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Abstract: Microbes produce an array of secondary metabolites that perform diverse functions from 

communication to defense1. These metabolites have been used to benefit human health and sustainability2. 

In their analysis of the Genomes from Earth’s Microbiomes (GEM) catalog3, Nayfach and co-authors 

observed that, whereas genes coding for certain classes of secondary metabolites are limited or enriched 

in certain microbial taxa, “specific chemistry is not limited or amplified by the environment, and that most 

classes of secondary metabolites can be found nearly anywhere”. Although metagenome mining is a 

powerful way to annotate biosynthetic gene clusters (BCGs), chemical evidence is required to confirm the 

presence of metabolites and comprehensively address this fundamental hypothesis, as metagenomic data 

only identify metabolic potential. To describe the Earth's metabolome, we use an integrated omics 

approach: the direct survey of metabolites associated with microbial communities spanning diverse 

environments using untargeted metabolomics coupled with metagenome analysis. We show, in contrast to 

Nayfach and co-authors, that the presence of certain classes of secondary metabolites can be limited or 

amplified by the environment. Importantly, our data indicate that considering the relative abundances of 

secondary metabolites (i.e., rather than only presence/absence) strengthens differences in metabolite 

profiles across environments, and that their richness and composition in any given sample do not directly 

reflect those of co-occurring microbial communities, but rather vary with the environment. 
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From a genomics perspective, information regarding metabolic potential is obtained through detection 

and classification of biosynthetic gene clusters (BGCs), the genomic loci underlying the production of 

secondary metabolites and their precursors4. The most sensitive approaches amplify BGC-specific marker 

sequences by PCR5, but only metagenomic methods can link BGCs to their genomes (i.e., metagenome-

assembled genomes, or MAGs) of origin and detect BGCs in novel MAGs. Nayfach and co-authors 

uncovered 104,211 putative BGC regions from 52,515 microbial MAGs. Surprisingly, their analysis 

showed that, although the main classes of secondary metabolites are enriched in particular microbial taxa, 

the relative distribution of secondary metabolite biosynthetic potential across environments was 

conserved, implying that most classes of secondary metabolites are not “limited or amplified” by the 

environment. The authors acknowledged that most of their annotated BGCs had incomplete sequences, 

potentially impacting annotation and quantification, but that this was consistent with previous studies. 

More importantly, gene-level data about BGCs inferred from MAGs cannot offer information about 

actual synthesis (e.g., gene expression), creating uncertainty about the distribution of secondary 

metabolites across environments6–9. Even with high-coverage gene expression data, currently lacking for 

most environments, the complex structural and modular nature of many secondary metabolites prevents 

their accurate association with the underlying genomic origins10. Furthermore, quantifying metabolite 

diversity from such metatranscriptomic and/or metaproteomic data (also lacking for most environments) 

is problematic due to a suite of post-translational processes that can dissociate the level of gene 

transcription from the abundance of gene products11. Finally, shotgun metagenomics does not capture 

BGCs from low-abundance MAGs efficiently, as shown from comparative studies of targeted sequencing 

approaches5. 

 An approach to surmount these issues is to complement metagenomics with a direct survey of 

secondary metabolites using untargeted metabolomics. Liquid chromatography with untargeted tandem 

mass spectrometry (LC-MS/MS) is a versatile method that detects tens-of-thousands of metabolites in 

biological samples12. Although LC-MS/MS metabolomics has generally suffered from a low metabolite 

annotation rate when applied to non-model organisms,  recent computational advances can systematically 
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classify metabolites using their fragmentation spectra13. Untargeted metabolomics provides the relative 

abundance (i.e., intensity) of each metabolite detected across samples rather than just counts of unique 

structures (e.g., Fig. 1a vs. 1b), and thus provides a direct readout of the surveyed environment, a result 

that is difficult to achieve with a purely genomics approach. While there is a clear need for the use of 

untargeted metabolomics to quantify the metabolic activities of microbiota, this methodology has been 

limited by the challenge of discriminating the secondary metabolites produced by microbes from tens-of-

thousands of metabolites detected in the environment. To resolve this bottleneck, we devised a 

computational method for recognizing and annotating putative secondary metabolites of microbial origin 

from fragmentation spectra. The annotations were first obtained from spectral library matching and in 

silico annotation14 using the GNPS web-platform15. These annotations were then queried against 

microbial metabolite reference databases (i.e., Natural Products Atlas16 and MIBiG17), and molecular 

networking18 was used to propagate the annotation to similar metabolites. Finally, a global chemical 

classification of these metabolites was achieved using SIRIUS/CANOPUS13. 

 We used this methodology to quantify microbial secondary metabolites from diverse microbial 

communities that span 20 major environments from the Earth Microbiome Project 500 (EMP500) dataset 

(Extended Data Fig. 1, Table S1). With this dataset, we show that although the presence/absence (i.e., 

occurrence) of major classes of microbially-related metabolites is indeed relatively conserved across 

habitats, their relative abundance reveals specific chemistry that is limited or amplified by the 

environment, especially at more resolved chemical class ontology levels (Fig. 1). Importantly, when 

considering differences in the relative abundances of all microbially-related metabolites, profiles among 

environments were so distinct that we could identify particular metabolites whose abundances were 

enriched in certain environments (Fig. 2a,c, Table S2, Table S3). For example, microbially-related 

metabolites associated with the carbohydrate pathway were especially enriched in aquatic samples, 

whereas those associated with the polyketide- and shikimate and phenylpropanoid pathways enriched in 

sediment, soil, and fungal samples (Fig. 2a). Interestingly, distinct analytical approaches confirmed 

specific metabolites as particularly important for distinguishing aquatic samples (C28H58O15, pathway: 
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carbohydrates, superclass: glycerolipids), non-saline plant surface samples (C13H10O, pathway: shikimates 

and phenylpropanoids, superclass: flavonoids, class: chalcones), and non-saline animal distal gut samples 

(C24H38O4, pathway: terpenoids, superclass: steroids, class: cholane steroids) (Figs. 2c, Tables S2, S3). 

We also identified specific metabolites that could classify specific environments with 68.9% accuracy in 

machine-learning analysis (Fig. 3a, Extended Data Fig. 3, Table S4), and found further support for the 

importance of particular metabolites in distinguishing environments, including the putative cholane 

steroid above (i.e., C24H38O4), and three metabolites enriched in non-saline soil and plant corpus samples 

(Fig. 2c, Fig. 3a, Table S4). 

 In addition to showing that the relative abundances of microbially-related metabolites distinguish 

environments, our results highlight the advantages of using a multi-omics approach to interpret and 

predict the contributions of microbes and their environments to chemical profiles in nature. Moreover, our 

approach illustrates that recent advances in computational annotation tools offer a powerful toolbox to 

interpret untargeted metabolomics data13. With these observations, we hypothesized that the differences in 

the relative abundances of particular metabolites among environments were due in part to underlying 

differences in microbial community composition and diversity. To begin to explore these relationships, 

we analyzed our shotgun metagenomics data and found strong correlations between microbially-related 

metabolite richness and microbial taxon richness for certain environments (i.e., Animal proximal gut 

(saline) r = 0.73, p-value < 0.01; Plant corpus (non-saline) r = 0.74, p-value < 0.001; Sediment (non-

saline) r = 0.42., p-value = 0.05; Water (saline) r = 0.57, p-value = 0.01) (Fig. 2b; Table S5). We also 

found similarity in the clustering of samples by environment between datasets (Fig. 2c,d), and a strong 

correlation between sample-sample distances based on microbially related metabolites vs. microbial taxa 

(Extended Data Table 1). Using machine-learning, we determined that specific microbial taxa and their 

functions could classify environments with 72.08% and 68.19% accuracy, respectively (Extended Data 

Figs. 2 and 3). In addition, we examined correlations between microbe-metabolite co-occurrences learned 

from shotgun metagenomic profiles and (1) log-fold changes of metabolites across environments, and (2) 

global distributions of metabolites, and found strong relationships with each (Figure 3b). In particular, the 
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abundances of microbially-related metabolites in aquatic samples had a strong correlation with microbe-

metabolite co-occurrences (Figure 3b,c). In addition to highlighting such environments as unique vs. other 

free-living and host-associated samples, this demonstrates that microbes and metabolites can be classified 

by- and co-occur among environments. 

We further generated additional data for EMP500 samples, including gas chromatography-mass 

spectrometry (GC-MS) and amplicon sequence (i.e., 16S, 18S, ITS, and full-length rRNA operon) data 

that also supported a strong relationship between bacterial- and archaeal communities and metabolic 

profiles (Extended Data Table 1). We anticipate that advances in genome-mining will improve the 

discovery and classification of BGCs from MAGs and provide additional insight into these findings, and 

by making these data publicly available in Qiita and GNPS our data will provide an important resource 

for continued collaborative investigations. In the same manner, the development of novel instrumentation 

and computational methods for metabolomics will expand the depth of metabolites surveyed in 

microbiome studies.  
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Figures. 

 

 
Fig. 1 | Distribution of microbially-related secondary metabolites chemical pathways among 

environments described using the Earth Microbiome Project Ontology (EMPO version 2, level 4). 

Both chemical pathway and chemical superclass annotations are shown based on presence/absence (a, c) 

and relative intensities (b, d) of molecular features, respectively. For superclass annotations in panels c 

and d, we included pathway annotations for metabolites where superclass annotations were not available, 

when possible.  

a b

c

d
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Fig. 2 | Structural-level associations between microbially-related secondary metabolites and specific 

environments described using the Earth Microbiome Project Ontology (EMPO version 2, level 4). a, 

Differential abundance of molecular features across environments, highlighting four example pathways 

and four superclasses in separate panels. For each panel, the y-axis represents the natural log-ratio of the 

intensities of metabolites annotated as the listed ingroup divided by the intensities of metabolites 

annotated as the reference group (i.e., Amino Acids and Peptides, n = 615, for pathways and Flavonoids, n 

= 42, for superclasses). The number of metabolites in each ingroup is shown, as well as the chi-squared 

statistic from a Kruskal-Wallis rank sum test for differences in log-ratios across environments (i.e., each 

test had p-value < 2.2E-16). Each test included 606 samples. Outliers from boxplots are colored red to 

highlight that they are also represented in the overlaid, jittered points. Associations between molecular 

features and environments were identified using Songbird multinomial regression (model: composition = 

EMPO version 2, level 4; pseudo-Q2 = 0.21). Additional information about features is described in Table 

S2. b, Relationship between microbially-related metabolite richness and microbial taxon richness across 

c d

EMPO 4

Animal proximal gut
Animal distal gut
Animal secretion
Animal corpus
Fungus corpus
Plant corpus
Plant surface
Soil
Sediment
Surface
Subsurface
Water

Non-saline

Saline

a n = 310

n = 55

n = 654

n = 364

n = 275
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n = 64

n = 672

KW = 146.65

KW = 165.83

KW = 127.25

KW = 272.82

KW = 242.61

KW = 181.56

KW = 289.38

KW = 299.48

b

n = 444

Animal proximal gut (saline) r = 0.73, p-value < 0.01

Plant corpus (non-saline) r = 0.74, p-value < 0.001

Sediment (non-saline) r = 0.42., p-value = 0.05

Water (saline) r = 0.57, p-value = 0.01
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samples and environments, with significant relationships noted. Correlations with metabolite richness 

were weaker when using Faith’s PD and weighted Faith’s PD for quantifying microbial alpha-diversity 

(Table S5). c, Turnover in composition of microbially-related secondary metabolites across environments, 

visualized using Robust Aitchison Principal Components Analysis (RPCA) showing samples separated 

based on LC-MS/MS spectra. Shapes represent samples and are colored and shaped by EMPO. Arrows 

represent metabolites, and are colored by chemical pathways. The direction and magnitude of each arrow 

corresponds to the strength of the correlation between the relative abundance (i.e., intensity) of the 

metabolite it represents and the RPCA axes. Samples close to arrow heads have strong, positive 

associations with respective features, whereas samples at and beyond arrow origins strong, negative 

associations. The 25 most important metabolites are shown and are described in Table S3. Features 

annotated in red are those also identified in our multinomial regression analysis as among the top 10 

ranked metabolites per environment (Tables S2), those in blue also separated environments in machine-

learning analysis (Table S4), and those in purple identified as important in all three analyses. d, Turnover 

in composition of microbial taxa across environments, visualized using Principal Coordinates Analysis 

(PCoA) of weighted UniFrac distances. Distances are based on counts of microbial genomes from 

mapping metagenomic reads to the Web of Life database. Note the similarities between panels c and d 

with respect to the separation of free-living (e.g., ‘Water’) and host-associated (e.g., ‘Animal distal gut’) 

environments along Axis 1, and a gradient from living hosts (e.g., ‘Plant surface’), to detritus (e.g., ‘Plant 

corpus’), to soils and sediments along Axis 2. Results from PERMANOVA for each level of EMPO are 

shown (i.e., all tests had p-value = 0.001). 
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Fig. 3 | Microbially-related metabolites classify environments with a high accuracy and co-occur 

with specific microbial taxa. a, The random-forest importance score, environment-wide prevalence, and 

mean relative intensity for the top 32 most important microbially-related metabolites contributing to the 

separation of environments. Metabolites are further described in Table S4. Those in red are those also 

identified in our multinomial regression analysis as among the top 10 ranked metabolites per environment 

(Tables S2), those in blue also identified to be strongly associated with RPCA axes (Fig. 2c, Table S3). b, 

Co-occurrence analysis results showing correlation between mmvec principal coordinates (PCs) and (i) 

multinomial regression betas for metabolite abundances across environments, (ii) axes from the RPCA 

biplot in Fig. 2d corresponding to clustering of samples by environment (i.e., EMPO version 2, level 4) 

based on metabolite profiles, and (iii) a vector representing the global magnitude of features from the 

RPCA biplot in Fig. 2d. Values are Spearman correlation coefficients. Asterisks indicate significant 
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correlations (*p < 0.05, **p < 0.01, ***p < 0.001). c, The relationship between multinomial regression 

betas for metabolites with respect to ‘Water (non-saline)’ and the first three mmvec PCs shown as a multi-

omics biplot of metabolite-microbe co-occurrences learned from microbial profiles. Points represent 

metabolites separated by their co-occurrences with microbial taxa. Metabolites are colored based on 

multinomial regression betas for their abundances with respect to ‘Water (non-saline)’. Vectors represent 

specific microbial taxa strongly associated with ordination axes. The model predicting metabolite-

microbe co-occurrences was more accurate than one representing a random baseline, with a pseudo-Q2 

value of 0.18, indicating much reduced error during cross-validation.  
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Extended Data. 

 

Extended Data Table 1 | Mantel test results comparing data layers generated for the EMP500 samples. 

Note the strong relationships between the metabolomics data (i.e., LC-MS/MS and GC-MS) and the 

sequence data from Bacteria and Archaea (i.e., shotgun metagenomics, 16S, and full-length rRNA 

operon) as compared to between metabolomics data and sequence data from eukaryotes (i.e., 18S and 

ITS), as well as the strong relationships between difference sequence data from Bacteria and Archaea (rho 

> 0.2 in bolded font; > 0.4 in bolded, italics; > 0.5 additionally underlined). 
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Extended Data Fig. 1 | a, Distribution of samples among the Earth Microbiome Project Ontology 

(EMPO version 2) categories. b, Geographic distribution of samples with points colored by EMPO 

(version 2, level 4). Extensive information about each sample set contributed is described in Table S1. 
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Extended Data Fig. 2 | Machine-learning analysis of shotgun metagenomics data highlighting the 

most important microbial taxa and functions. a, The random-forest (RF) importance score, 

environment-wide prevalence, and mean relative abundance for the top 32 most important microbial taxa 

contributing to the separation of environments. b, The RF importance score, environment-wide 

prevalence, and mean relative abundance for the top 32 most important microbial functions (i.e., GO 
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Terms) contributing to the separation of environments. For both analyses, environments are described by 

the Earth Microbiome Project Ontology (EMPO version 2, level 4). All samples were analyzed using 20-

time repeated group five-fold cross validation, where ‘group’ indicates the study identifier that a sample 

belongs to. In this approach, we split the data by ‘group’ such that all samples from the same study 

identifier can be assigned to either train or test data sets.  
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Extended Data Fig. 3 | Machine-learning analysis of LC-MS/MS metabolomics and shotgun 

metagenomics data highlighting per-environment classification accuracy. a, Receiver operating 

characteristic curves (and AUROC) and precision-recall curves (and AUPRC) illustrating classification 

accuracy of the random forest model across all environments based on microbial taxonomic (i.e., OGU) 

profiles. b, Receiver operating characteristic curves (and AUROC) and precision-recall curves (and 

AUPRC) illustrating classification accuracy of the random forest model across all environments based on 

microbial functional (i.e., GO terms) profiles. For both analyses, environments are described by the Earth 

Microbiome Project Ontology (EMPO version 2, level 4). All samples were analyzed using 20-time 
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repeated group five-fold cross validation, where ‘group’ indicates the study identifier that a sample 

belongs to. In this approach, we split the data by ‘group’ such that all samples from the same study 

identifier can be assigned to either train or test data sets. 
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