lines

A549 cells (kind gift of Dr. Ivan Martinez, WVU) were grown in DMEM (Corning,
Corning, NY, USA, cat. #15-018-CV) supplemented with 10% FBS (HyClone, Logan, UT,
USA), 2 mM L-glutamine (Corning, cat. # 25-005-CI), and 1×Antibiotic Antimycotic
Solution (Corning, cat. # 30-004-CI). All cells were maintained at 37C in a 5% CO2 incubator.

4.5. Vector Construction and Lentiviral Transduction

ZNF71 KRABless isoform was PCR-amplified from cDNA obtained from MDA231 cells
using PfuUltraII DNA polymerase using primers #5ZNF71 ex1-Mun: 5′-AGAGCAATTG
ATGGCTGCTCAGCTGC-3′ and #3ZNF71-X: 5′-AGACTCGAGTCAGGTGTGAATCCGCAG-
3′, and cloned into Dox-inducible pLUT lentiviral vector [91] using EcoRI and XhoI cloning
sites. To generate the KRAB isoform, a 397 bp long KRAB containing 5′-terminal fragment
was synthesized at GenScript and cloned into pLUT-ZNF71-KRABless using NheI and
EcoRI sites. The cloned cDNAs were sequenced to verify the absence of mutations.

Lentiviral particles were packaged in HEK293T cells (RRID:CVCL_0063) following cal-
cium phosphate cotransfection of constructed pLUT-ZNF71 vectors, psPAX2 (Addgene, Wa-
tertown, MA, USA, 12260), and pCMV-VSV-G (Addgene, 8454) as previously described [91].
pLUT vector expressing turbo red fluorescent protein (RFP) was used as control. After
two rounds of infection, transduced A549 cells were selected in puromycin (1 ug/mL)
containing media for at least 5 days. Ectopic ZNF71 expression was induced by culturing
cells in media containing 0.5 ug/mL doxycycline for 7 days.

4.6. Western Blot

Whole-cell lysates were prepared in nonreducing Laemmli buffer as described in [91].
Protein concentration was quantified by Pierce BCA Protein Assay (ThermoFisher, Waltham,
MA, USA, cat # 23225). Lysates with an equal amount of total protein were separated on 4
to 12% Bis-Tris NuPAGE Novex gels and transferred to a polyvinylidene difluoride (PVDF)
membrane. Protein bands were detected using standard chemiluminescence techniques
using GE Healthcare Amersham Imager 680.

The following antibodies were used in Western blotting: ZNF71 (GeneTex, Irvine,
CA, USA, cat. # GTX116553), from Cell Signaling Biotechnology (Danvers, MA, USA),
STING (cat. #13647), TBK1 pSer172 (cat. #5483), TBK1 (cat. #3504), OAS1 (cat. #14498),
RNase L (cat. #27281), TRIM5α (cat. #14326), SAMHD1 pThr592 (cat. #89930), and GAPDH
(Millipore, Burlington, MA, USA, MAB374).

4.7. Boolean Implication Network

The Boolean implication network algorithm [92–94] was used in this study to generate
gene associate networks. Details of the algorithm were included in our previous publi-
cations [15,95]. Thresholds of scope and precision for filtering the implication rules were
computed based on a one-tailed z-score of 1.64 (95% level of significance).

Xu’s LUAD cohort [33] was used to construct the gene association networks. Each
gene’s expression was divided into three categories: under-expressed (–1), normal (0),
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and over-expressed (1). The categorization was based on the distribution of the selected
housekeeping genes (B2M, ESD, FLOT2, GAPDH, GRB2, HPRT1, HSP90AB1, LDHA,
NONO, POLR2A, PPP1CA, RHOA, SDCBP, and TFRC) [14,96–98]. The percentage of
under-expressed and over-expressed samples for all the housekeeping genes was fixed to
be 30% in each dataset. Standard deviations were calculated for the normal range based on
the housekeeping genes and applied to the rest genes. The numbers of standard deviation
used for each dataset were: 0.68 for RNA sequencing data of LUAD tumors; 0.75 for RNA
sequencing data of NATs; 0.88 for proteomics and RNA sequencing data of LUAD tumors;
and 0.95 for proteomics data and RNA sequencing data of NATs. The networks were
visualized with Cytoscape (version 3.9.1) [99].

4.8. CRISPR-Cas9 Knockout Assays

Genome-scale CRISPR-Cas9 knockdown data from project Achilles [100,101] were
obtained from the DepMap (release 21Q4) [102]. CRISPR-Cas9 dependency scores of human
NSCLC cell lines (n = 94) from the DepMap portal (https://depmap.org/portal/download/
all/, accessed on 12 September 2022) were used in this study. The CERES method was used
to normalize gene-level dependency scores. The median of the normalized dependency
scores of common essential genes was −1.0, and that of non-essential genes was 0 in each
cell line. In this study, a dependency score of less than −0.5 indicated that the gene had a
significant effect on the cell line in CRISPR-Cas9 knockout.

4.9. RNAi Knockdown Assays

Genome-wide RNA interference (RNAi) knockdown screening data [103] in project
Achilles was analyzed in this study. RNAi dependency scores were processed with the
DEMETER2 v6 algorithm [103] to distinguish between on- and off-target effects. The
dependency scores of human NSCLC cell lines (n = 92) were obtained from the DepMap
portal (https://depmap.org/portal/download/all/, accessed on 12 September 2022). The
median of the normalized dependency scores of the positive control gene set was −1, and
that of the negative control gene set was 0. The gene that had a dependency score less than
−0.5 was considered as having a significant effect on the cell line in RNAi knockdown.

4.10. Pathway Enrichment Analysis Using ToppGene

The ToppFun web tool (https://toppgene.cchmc.org/enrichment.jsp, accessed on 28
June 2022) from the ToppGene suite [104] is an online resource for gene list enrichment
analysis. We used the ToppGene application with default parameters (FDR correction,
p-value cutoff = 0.05, gene limits 1 ≤ n ≤ 2000) to perform pathway enrichment analysis.

4.11. Cancer Cell Line Encyclopedia (CCLE)

RNA sequencing data of 135 human NSCLC cell lines were obtained from the Cancer
Cell Line Encyclopedia (CCLE) in DepMap release 22Q2 (https://depmap.org/portal/
download/all/, accessed on 12 September 2022). Proteomics data of 64 human NSCLC cell
lines were obtained from Nusinow et al. [105].

4.12. Drug Sensitivity in CCLE

The drug sensitivity data of human NSCLC cell lines were taken from multiple re-
sources. The secondary PRISM repurposing dataset [35] was obtained from the DepMap
release 19Q4. It has 1448 compounds screened in 499 human cell lines, 84 of which
were NSCLC cell lines and were used in this study. The Genomics of Drug Sensitivity in
Cancer (GDSC) datasets (GDSC1 and GDSC2 [36–38]) were downloaded (https://www.
cancerrxgene.org/downloads/bulk_download, accessed on 12 September 2022). A total of
64 NSCLC cell lines from GDSC1 and 58 NSCLC cell lines from GDSC2 were included in
this study. Details of the categorization of drug sensitivity in each cell line were included in
our previous publications [15,95].

https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
https://toppgene.cchmc.org/enrichment.jsp
https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
https://www.cancerrxgene.org/downloads/bulk_download
https://www.cancerrxgene.org/downloads/bulk_download
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4.13. Drug Repurposing Using Connectivity Map (CMap)

The connectivity map (CMap) online tool (https://clue.io/, accessed on 12 September
2022) [31,32] was used to explore functional pathways and potential repositioning of drugs
with selected gene expression signatures. Raw connectivity scores higher than 0.9 and a
p-value < 0.05 were considered significant.

4.14. Statistical Methods

Statistical analysis was performed using R software (version 4.1.3) with RStudio
(version 2022.02.3 Build 492) [106]. Two sample t-tests (two-tailed) were performed for
the comparisons of two groups of continuous variables. The independence of categorical
variables was evaluated with χ2 tests. Principle component analysis (PCA) was used to
generate the separation of NATs and LUAD tumors with selected genes. Visualization was
carried out in R and Cytoscape. The Kaplan–Meier method was performed to conduct
survival analysis and create survival curves. The difference between the survival rates
of patient groups was evaluated using log-rank tests. Univariate and multivariate Cox
regression analyses were performed to evaluate the prognostic capacity of the studied
factors. R packages survival, survminer, and ggplot2 were used in survival analysis. Pearson’s
correlation coefficients were used to determine the association between the two sample
groups. All hypothesis tests were two-sided, and test results with a p-value < 0.05 were
considered statistically significant.

5. Conclusions

This study extended a seven-gene panel for NSCLC prognosis using proteomic profiles.
The results also showed that the seven-gene panel can accurately classify NSCLC tumors
from NATs on both RNA-sequencing and proteomic platforms, suggesting its diagnostic
implications for the early detection of lung cancer. Gene expression of ZNF71, a marker
within the seven-gene panel, when combined with dendritic cell activities, can further
stratify NSCLC into different prognostic groups. ZNF71 expression is associated with
the activities of NK cells and NKT cells. Overexpression of ZNF71 results in decreased
expression of multiple components of the intracellular intrinsic and innate immune systems,
including dsRNA and dsDNA sensors, confirming a hypothesis that ZNF71 suppresses the
transcription of genomic transposable elements. Multi-omics networks of ZNF71 and the
intracellular innate immune response genes were revealed in NSCLC using a computational
Boolean implication network algorithm. From these constructed networks, pan-sensitive
and pan-resistant genes to 21 NCCN-recommended drugs for treating NSCLC were selected.
We designed mechanisms of action to enhance treatment response, prolong patient survival,
inhibit proliferation, and reverse EMT to screen candidates for new and repositioning
drugs. PD-198306, U-0126, ZM-306416, and PQ-401 were identified as potential targeted
therapy that may also induce immune response for treating NSCLC, which was not known
before. Our future research will identify direct targets of ZNF71 for the development of
novel therapeutic strategies to improve NSCLC survival outcomes.

6. Patents

The seven-gene prognostic panel was included in the US 2021-0254173 A1. The
artificial intelligence methodology for drug discovery was filed under PCT/US22/75136.
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