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Abstract 

Significance: Identification of causal variants and genes underlying genome-wide association 

study (GWAS) loci is essential to understanding the biology of alcohol use disorder (AUD). 

Methods: Integration of “multi-omics” data is often necessary to nominate candidate causal 

variants and genes and prioritize them for follow up studies. Here, we used Mendelian 

randomization to integrate AUD and drinks per week (DPW) GWAS summary statistics with the 

gene expression and methylation quantitative trait loci (eQTLs and mQTLs) in the largest brain 

and myeloid datasets. We also used AUD-related single cell epigenetic data to nominate 

candidate causal variants and genes associated with DPW and AUD.  

Results: Our multi-omics integration analyses prioritized unique as well as shared genes and 

pathways among AUD and DPW.  The GWAS variants associated with both AUD and DPW 

showed significant enrichment in the promoter regions of fetal and adult brains. The integration 

of GWAS SNPs with mQTLs from fetal brain prioritized variants on chromosome 11 in both 

AUD and DPW GWASs. The co-localized variants were found to be overlapping with promoter 

marks for SPI1, specifically in human microglia, the myeloid cells of the brain. The co-localized 

SNPs were also strongly associated with SPI1 mRNA expression in myeloid cells from 

peripheral blood. The prioritized variant at this locus is predicted to alter the binding site for a 

transcription factor, RXRA, a key player in the regulation of myeloid cell function. Our analysis 

also identified MAPT as a candidate causal gene specifically associated with DPW.  mRNA 

expression of MAPT was also correlated with daily amounts of alcohol intake in post-mortem 

brains (frontal cortex) from alcoholics and controls (N = 92). Results may be queried and 

visualized in an online public resource of these integrative analysis 

(https://lcad.shinyapps.io/alc_multiomics/). These results highlight overlap between causal genes 

for neurodegenerative diseases,     alcohol use disorder and alcohol consumption. 

In conclusion, integrating GWAS summary statistics with multi-omics datasets from multiple 

sources identified biological similarities and differences between typical alcohol intake and 

disordered drinking highlighting molecular heterogeneity that might inform future targeted 

functional and cross-species studies. Interestingly, overlap was also observed with causal genes 

for neurodegenerative diseases. 
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Introduction: 

 

Alcohol use disorders (AUD) are complex, moderately heritable (50-60%) 
1-4

, psychiatric 

disorders associated with heightened morbidity and mortality
5
. An AUD diagnosis includes 

aspects of physiological dependence, loss of control over drinking, as well as persistent alcohol 

intake despite physiological, psychological and interpersonal consequences
6,7

. In contrast, typical 

alcohol intake, as assessed using measures such as drinks per week, represents the distribution of 

alcohol use from casual or social drinking to excessive drinking demarcating risk for AUD 
8,9

. 

While heritable, measures such as drinks per week (DPW) are more likely to be influenced by 

environmental and socio-cultural factors and have complex and variable associations with 

morbidity and mortality 
8,9

.  

Genome-wide association studies (GWASs) of AUD and DPW have identified multiple risk loci. 

The largest GWAS of problematic alcohol use (PAU; N=435,563) which meta-analyzed AUD 

with a GWAS of the problem-subscale of the Alcohol Use Disorders Identification Test 

(AUDIT-P) reported genome-wide associations at 29 loci encompassing 66 genes, the largest 

tranche of signals for any addictive disorder to date 
10

. Alongside, the largest GWAS of typical 

alcohol intake (N=941,280) identified more than 200 independent genome-wide significant 

variants within or near more than 150 genes at 81 independent loci 
11

. Despite a genetic 

correlation (SNP-rg) of 0.77 between PAU and DPW (less so for AUD and DPW, SNP-rg=0.67), 

genetic correlations between these aspects of alcohol involvement and other anthropometric, 

cardio-metabolic and psychiatric disorders revealed marked distinctions
10-14

. For instance, while 

AUD and PAU appear to be consistently associated with increased genetic liability for other 

psychiatric disorders and negatively with liability to educational achievement, DPW is 

genetically uncorrelated with most psychiatric disorders (except ADHD and tobacco use 

disorder) but correlated negatively with educational achievement and cardio-metabolic disease 

(which remains uncorrelated with PAU or AUD)
10-14

. These findings strongly hint at some 

common pathological underpinnings to AUD, PAU and other mental illnesses while genetic 

liability to DPW appears to be confounded with socio-economic correlates of alcohol 

use
10,11,13,14

.  

Few studies have examined the intersection between the loci and genes associated with AUD and 

DPW, especially with respect to their functional and regulatory significance. As observed in 

other large GWAS, most genome-wide significant variants associated with AUD and DPW are 

intergenic and thus not directly mappable to a specific gene 
15,16

.  Furthermore, positionally 

mapping a non-coding variant to the nearest gene often does not identify the causal gene(s) 
15-17

. 

Indeed, most variants identified by GWAS reside within and affect the activity of regulatory 

elements (e.g., enhancers and promoters) that regulate the expression of target causal genes in 

specific cell types; the affected genes are often located at quite a distance from the risk variant/ 

regulatory element 
13,15,16,18

. Several recent studies have integrated GWAS data with expression 
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QTLs (eQTLs) using colocalization or integration methods to identify causal variants and genes 

associated with schizophrenia, Alzheimer’s disease and many other complex disorders 
13,15,16,18

. 

While similar efforts have been targeted at AUD and DPW, they have predominantly relied on 

bulk mRNA expression data from the small number of brain tissue samples in GTEx 
10-14

.   

In the current study, we used a multi-omics systems approach to identify causal variants and 

genes associated with AUD and DPW. Using Mendelian Randomization-based methods on the 

largest available transcriptomic and epigenomic data for brain tissues and myeloid cells, we 

prioritized regulatory variants that influence AUD and DPW, specifically as well as 

simultaneously. We also used mRNA expression data from the brains of individuals diagnosed 

with AUD and controls (N=138) to validate the differential expression of genes prioritized in the 

GWAS integration analyses. To our knowledge, this is the first and the largest systematic multi-

omics integration analysis to identify the functional impact of variants and genes associated with 

two correlated but etiologically distinct aspects of alcohol involvement. 

Results: 

AUD meta-analysis 

The large meta-analysis of AUD GWAS summary statistics (N=48,545 AUD cases and 187,065 

controls) from the Million Veterans Program (MVP) 
19

, the Psychiatric Genetics consortium 

(PGC-SUD) 
12

 and the Collaborative Studies on Genetics of Alcoholism (COGA)
20

 identified 

1157 SNPs (31 independent lead SNPs) within or near 79 genes at 10 independent loci 

associated with AUD.  We didn’t include UKB-AUDIT-P in this meta-analysis to specifically 

focus on AUD. Many of these loci were shared between the AUD GWAS and the drinks per 

week (DPW) GWAS by Liu et al 
11

 who identified 81 independent loci represented by 5197 (> 

200 independent lead) SNPs. A total of 360 SNPs associated with AUD and DPW were in 

common (i.e., p<5 x 10
-8

 in both GWAS). A large proportion (45%) of AUD and DPW 

associated SNPs were within intronic, UTR and non-coding regions of the genome.  

LDSC analysis using tissue specific epigenetic annotations 

We used the stratified linkage disequilibrium score (LDSC) regression 
21

 to test whether the 

heritability of AUD and DPW is enriched in regulatory regions surrounding genes      in a 

specific tissue. Using multi-tissue chromatin (ROADMAP and ENTEX) data 
22

, we observed a 

significant enrichment of promoter-specific epigenetic markers (H3K4me1/me3) in the fetal and 

the adult (germinal matrix, frontal-cortex) brain (P < 5 x 10
-8

) (Figure 2; Supplementary table 1) 

for the SNPs associated with AUD and DPW respectively. 

Integration of GWAS and eQTL/ mQTL data from fetal and adult brain 
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Summary based Mendelian Randomization (SMR) analysis of genome-wide AUD summary 

statistics with eQTLs and mQTLs in the adult and fetal brain identified 21 genes at 18 loci across 

the genome (P-SMR FDR < 20%; Heidi > 0.05) [Supplementary Table 3a]. Among these 18 loci, 

SMR analysis nominated a single candidate causal gene at 16 loci, while more than 1 causal gene 

was nominated at 3p21.31 (GPX1, AMT) and 11p11.2 (SPI1, MTCH2, NUP160). To avoid the 

occurrence of false positive co-localizations that might be exclusively driven by stronger 

eQTL/mQTL signals, we focused on the loci where the strongest      SNP was at least 

suggestively significant in the GWAS (P-GWAS < 5 x 10
-5

) [Table 1a; Figure 1].  Because of the 

much larger sample size of the DPW GWAS, 61 genes at nearly 31 loci passed the threshold for 

significance (P-SMR FDR < 20%; Heidi > 0.05; GWAS P < 5 x 10
-5

) [Table 1b; Figure 1]. On 

chromosome 11p11.2, our SMR based integration analysis co-localized a fetal brain specific 

mQTL (SPI1) and an adult brain specific eQTL (NUP160) with both traits (AUD and DPW). On 

chromosome 17q.21.31, the integration analysis prioritized different candidate genes for AUD 

(MAP3K14) and DPW (MAPT, CRHR1 and LRRC37A). Indeed, the AUD and DPW associations 

at 11p11.2 are likely to be two distinct loci, because the lead co-localized SNPs for each 

phenotype were not in LD (r
2 

= 0.2). The DPW association tagged the H2 haplotype at 

17q.21.31, while AUD’s association with MAP3K14 was outside the inversion area 

(Supplementary figure), defined by the H1/H2 haplotypes in this region.  

Fine mapping of 17q.21.31.  At 17q.21.31, eQTL and/ or mQTL from both fetal and adult brains 

co-localized with DPW signals. We observed stronger evidence of co-localization (SMR P < 5 x 

10-15) for DPW with MAPT and LRRC37A, than at any other locus. These genes are within a 

large inversion polymorphism (approximately 900 kb) that arose about 3 million years ago 
23

. 

Since that time, these haplotypes have been recombinationally suppressed and have accumulated 

many haplotype-specific variants. As a result, there is extended LD within more than 1 Mb, 

which makes it difficult to fine map the causal variants and genes at this locus. Integration 

analysis of adult brain eQTL data with the DPW GWAS predicted that increased MAPT 

expression (SMR Beta = 0.01) is associated with increased number of alcoholic drinks per week, 

while decreased expression of LRRC37A (SMR beta = -0.02) was associated with a decrease in 

drinks per week. The predicted gene expression results from AUD and DPW GWAS were 

compared with observed expression differences in the brains of AUD subjects and controls to 

validate the results. Our differential expression analysis of alcohol consumption in the human 

brain indeed showed that the mRNA expression of MAPT was associated with increased alcohol 

consumption (Figure 2c). We did not observe any association between expression of LRR37A 

and level of alcohol intake. The co-localized SNPs within the 17q.21.31 locus were also 

compared with the promoter (H3K27ac, H3K4me3), enhancer (ATAC-Seq) and promoter-

enhancer interactome (PLAC-Seq) data from 4 specific brain cell- types (microglia, neuron, 

astrocytes and oligodendrocytes) to elucidate the functional significance of these variants 

(Supplementary table). The co-localized mQTLs (rs3785884 and rs17651887) overlapped with 

the chromatin interaction region specifically in oligodendrocytes and these interactions looped at 

the MAPT promoter (Figure 2b). This observation combined with differential expression data in 
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the human brain provides strong supporting evidence that MAPT is likely to be the causal gene at 

this locus associated with increased alcohol consumption. 

Fine mapping at 11p11.2 

SMR analysis with mQTLs from fetal brain and eQTLs from adult brain prioritized SPI1 and 

NUP160 respectively at 11p11.2 for association with DPW and AUD (Figure 3A). Both SPI1 

and NUP160 are primarily expressed in myeloid cells. The predicted causal SPI1 mQTL 

(rs56030824) and NUP160 eQTL (rs10838753) were in fact in low LD (R
2
 = 0.31) with each 

other. rs56030824 (mQTL) showed a stronger association with both AUD (P = 8.91 x 10
-6

) and 

DPW (4.90 x 10
-12

) than rs10838753 (eQTL) (DPW P = 1.28 x 10
-10

; AUD p = 4.85 x 10
-5

). 

Adding rs56030824 as a covariate in conditional analyses had a larger effect on the association 

between rs10838753 and AUD (Porig = 4.85 x 10
-5 

; Pcond = 0.09) than with DPW (Porig = 1.28 x 

10
-10

; Pcond = 8.1 x 10
-3

).  rs56030824 remained significantly associated with both AUD (Porig = 

8.91 x 10
-6

; Pcond = 2.0 x 10
-2

) and DPW (Porig = 4.90 x 10
-12

; Pcond =  7.0 x 10
-4

) even after adding 

rs10838753 as a covariate. Rs56030824 overlapped the promoter marks (H3K27ac, H3K4me3) 

for SPI1 specifically in microglia (Figure 3A). This SNP also alters the binding site regulatory 

motif for RXRA, a transcription factor which is involved in promotion of myelin debris 

phagocytosis and remyelination by macrophages 
24

. Since SPI1 is expressed in myeloid lineage 

cells, its mRNA expression in the bulk brain was too low to perform differential expression or 

integration analysis. Therefore, we chose eQTLs from a large sample of peripheral blood 

monocytes to examine if rs56030824 is associated with expression of SPI1 in these cells. The 

effect sizes of eQTLs at 11p11.2 locus were linearly correlated with effect sizes from the DPW 

GWAS at this locus (Figure 3B and 3C). In fact, rs56030824 had the strongest effect size for 

SPI1 expression and DPW in the common variant category (Figure 3D). These observations 

together established rs56030824 as a stronger candidate to be considered as a causal variant and 

SPI1 as a potential candidate gene associated with      AUD and DPW.  

This study identified several other genes for DPW with multiple lines of evidence (eQTL, 

mQTL, differential expression; FDR <20%; HEIDI P > 0.05; GWAS P < 5 x 10
-5

). For example, 

at locus 16p11.2, SULT1A1 and SULT1A2 were the strongest candidates with co-localization 

evidence emerging from mQTL and eQTLs from adult brain tissue (Table 1b). On chromosome 

19, FUT2 was the strongest candidate; mRNA expression of FUT2 was also associated with 

increased alcohol consumption (Beta = 0.09, P = 4.6 x 10
-2

) when comparing the DLPFC of 

individuals with AUD and control subjects (Table 1b).  

Pathway and network analysis  

Ingenuity Pathway Analysis of      the prioritized genes associated with DPW showed significant 

enrichment for pathways related to TR (Thyroid hormone receptor)/RXR (Retinoic X receptor) 

activation, Lipoate biosynthesis, Estrogen biosynthesis and Sirutuin      signaling (Figure 6, 

supplementary table 4). The DPW associated genes were also part of networks associated with 
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immune cell trafficking and cellular movements (cell migration). Due to insufficient power and a 

smaller number of genes passing threshold of significance, we were not able to perform the 

pathway enrichment analysis for AUD.  

Discussion: 

In this study, we used a multi-omics integration approach to detect genes relevant to typical 

drinking (DPW) and alcohol use disorder (AUD). The AUD GWAS used in the current analysis 

specifically focused on the diagnosis rather than the disordered drinking. Importantly, our work 

highlights that GWAS variants for alcohol use disorder and drinks per week are enriched in 

promoter regions of the fetal and adult brain. Using large-scale transcriptomic and epigenomic 

data from these tissues, we successfully fine mapped complex loci (17q.21.31, 11p11.2, 16p11.2) 

and identified likely functional variants and candidate causal genes associated with alcoholism. 

Prior transcriptomic data from human and animal brains highlighted the contribution of immune 

networks in drinking behaviors 
25-31

.  But these observations were never consistent with results 

from GWAS of AUD and DPW, most likely due to lack of power in these genomic studies. 

Transcriptomic changes can be either a cause or a consequence of chronic excessive alcohol 

consumption. The identification of genes and/ or pathways involved in immune signaling (SPI1, 

RXR activation), lipid metabolism (RXR and sulfotransferases) and regulation of alcohol 

metabolism (Sirutuin signaling) are therefore important as an attempt to fill gaps in our 

understanding of disease predisposition and underlying biological mechanisms in a genomic 

context.  

 

For example, our LDSC based enrichment analysis shows that GWAS variants for both AUD 

and DPW are enriched in the genes expressed during early brain development. Drinking in later 

years      might interact with this genetic predisposition making individuals more susceptible not 

only to AUD but also to other neuropsychiatric disorders
32

. Identification of SPI1 and MAPT as 

genes for AUD are good examples of pleiotropy and/ or causal links between the alcohol intake 

and susceptibility to AUD, other psychiatric disorders (e.g., depression) and even Alzheimer’s 

disease
15,33

and other neurodegenerative diseases. We found that increased SPI1 expression in 

myeloid lineage cells was associated with a higher DPW and higher risk for AUD. Recently, 

Zhang and colleagues
33

 observed that protein expression levels of SPI1 in the cerebellum and 

spleen from subjects with Major depressive disorder and schizophrenia were significantly higher 

than in controls. In the past, we have also demonstrated that functional variants related to SPI1 

expression are associated with risk of Alzheimer’s disease 
15

. Similarly, higher levels of 

expression are associated with increased risk for Alzheimer’s disease. 

 

SPI1 (Spi-1 Proto-Oncogene) encodes an ETS-domain transcription factor (PU.1) that regulates 

gene expression during myeloid and B-lymphoid cell development and homeostasis. This nuclear 

protein binds to a purine-rich sequence known as the PU-box found near the promoters of target 

genes and, in coordination with other transcription factors and cofactors, regulates their 
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expression; among the genes are LXR/RXR nuclear receptors 
34

. In the brain, SPI1 is specifically 

expressed in microglia 
15

. Given SPI1's control over expression of several downstream genes, 

this gene may be a major reason enrichment of immune pathways is observed in transcriptomic 

analysis of human and animal brains. Because of the small fraction of microglia in bulk brain 

tissue, it is difficult to study expression of this transcription factor in transcriptomic datasets 

from whole brains. Some studies have reported that chronic alcohol consumption can influence 

expression of PU.1 in isolated microglia 
35

and peripheral lung macrophages 
36,37

. However, these 

studies report the consequences of drinking on PU.1 expression whereas our study uses genomic 

evidence to demonstrate that regulation of innate immune response likely underlies, at least in 

part, susceptibility to increased drinking and eventual risk for AUD     . 

 

MAPT is another example of a pleiotropic relationship between AUD and other neuropsychiatric 

and neurodegenerative disorders. Located on chromosome 17, MAPT, encodes the tau proteins 

best known medically for their role in central nervous system disorders such as Alzheimer's 

disease
38

, frontotemporal dementia
39

, Parkinson’s disease 
38

,  and the primary tauopathies 

progressive supranuclear palsy and corticobasal degeneration 
40

. Recently, Hoffman and 

colleagues
41

 showed that alcohol use can upregulate the expression of pTau (Ser199/Ser202) in 

the hippocampus of C57BL/6J mice.   Another study in humans observed differences in CSF-

Tau levels in demented alcoholics vs Alzheimer disease patients
42

. CRHR1 (corticotropin-

releasing hormone type I receptor) is another gene on 17q.21.31, that has been reported to be 

associated with alcoholism
43

. However, in our analysis, we did not observe an association 

between CRHR1 expression and alcohol consumption  

 

We also identified other genes that might be involved in increased alcohol consumption through 

a variety of biological mechanisms.  For example, VPS4A at 16q23.1 has been implicated in 

dopamine regulation, reward anticipation, and hyperactivity in an fMRI study 
44

. We also 

identified functional variants for SULT1A1 and SULT1A2 genes that encode for Sulfotransferase 

Family 1A enzymes catalyzing the sulfate conjugation of many hormones, neurotransmitters, 

drugs, and xenobiotic compounds
45

. In IPA disease enrichment analysis we also observed a 

significant overlap between genes implicated in DPW with other neurological, behavioral and 

immune related      disorders (Supplementary Fig 1). The      genes associated with DPW also 

showed significant enrichment for pathways related to TR/ RXR activation, Lipoate 

biosynthesis, Estrogen biosynthesis and Sirtuin signaling (Figure 6, Supplementary Table). TRs 

(Thyroid hormone receptor) control the expression of target genes involved in diverse 

physiological processes and diseases, such as metabolic syndrome, obesity, and cancer, and, 

therefore, are considered as important targets for therapeutic drug development
46

. RXRs 

(Retinoic X Receptor) are also known to potentially regulate the ethanol metabolizing enzymes 

after chronic alcohol consumption 
47

.      It has been reported that the human aldehyde 

dehydrogenase-2 (ALDH2) promoter contains a retinoid response element, which might be 

contributing to the regulation of the gene
47

.  Sirtuins signaling has been shown to play an 
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important role in cocaine and morphine Action in the Nucleus Accumbens. Ferguson and 

colleagues
48

 demonstrated that systemic administration of a nonselective pharmacological 

activator of all sirtuins can increase the cocaine reward.  

 

In conclusion, our study prioritizes risk variants and genes for subsequent experimental follow-

up, which will help interrogate the molecular mechanisms underlying the link between alcohol 

consumption and AUD. Our database of multi-omics analysis in the fetal and adult brain is also 

made available with this study (see URLs) and provides a starting point to elucidate the 

biological mechanisms underlying AUD. We have demonstrated that individuals susceptible to 

AUD may have altered expression of disease-causing genes at earlier stages of life. Moreover, 

our results show the pleiotropic role of AUD-related variants in a variety of other brain disorders 

including Alzheimer’s disease. We expect results of multi-omic integration analysis will help 

researchers to design genetically informed experiments to identify biological mechanisms and 

drug targets related to AUD.  

 

Materials and methods: 

Samples  

Alcohol Use Disorder 

We meta-analyzed three published GWAS: the Million Veteran Program (MVP)
19

 GWAS of 

AUD (EUR N = 202,004; Ncases = 34,658), with case status derived from International 

Classification of Diseases (ICD) codes of alcohol-related diagnoses from electronic health 

records (EHR) data, the Psychiatric Genomics Consortium (PGC) GWAS of alcohol dependence 
12

(cases based on DSM-IV diagnoses; EUR unrelated genotyped N = 28,757; Ncases = 8,485; 

AFR N = 5,799; Ncases = 2,991) and the Collaborative Studies on Genetics of Alcoholism 

(COGA) GWAS of alcohol dependence (cases based on DSM-IV diagnoses; EUR unrelated 

genotyped N = 4,849; Ncases = 2,411)
20

. 

Drinks per week 

We used genome-wide summary statistics for drinks per week (DPW; EUR N = 537,349 without 

the 23andMe samples) from GSCAN 
11

 to contrast with AUD. 

eQTLs from adult brain 

We meta-analyzed three eQTL datasets with data from the dorsolateral prefrontal cortex 

(DLFPC): PsychEncode (N = 1387)
49

, ROSMAP (N = 461)
50

 and COGA-INIA (N = 138). We 

genotyped brain samples acquired from the New South Wales Brain Bank (NSWBB) using the 

UK Biobank Axiom array as part of COGA-INIA collaboration.  
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mQTLs from adult brain 

Brain-mMeta mQTL summary data (Qi et al. 2018 Nat Commun) 
51

 in SMR binary (BESD) 

format were obtained from the SMR data resource. This is a set of mQTL data from a meta-

analysis of ROSMAP
52

, Hannon et al. 
53

 and Jaffe et al. 
54

.  

eQTLs from fetal brain 

Summary data for eQTLs from developing human brains were obtained from an online 

repository shared by Heath O'Brien and Nicholas J. Bray
55

. The analyses were performed on 120 

human fetal brains from the second trimester of gestation (12 to 19 post-conception weeks). 

mQTLs from fetal brain 

Summary data for mQTLs from developing human brains were obtained from an online 

repository shared by Ellis Hannon and Jonathan Mill 
53

. The mQTLs were characterized in a 

large collection (n=166) of human fetal brain samples spanning 56–166 days post-conception, 

identifying >16,000 fetal brain mQTLs. 

eQTL data from CD14+ monocytes 

We used the gene expression and genotype data generated on primary monocytes from 432 

healthy Europeans to quantify the relationship between the co-localized SNPs and expression of 

myeloid linseage gene
56

. 

Whole genome transcriptomic data in brain of alcoholics 

mRNA expression data in the DLFPC region of the human brain was generated in 138 brains 

obtained from the New South Wales Brain Bank (NSWBB). We also had access to alcohol 

consumption (gm/day) data in a subset of 92 brains. Alcohol-dependence diagnoses and 

consumption data were collected by physician interviews, review of hospital medical records, 

questionnaires to next-of-kin, and from pathology, radiology, and neuropsychology reports.  

Brain cell type specific enhancer and promoter data 

We used the promoter (H3K27ac, H3K4me3), enhancer (ATAC-Seq) and promoter-enhancer 

interactome (PLAC-Seq) data for 4 specific cell types of brain (microglia, neuron, astrocytes and 

oligodendrocytes) to elucidate the functional significance of colocalized SNPs
57

. 

Analysis 

eQTL meta-analysis in adult brain 
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RNA Sequencing data on DLFPC region of the brain for 138 samples was generated as part of 

COGA-INIA collaboration
28

. We also genotyped the brain samples using the UK Biobank 

Axiom array.  All NSWBB samples were imputed to 1000 Genomes using the cosmopolitan 

reference panel (Phase 3, version 5, NCBI GRCh37) using SHAPEIT then Impute2 
58

 within 

each array. Only variants with non�A/T or C/G alleles, missing rates <5%, MAF >5%, and 

HWE P �values >.0001 were used for imputation. Imputed variants with R2�<�.30 were 

excluded, and genotype probabilities were converted to genotypes if probabilities ≥.90. All 

genotyped and imputed variants (4,615,871 SNPs) with missing rates <10%, MAF ≥5% and 

HWE P �values >1 x 10
-6

 were included in the downstream analyses using MatrixQTL program. 

The gene expression was corrected for the batch, age, sex, rin, PMI and alcohol status using the 

“removeBatchEffect” option from limma package. The eQTL summary statistics from all three 

datasets were processed and munged together at single bp and allele level to remove ambiguity 

due to dbSNP rsids. The gene labels in all three datasets were also matched to Ensembl ids. The 

summary statistics were saved in binary format files (BESD) using the SMR. SMR “--meta” 

option was used to perform the meta-analysis in all three datasets. 

LDSC analysis 

We performed the partition heritability analyses for functional annotation using LDSC program. 

We obtained the weights for the multi-cell and tissue chromatin marks and performed the LDSC 

partition heritability analyses on munged summary statistics of AUD and DPW GWAS 
21

. 

SMR analysis 

To examine whether the GWAS variants associated with both AUD and DPW are mediated by 

changes in methylation and gene expression patterns, we conducted a summary data-based 

Mendelian randomization (SMR) analysis 
59

 on a set of mQTLs and eQTLs from fetal and adult 

brains. SMR is a Mendelian randomization-based analysis which integrates GWAS summary 

statistics with eQTL data in order to test whether the effect size of a SNP on the phenotype of 

interest is mediated by gene expression. We used this method as it does not require raw eQTL 

data to build the weights, so we were able to use the meta-analysis of eQTL data for the 

integration analysis. The gene and SNP positions for the summary statistics of the eQTL and 

mQTL datasets were standardized and aligned using an in-house summary statistics munging 

pipeline. The summary statistics were then converted into binary format (BESD) to perform the 

SMR analysis. The European subset of ADGC GWAS (phs000372.v1.p1) was used as the LD 

reference panel to perform the SMR analyses. The genes below FDR threshold (FDR < 20%) and 

with heterogeneity P value > 0.05 were considered to be causal within each combination of 

analysis.  

Conditional and joint (COJO) analysis 
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We used a summary data based conditional analysis approach to identify the independent lead 

SNP associated with AUD and DPW. This conditional and Joint analysis (COJO)
60

 approach is 

implemented in Genome-wide Complex Trait Analysis (GCTA) software
61

 package and is 

valuable when the individual level genotype data is not available for the conditional analysis. To 

perform the COJO analysis we used the summary statistics of AUD and DPW GWAS along with 

the European subset of COGA samples as the LD reference panel. 

Differential Expression analysis 

We first performed a linear regression with alcohol intake as a dependent variable to identify 

possible covariates (e.g. sex, age, PMI). Gene-level analyses started with the featureCounts-

derived sample-by-gene read count matrix. The basic normalization and adjustment pipeline for 

the expression data matrix consisted of: (i) removal of low expression genes (<1 CPM 

in�>�50% of the individuals); (ii) differential gene expression analysis based upon adjustment 

for the chosen covariates. We filtered out all genes with lower expression in a substantial fraction 

of the cohort, with 18,463 genes with at least 1 CPM in at least 50% of the individuals; note that 

only these genes were carried forward in all subsequent analyses. The log10 normalized alcohol 

consumption (from NSWBB brains) was used for differential expression analysis using the 

DeSeq2 program. The analysis was controlled for sex, age, PMI, BMI, RIN, batch and severity 

of alcoholism (AUDIT scores). 

Pathway analysis 

The results of integration analysis for the DPW and AUD GWAS (FDR < 20%, Heidi P > 0.05) 

were used to perform gene ontology and pathway enrichment analyses using the EnrichR and 

Ingenuity Pathway Analysis (IPA). 

Database for query and visualization 

We used ShinyApp to create a database for query and visualization of the results of integration 

analyses. Users can create volcano, Manhattan plots and heatmaps to visualize the results of 

eQTL, mQTL and epigenetic integration analyses with summary statistics of AUD and DPW 

GWAS. Users will also be able to see whether the genes of interest are differentially expressed in 

the brains of alcoholics and controls.  
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Data availability 

Results of the SMR analysis for all the conditions can be found in Supplementary Tables 5a -5h. 

Additionally all the results can be visualized at our Shiny web app 

(https://lcad.shinyapps.io/alc_multiomics/ ).  

Code availability 

Standard tools (LDSC, SMR, GCTA-COJO, UCSC browser) were used to perform all the 

integrative analysis reported in this manuscript. Pipelines used in the analysis can be accessed at 

the GitHub repository (https://github.com/kapoormanav/alc_multiomics ).  
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Table 1a: SMR analysis results with summary statistics of AUD GWAS  

Chr BP Gene Adult brain Fetal brain 

eQTL 

 p value 

mQTL 

 p value 

eQTL 

 p value 

mQTL 

 p value 

11 46399942 SPI1 x x x 1.91E-04 

46664086 MTCH2 1.89E-05 x x x 

46843734 NUP160 3.88E-04 x x x 

3 48395716 GPX1 4.93E-05 x x x 

48459884 AMT 2.07E-04 x 4.39E-04 4.47E-01 

17 43361331 MAP3K14 x x x 2.99E-05 

  

Column names: Chr (Chromosome), BP (Start position of the gene), Gene (Candidate causal 

gene), p value (SMR P values for integration of AUD summary statistics with respective eQTL/ 

mQTL annotation from adult or fetal brain). X denotes the missing values either due to non-

significant results or sub-threshold expression or methylation values in the respective tissue. 

Table 1b: SMR analysis results with summary statistics of DPW GWAS  

 

Chr BP Gene Adult brain Fetal brain 
DLFPC 

eQTL 

P value 

mQTL 

P value 

eQTL 

P value 

mQTL 

P value 

Diff_exp 

P value 

17 42971748 MAPT 4.84E-16 1.77E-08 x 1.80E-12 
7.64E-03 

43370099 LRRC37A 8.35E-16 3.89E-13 2.18E-10 x 
4.72E-01 
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42699267 CRHR1 1.07E-08 8.67E-09 x x 
2.98E-01 

42568094 PLEKHM1 x 3.89E-06 x x 
1.01E-01 

11 46399942 SPI1 x x x 1.11E-06 
6.96E-01 

46843734 NUP160 1.43E-06 x x x 
2.47E-01 

46616211 C1QTNF4 5.26E-06 x x x 
6.77E-01 

16 27620241 SULT1A1 2.09E-09 6.75E-06 x x 
5.55E-01 

27607801 SULT1A2 2.90E-09 1.56E-02 x x 
9.65E-01 

29102570 TBX6 1.70E-06 x x x 
5.59E-01 

27996147 LAT 1.77E-06 9.09E-02 x x 
3.73E-01 

30022548 DOC2A x x x 6.13E-07 
1.48E-01 

28915196 ATP2A1 x x x 2.57E-06 
9.00E-01 

29662188 PRR14 x 1.62E-04 x x 
7.06E-01 

22 40956767 CSDC2 4.17E-06 x x x 
7.17E-01 

40940449 POLR3H 8.53E-06 4.77E-05 x 4.35E-06 
2.57E-01 

40697526 ZC3H7B 1.67E-04 2.66E-05 x x 
1.46E-01 

19 48199232 FUT2 9.13E-06 x x x 
4.61E-02 

48401990 TULP2 2.78E-04 x x 3.75E-04 
1.74E-01 
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49342101 PLEKHA4 x 6.10E-05 x 1.05E-03 
8.14E-02 

3 182967438 ECE2 1.27E-05 x x x 
7.79E-02 

8 37034192 LSM1 1.38E-05 1.35E-05 x x 
5.15E-01 

37088861 DDHD2 9.76E-05 x x x 
5.06E-02 

9 129213652 RPL12 1.65E-05 x x x 
7.02E-01 

127244764 NR5A1 x x x 6.94E-06 
8.23E-01 

129186661 ZNF79 x 1.04E-04 x x 
9.07E-02 

1 155698234 RRNAD1 x 3.07E-05 x x 
4.19E-01 

156722410 HDGF x 3.78E-05 x x 
7.11E-01 

16 68221032 SNTB2 3.79E-05 x x x 
4.40E-01 

68345259 VPS4A 4.49E-05 x x x 
6.89E-02 

70611033 TAT 7.38E-05 x x x 
2.45E-01 

68760409 NQO1 1.95E-04 x x x 
2.85E-01 

68373333 NIP7 2.40E-04 x x x 
5.94E-01 

68796209 WWP2 3.11E-04 x x x 
2.52E-01 

71879545 ATXN1L x x x 2.77E-04 
8.57E-01 

12 50785101 SLC4A8 3.95E-05 x x x 
5.62E-01 
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2 72612886 ALMS1 4.61E-05 x x x 
6.54E-01 

17 6589389 WRAP53 5.58E-05 x x x 
1.67E-01 

6461609 TNFSF13 5.99E-05 x x x 
9.99E-01 

6482785 CD68 x 3.04E-04 x x 
6.38E-01 

5 132209139 LEAP2 x 7.75E-05 x 5.15E-05 
2.12E-01 

16 85731409 GINS2 x 1.51E-04 x 4.50E-08 
6.05E-01 

1 46799469 CMPK1 6.60E-05 1.14E-04 x x 
6.66E-02 

8 26630151 CCDC25 1.05E-04 x x x 
9.60E-02 

5 175853679 GRK6 x x x 1.15E-04 
1.34E-01 

1 204819245 PM20D1 3.32E-05 x x 2.69E-04 
3.96E-01 

15 51030318 LYSMD2 1.44E-04 x x 1.95E-04 
6.40E-02 

51311398 MAPK6 2.63E-04 x x x 
7.82E-02 

17 16723265 SREBF1 x 1.16E-04 x 2.33E-04 
8.86E-01 

4 38460508 RPL9 5.43E-05 x 2.95E-04 x 
4.75E-01 

17 56232535 SKA2 2.47E-04 x x x 
3.80E-01 

4 56844989 NOA1 6.57E-04 x x x 
6.79E-01 

17 1206998 SRR 3.61E-04 6.13E-05 2.80E-03 x 
6.28E-01 
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17 28624429 OMG 2.45E-03 x x 1.13E-04 
4.50E-02 

17 65031635 KPNA2 2.90E-03 1.04E-04 x x 
3.40E-01 

11 27494710 LGR4 x 9.25E-01 x 5.02E-05 
7.25E-01 

11 33185376 CSTF3 x 7.94E-02 x 4.96E-06 
9.84E-01 

2 178160898 NFE2L2 x 2.72E-05 x 1.73E-01 
2.48E-01 

2 44312696 PPM1B x 5.25E-05 x 2.04E-01 
5.01E-01 

22 42090992 A4GALT 3.14E-01 8.26E-05 x 7.43E-05 
7.10E-01 

1 224997797 EPHX1 3.34E-01 x x 1.20E-05 
7.93E-01 

 

Column names: Chr (Chromosome), BP (Start position of the gene), Gene (Candidate causal 

gene), p value (SMR P values for integration of DPW summary statistics with respective eQTL/ 

mQTL annotation from adult or fetal brain). X denotes the missing values either due to non-

significant results or sub-threshold expression or methylation values in the respective tissue. 
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Figure 1: Overview of the study. Series of analyses were undertaken to identify the candidate causal genes

associated with risk of AUD and DPW. We used the stratified linkage disequilibrium score (LDSC) regression

to test whether the heritability of AUD and DPW is enriched in regions surrounding genes with chromatin

markers in a specific tissue. This analysis helped us to identify the large eQTL/mQTLs datasets in the relevant

tissues to perform the multi-omic integration analysis using SMR. The candidate causal SNPs and genes

prioritized using SMR were further filtered according to threshold of association in GWAS and linkage

disequlibrium (Heidi P and COJO). The complex loci with multiple genes were further validated and

prioritized by exploring differential gene expression data from brains of alcoholics and controls. Integration of

eQTL data from monocytes also helped to prioritize candidate genes specifically expressed in the myeloid

cells. The cell type specific epigenetic data from the human brain was also used to identify the causal SNP/s

associated with DPW and AUD. 
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Figure 2: LDSC analysis using tissue specific chromatin data. LDSC analysis showed

significant enrichment of promoter specific markers (H3K4me1/me3) in the fetal and adult brain

for the SNPs identified in A) DPW and B) AUD GWAS analysis. Y-axis represents the

annotations and X-axis represents the -log 10 P value for enrichment. The dotted red line

represents the threshold of multiple test correction according to Bonferroni.  
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Figure 3: Results of SMR based integration analysis of DPW and AUD GWAS with eQTL/

mQTL from fetal and adult brain. X-axis represents the chromosomes and Y axis shows the

direction of effect (Z scores) on gene expression/ methylation. Genes marked on the plots

represent the genes nominated through strict threshold of co-localization (FDR < 20%; SMRHeidi

P > 0.05; GWAS P < 5 x 10
-5

) and/ or multiple levels of transcriptomic and epigenetic evidence. 

 

L/ 

he 

ots 

idi 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341750
http://creativecommons.org/licenses/by/4.0/


Figure 4: MAPT was identified as a candidate gene associated with increased DPW. A.

Locus zoom plot showing DPW and eQTL (DLFPC) associations at 17q.21.3. X-axis represents

the positions along chromosome 17 and y-axis represents the P values of each SNP at this locus.

Color of each dot presents the R
2
 for LD at the locus (Red = 0.8 - 1.0; Orange 0.6-0.79; Green

0.4-0.59; Blue 0.2-0.39 and dark blue < 2.0). B. The co-localized SNPs were found to be

overlapping with the chromatin interaction region that loops back to the promoter of the MAPT

gene. C. In independent transcriptomic data from the human brain (N = 92), mRNA expression

of MAPT was found to be associated with the alcohol consumption. 
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Figure 5: SPI1 was nominated as candidate gene associated with increased DPW and AUD. Locus

zoom plot showing DPW, AUD and mQTL (Fetal brain) associations at 11p.11.2. X-axis represents the

positions along chromosome 11 and y-axis represents the P values of each SNP at this locus. Color of

each dot presents the R
2
 for LD at the locus (Red = 0.8 - 1.0; Orange 0.6-0.79; Green 0.4-0.59; Blue 0.2-

0.39 and dark blue < 2.0). Yellow line represents the position of rs56030824 identified as a functional

variant co-localized with AUD, DPW and mQTLs in the fetal brain. The tracks show the peaks for

promoter marks in 4 major cell types of the brain. Rs56030824 was found to overlap with promoter

specific marks (H3K4me3 and H3K27ac), specifically in microglia. B) Effect sizes for DPW GWAS and

SPI1 expression in CD14+ monocytes were found to be correlated i.e. decreased alcohol intake was

associated with decreased SPI1 expression. Rs56030824 showed the strongest association with DPW and

mQTL in the common variant category. C) rs56030824 is a strong eQTL and associated with SPI1

expression in CD14+ monocytes. 
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Figure 6: Genes nominated by multi-omic integration analysis were enriched in several

pathways. The x-axis represents the -log 10 P value (Fisher’s exact test) and y-axis shows the

significant pathways. 
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